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A Parallel Geneticmeural Network Learning 
Algorithm for MIMD Shared Memory Machines 

S. L. Hung and H. Adeli 

Abstract-A new algorithm is presented for training of mul- 
tilayer feedforward neural networks by integrating a genetic 
algorithm with an adaptive conjugate gradient neural network 
learning algorithm. The parallel hybrid learning algorithm has 
been implemented in C on an MIMD shared memory machine 
(Cray Y-MP8/864 supercomputer). It has been applied to two 
different domains, engineering design and image recognition. The 
performance of the algorithm has been evaluated by applying 
it to three examples. The superior convergence property of the 
parallel hybrid neural network learning algorithm presented in 
this paper is demonstrated. 

I. INTRODUCTION 

UPERVISED learning algorithms have been investigated S and explored in several domains. The convergence speed 
of these algorithms is often slow. Several hours or even days 
of computer time are often required to train neural networks 
using the conventional serial workstations. In addition, the 
total number of iterations for learning an example in neu- 
ral networks is often in the order of thousands [l], [lo]. 
Thus, how to improve the learning performance of neural 
networks is currently an important research problem. One 
approach, inspired by the human brain neurons performing 
many operations simultaneously, is the development of learn- 
ing algorithms on general-purpose parallel computers with 
the objective of reducing the overall computing time [l l] .  
Hung and Adeli [12] present parallel backpropagation neural 
networks learning algorithms employing the vectorization and 
microtasking capabilities of vector MIMD machines. They 
report a maximum speedup of 6.7 using eight processors for 
a large network with 5950 links. 

Another approach is the development of more effective 
neural network learning algorithms with the objective of 
reducing the leaming time. For example, we have developed 
an adaptive conjugate gradient neural networks learning al- 
gorithm and applied it to the domains of engineering design 
and image recognition. The problem of arbitrary trial-and-error 
selection of the learning and momentum ratios encountered in 
the momentum backpropagation algorithm is circumvented in 
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the new adaptive algorithm. Instead of constant learning and 
momentum ratios, the step length in the inexact line search is 
adapted during the learning process through a mathematical 
approach. Also, it is shown that the adaptive neural networks 
algorithm has superior convergence property compared with 
the momentum backpropagation algorithm. 

A third approach is the development of hybrid learning algo- 
rithms by integrating genetic algorithms with neural network 
learning algorithms [ 5 ] ,  1111, [131. 

In this research, we have developed a parallel hybrid learn- 
ing algorithm by integrating genetic algorithm with the adap- 
tive conjugate gradient neural network learning algorithm and 
implemented it in C on an MIMD machine (Cray Y-MP8/864 
supercomputer). The parallel hybrid learning algorithm has 
been applied to two different domains, engineering design 
and image recognition. Three examples have been used to test 
the performance of the new parallel learning algorithm. The 
first example is design of steel beams used in multistory steel 
structures. A small neural network with 52 links is used for 
this example. The other two examples are from the domain of 
image recognition. Large neural networks with 4160 and 5950 
links are used for these examples, respectively. 

11. GENETIC ALGORITHMS 

A. GA Abstraction 
For solution of optimization problems, genetic algorithms 

have been investigated recently and shown to be effective 
at exploring a large and complex space in an adaptive way 
guided by the equivalent biological evolution mechanisms of 
reproduction, crossover, and mutation [3], [51, [71. 

There are five basic components in a genetic algorithm: a 
method for encoding of chromosomes, a fitness (or objective) 
function, an initial population, a set of operators to perform 
evolution between two consecutive chromosome populations, 
and working parameters [ l l ] ,  [13]. Hoffmeister and Back [8] 
presented genetic algorithm as an eight-tuple entity. In this 
work, we extend the previous five components of genetic 
algorithm and abstract them as a nine-tuple entity: 

where 
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(ai ,  ... , a i )  in the tth generation. Any a:t = ai = s (p t )  
in ptt is selected by a given random real number ai satisfying 
the following condition: 

x 

‘A chromosome ( n  x m digik) 

Fig. 1. Encoding decision variables as a chromosome. 

I = (0, l}L 
X E N  
L E N  
f : I + R  
s : I X + I  
c : I2 + 1 2  

m : I + I  
T : I’ + (0, l} 

Initial population 

Encoding of chromosomes 
Population size 
Length of Chromosome 
Fitness function 
Parent-selection operation 
Crossover operation 
Mutation operation 
Termination criterion 

There are X chromosomes in each population. The initial 
population of chromosomes, po, is generated randomly. The 
entity ai denotes the kth chromosome in the tth generation 
of population, pt. A chromosome, I ,  is encoded as a string of 
binary digits, 1’s and 0’s. If there are w decision variables in 
an optimization problem and each decision variable is encoded 
as an n-digit binary number, then a chromosome is a string of 
L = w x n binary digits (Fig. 1) and represented as a column 
vector [ u k , l , . . ‘ , a k , L ]  T .  The term g : X + Y denotes a 
function g maps x to y where x E X and y E Y .  Variables N 
and R are sets of integer and real numbers, respectively. The 
evolution process of genetic algorithm is continued (T = 0) 
until one of the termination criteria is met (7’ = 1). 

j = 1  

The index q is obtained from 

1 x 
q = min IC I V~C E ( 1 , .  .. , A > ,  s.t. ai 5 f(at,) . { k = l  

C .  Crossover Operation 
For any pair of selected chromosomes in a population p t ,  

an associated real value, 0 5 p I 1, is generated randomly. 
If p is greater than the predefined crossover threshold, pc, 
the crossover operator is applied to this pair of chromosomes. 
Three different crossover strategies have been applied in this 
work. The first one is two-point crossover, ctptr that produces 
an intermediate population p f t  from the population pt  and is 
defined below in (l), where 1 5 p1 < pz 5 L. In this 
crossover strategy, two positions in a pair of chromosomes 
are selected. The pair of chromosomes are divided into three 
sub-chromosomes by these two points and crossed over to each 
other by swapping the first and third sub-chromosomes. 

The second crossover strategy is multi-point crossover, 
cmp, that produces an intermediate population pit from the 
population p t  and is defined as (see (2) below) where 0 5 
p k ,  pmp I 1. In this crossover strategy, more than one 
crossover points are selected in a pair of chromosomes. 
The crossover operator is performed in bit level (allele in a 
chromosome). That is, the process of crossover is performed 
bit by bit. The numbers of crossover points and crossover 
positions in each pair of chromosomes are selected randomly, 
distinctly from each other. 

The third crossover strategy is uniform crossover, tun, that 
produces an intermediate population ptt from the population 
pt .  First, a mask, a binary array with length L, is generated. 
L real values, 0 5 rj 5 1 ( j  = 1 , 2 ,  . . . , L ) ,  are generated 
randomly. If the jth random number, r j ,  is greater than or 
equal to the predefined threshold value, pma, the value of the 
j th element in the binary array is set as 1. Otherwise, it is set 

B.  Parent Selection 

The parent selection operation, s, produces an intermediate 
population p’t = (ay , .  . . ,a’,”) from the population pt  = 

{ }=emp({ (! }) V i €  ( 1 , 3 , . . . , 2 k + l , . . . , X - l )  
a’tz+l) atz+l) 
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Fig. 2. Two-point, multi-point, and uniform crossovers. 

as 0. The mask, ma, is defined as 

ma = u,L_,(([1]%ifrj L. pma) v ([01,if rJ < Pma)} 

The uniform crossover is defined as shown in (3) below. 
Similar to the multi-point crossover strategy, the process 
of uniform crossover is performed bit by bit in a pair of 
chromosomes. In the uniform crossover strategy, the crossover 
positions are predefined in a mask. All chromosomes in a 
population are crossed over in the same positions. On the 
other hand, in the multi-point crossover strategy, each pair 
of chromosomes are crossed over at different points because 
no predefined mask is used. Three aforementioned crossover 
operators are shown schematically in Fig. 2. 

D. Mutation Operation 
For any chromosome in a population p t ,  an associated real 

value, 0 5 p 5 1, is generated randomly. If p is less than 
the predefined mutation threshold, pm, the mutation operator 
is applied to this chromosome. The mutation operator simply 
alters one bit from 0 to 1 (or 1 to 0) in a chromosome. As 
the mutation operator is not guided by the fitness (objective) 
function, the result of mutation operator can make an instant 
change between two successive generations. The operator of 

Second Stace a First,Staee 

Genetic Algoorith 

The control flow of thc f m t  l carn in~  rlage " "  
The control flow of the second learning stage 

Fig. 3. 
conjugate gradient neural network leaming algorithm. 

A hybrid leaming algorithm using genetic algorithm with adaptive 

mutation, m, produces an intermediate population p't from the 
population pt  and is defined as: 

ait =: m(at) V i E {1; . . ,X]  

U +  fork  E {1,2,.,.,p- l , p +  1 , . . . ! L }  
U i , k  for k = p 

where 1 5 p < L. 

111. A HYBRID GENETIC/ NEURAL 
NETWORK LEARNING ALGORITHM 

A hybrid leaming algorithm using genetic algorithm with 
adaptive conjugate gradient multilayer neural networks is 
presented in Fig. 3. It consists of two leaming stages. The first 
learning stage is used to accelerate the whole leaming process 
by using a genetic algorithm with the feedfonvard step of the 
adaptive conjugate gradient neural network (ACGNN) leaming 
algorithm. The genetic algorithm performs global search and 
seeks a near-optimal initial point (weight vector) for the second 
stage. In this stage, each chromosome is used to encode the 
weights of neural network. The fitness (objective) function 
for the genetic algorithm is defined as the average squared 
system error of the corresponding neural network. Therefore, it 
becomes an unconstrained optimization problem: find a set of 
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Fig. 4. Global search using genetic algorithm. 

decision variables minimizing the objective function. The best 
fitness function value in a population is defined as the smallest 
value of the objective function in the current population. 

The process of global search using genetic algorithm is 
schematically presented in Fig. 4. Consider three consecutive 
generations, t l ,  t2 ,  and t3. The chromosomes in tl generation 
perform local search in some discrete domain. After applying 
the crossover and mutation operators to the tl generation, 
the chromosomes with lower fitness function are selected as 
the parents, the chromosomes with higher fitness function 
are discarded, some new chromosomes are generated via the 
selected parent chromosomes, and the t l  generation is replaced 
by the new population of chromosomes called t 2  generation. 
In the t2 generation, the chromosomes perform local search 
in a larger domain than t l  generation and approach to some 
local minimums with lower fitness function values. In the t3 
generation, the chromosomes with lower fitness function in the 
t2  generation are selected and new chromosomes are generated 
that cover the whole bounded domain. In this last generation, 
the chromosomes perform global search in the whole bounded 
domain and approach to the global minimum in the domain. 

After performing several iterations and meeting one of the 
stopping criteria, the first learning stage is terminated and the 
chromosome retuming the minimum objective function (the 
best seed) is considered as the initial weights of the neural 
network in the second stage. Next, the adaptive conjugate gra- 
dient learning algorithm performs the second learning process 
until the terminal condition is satisfied. 

In order to reduce the memory storage requirement and 
increase the computational efficiency, the allele (binary digit) 
of each chromosomes in a population is encoded as a bit rather 
than an integer. In this case, the length of each chromosome 
is equal to the length of an integer, such as 16 bits on a 
SUN SPARC station. Hence, the memory storage used for 
each chromosome is an integer rather than a sixteen-element 

X 

integer array. Since we encode the chromosome as an integer, 
the operations of crossover and mutation can be operated using 
bitwise operators that are directly performed via computer 
hardware. 

Consider a multilayer neural network with N [ i ]  nodes in 
layer i. The learning problem is mapped from N[1] input 
nodes to N[m] output nodes and a number of N, instances 
are given as training examples. The total number of weights 
and nodes are denoted by N ,  and N,, respectively. For the 
genetic algorithm, we assume Np chromosomes are generated 
and operated on in each iteration. The operators and other 
features of the genetic algorithm are the same as those defined 
previously. 

The first learning stage is a combination of the genetic 
algorithm with the feedforward process of the adaptive con- 
jugate gradient learning algorithm. In each iteration of this 
learning stage, the chromosome with the smallest value of 
objective function is saved as subbest-chromosome and com- 
pared with the one saved in the previous iteration, called 
best-chromosome. After the first learning stage is terminated, 
the best-chromosome is used as the initial weight vector 
for the second learning stage. In order to reduce redundant 
computations in this learning stage, three different stopping 
criteria are employed to terminate this learning process. If one 
of these three stopping criteria is met, the first learning stage 
is terminated. 

The smallest value of the objective functions in a 
population is less than the acceptable predefined value. 
The fitness ratio, defined as the value of the 
best-chromosome’s objective function to the average 
value of objective functions, is greater than 0.95. 
If the objective function of the best-chromosome does 
not change in a predefined number of consecutive 
iterations (in this work, a value of 10 is used for this 
number). 
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TABLE I 
THE FIRST STAGE OF THE PARALLEL HYBRID LEARNING ALGORITHM 

First Learning Stage * I  
Initialize the chromosomes randomly as current generation, initialize working parameters, and set the first chromosome 
as the best- chromosome. 
Parallel region l -entry 
For i = 1 to Np , do concurrently 
a) Initialize sub-totalfitness to zero and subbest- chromosomes as null. 
b) For j = 1 to chunksize, do sequentially 

a) For k = 1 to N,,  do sequentially 
a l )  Perform feedforward procedure of the adaptive conjugate gradient learning algorithm. 
a2) Calculate the objective function (system error for the neural network). 

Next k 
b) Calculate the sub-total- fitness by accumulating objective function of each chromosome. 
c) Store the best- chromosome as subbest-chromosome. 

Next j 
Guarded section l-entry 
c) Calculate the total- fitness by accumulating sub-total- fitness. 
d) Compare the sub-best-chromosome with each other and set the best subbest-chromosome as the best- chromosome. 
Guarded section l - end  
Next i 
Parallel region l - end  
DO 
Parallel region 2-entry 
e) For i = 1 to ( N p / 2 ) ,  do concurrently 

d) Initialize sub-total- fitness to zero and subbest- chromosome as null. 
e) For j = 1 to chunksize, do sequentially 

e l )  Select parents using roulette wheel parent selection. 
e2) Apply two-point, multi-point, or uniform crossovers and mutation to the parents. 
e3) For k = 1 to N,,  do sequentially 

e3.1) Perform feedforward procedure of the adaptive conjugate gradient learning algorithm to parent chro- 

e3.2) Calculate the objective function (system error for the neural network) for parent chromosomes. 
mosomes. 

Next k 
e4) Calculate the sub-total- fitness by accumulating objective function of each chromosome. 
e5) Store the best- chromosome as subbest- chromosome. 

Next j 
Guarded section 2 - e n t r y  

f) Calculate the total- fitness by accumulating sub-total- jitness. 
g) Compare the subbest- chromosome to each other and set the best subbest- chromosome as the best- chromosome. 

Guarded section 2--end 
Next i 
Parallel region 2 - e n d  
f) Replace the old generation by the new generation. 

WHILE ('stopping criteria). 

The first stage of the parallel hybrid learning algorithm is 
presented in Table I and shown schematically in Fig. 5. 

The second learning stage is a stand-alone adaptive conju- 
gate gradient neural network learning algorithm. A number of 
N ,  tasks are created and executed concurrently. The second 
stage of the parallel hybrid neural network learning algo- 

rithm is presented in Table I1 and shown schematically in 
Fig. 6. 

IV. APPLICATIONS 

We apply the parallel hybrid geneticheural network learning 
algorithm developed in this research to two different domains: 
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TABLE I1 
THE SECOND STAGE OF THE PARALLEL HYBRID LEARNING ALGORITHM 

Second Learning Stage *I 
Set the best-chromosone as the initial weight vector, set up the topological structure of neural network, and set the 
counter cnt to zero. 
DO 
Parallel region-entry 
a) For i = 1 to Ns,  do concurrently 

a) Initialize subsystem-error and subdeltaweights to zero. 
b) For j = 1 to chunksize, do sequentially 

bl)  Perform feedforward procedure of the adaptive conjugate gradient learning algorithm. 
b2) Calculate subsystem-error. 
b3) Calculate the deltas in output layer. 
b4) Calculate the deltas in hidden layers (from layer m - 1 to layer 1). 
b5) Calculate the subdeltaweights in hidden layers (from layer m - 1 to layer 1). 

Next j .  
Guarded section-ntry 

c) Calculate the system error, E, by accumulating subsystem-error. 
d) Calculate deltas of weights by accumulating the subdelfa-weights. 

Guarded section-nd 
Next i. 
Parallel region-nd 
If cnt 2 1, calculate the new conjugate gradient direction. 
Perform inexact line search to calculate the step length. 
Update the weight vector. 
WHILE (“stop criteria). ) 

engineering design and image recognition. Three examples are 
presented, one in the domain of engineering design and two 
in the domain of image recognition. 

Example I Engineering Design: This example is the selec- 
tion of a minimum weight steel beam from the AISC LRFD 
wide-flange (W) shape database [4] for a given loading condi- 
tion [2], [9], [lo]. Each instance consists of five input pattems: 
the member length, the unbraced length, the maximum bending 
moment in the member, the maximum shear force in the 
member, and the bending coefficient. The output pattern is the 
plastic modulus of the corresponding least weight member. 

A four-layer feedforward neural network with two hidden 
layers was used to learn this problem. The numbers of nodes 
in the input layer, the first and second hidden layers, and the 
output layer are 5, 5, 3, and 1, respectively. There are 52 links 
in this neural network. We use ten training instances in this 
example. The total number of iterations for learning process 
is limited to 100. The working parameters for the first stage 
of leaming (genetic algorithm) are as follows: population size: 
4000, length of decision variable: 16 bits, chromosome length: 
832 (52 x 16) bits, crossover rate: 0.8, mutation rate: 0.08, and 
range of decision variables: -5 to 5. 

Initialize a population 
of c h m ” e s  as 
cumnt generahon 

Perfom feedforward 
p-s of ACGNN 
algorithm 

Calculate the fitness 
for each chmmosom 

Calculate the 
summahon of total 
fitness and store the 
best-chromosome 

S e k t  parent chromosomes 
and apply crossover and 
mutahon operators to the 
parent chromosomes 

Perform feedforward 
p-s of ACGNN 
algorithm 

Calculate the fitness 
for each chromosome 

Calculate the summahon 
of total fitness and store 
the best-chromorome 

Generate a new generation and 
use it as current generation 

Store the best-chromosome . N o A I  D ~ ~ ~ ?  Yes 22gz:d a ACGNN 

Example 2 h u g e  Recognition (7 X 7 Binary hageS Of 
Numerals): This example is recognition of seven by seven 
(7 x 7) binary images of the numerals (0 to 9) (Fig. 7). A 
three-layer neural network with one hidden layer was used 
to learn this problem. The numbers of nodes in the input 

Fig. 5.  The first learning stage of the parallel hybrid neural network learning 
algO*thm. 

layer, the hidden layer, and the output layer are 49, 99, and 
10, respectively. The total number of links in this three-layer 



906 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 1994 

lnihalize weights using 
the mul t  of the fint 
learning stage by decoding 
the chromsome with the 
smallest fitness function 

Inihalize working 
variable 

Perform feedforward 
process, calmlate the 
error term for each 
haining instanrr. and 
calculate the deltar 
for each instance 

Calculate the system 
error E and the 
summation of deltas of 
weights 

Calculate the new 
conjugate dtrwtion 

Perform parailel 
inexact line search to 
find the step length 

Update the weight 
vector 

Fig. 6. 
learning algorithm. 

The second leaming stage of the parallel hybrid neural network 

neural networks is 5950. The total number of iterations for 
leaming process is limited to 200. There are 30 instances in 
the training set: ten noiseless image instances and 20 image 
instances with about 10% noise (5 pixels out of 49 pixels). 
The working parameters for the first stage of learning (genetic 
algorithm) are as follows: population size: 250, length of 
decision variable: 16 bits, chromosome length: 95 200 (5950 
x 16) bits, crossover rate: 0.8, mutation rate: 0.08, range of 
decision variables: -1 to 1. 

Example 3 Image Recognition (Lenna Image): This exam- 
ple is to recognize an 8-bit gray-scale (256 gray levels) of 
the Lenna image (Fig. 8). Each training instance is an eight 
by eight (8 x 8) square image Thus, the 384 x 384 pixel Lenna 
image is decomposed into 2304 training instances used to 
train the feedforward neural network. A flat (two-layer) neural 
network was used to learn this example. The number of nodes 
in both input and output layer is 64. The total number of links 
in this two-layer neural networks is 4,160. The total number 
of iterations for learning process is limited to 50. The working 
parameters for the first stage of learning (genetic algorithm) are 
as follows: population size: 250, length of decision variable: 
16 bits, chromosome length: 66 560 (4160 x 16) bits, crossover 
rate: 0.9, mutation rate: 0.095, range of decision variables: - 1 
to 1. 

Fig. 7. Ten noiseless and 20 noisy 7 x 7 binary images of numerals (0 to 9). 

V. COMPUTATION RESULTS 
Fig. 8. The 8-bit gray-scale (256 levels) Lenna image. 

A .  Convergence History 
Example 1 :  The system error for this example using the 

adaptive conjugate gradient neural network learning algorithm 
and the parallel hybrid neural network algorithm are shown in 
Fig. 9. After 12 iterations of learning process, the first leaming 

stage of the parallel hybrid neural network learning algorithm 
met one of the stopping criteria. The best fitness function was 
a value of about 0.0023. The result of the first leaming stage 
is used as an initial weight vector in the second learning stage. 
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System error for the 7 x 7 binary image recognition of numerals 

After a total of 100 iterations of the learning process, the 
system error in the parallel hybrid neural network learning 
algorithm converges to a value 6.5 x The stand-alone 
adaptive conjugate gradient neural network learning algorithm 
converges to 1.84 x after 100 iterations of the learning 
process. 

ExumpZe2: The system error for this example using the 
adaptive conjugate gradient neural network learning algorithm 
and the parallel hybrid neural network learning algorithm are 
shown in Fig. 10. After 18 iterations, the first learning stage of 
the parallel hybrid neural network learning algorithm met one 
of the stopping criteria. The best fitness function has a value 
of about 0.3. The result of the first learning stage is used as 

System error 
E 

Adaphve Conjugate gradient neural 
network leanung algonthm 

no0 moo 2000 3000 ~ o o o  ,000 

System error for the Lenna image recognition problem Fig. 11. 

an initial weight vector for the second learning stage. After 12 
more iterations, the system error in the parallel hybrid neural 
network learning algorithm converges to a value of less than 
0.001 and the algorithm achieves 100% recognition of all the 
30 training instances. 

After the same number of iterations, the stand-alone adap- 
tive conjugate gradient neural network learning algorithm 
converges to a value of 0.17 and recognize about 63% (19 
out of 30) of the training set. 

ExampZe3: The system error for this example using the 
adaptive conjugate gradient neural network learning algorithm 
and the parallel hybrid neural network learning algorithm are 
shown in Fig. 11. After eight iterations of learning process, 
the first learning stage of the parallel hybrid neural network 
learning algorithm met one of the stopping criteria. The best 
fitness function was a value of about 4.4. The result of the first 
learning stage is used as an initial weight vector for the second 
learning stage. After 42 more iterations, the system error in the 
parallel hybrid neural network learning algorithm converges to 
a value of 0.10. The stand-alone adaptive conjugate gradient 
neural network learning algorithm converges to a value of 0.15 
after 50 iterations. 

B .  Speedup 
The speedup is measured by using an expert system tool, 

called utexpert. A neural network with 52 links is used in ex- 
ample 1. In the first learning stage of the parallel hybrid neural 
network learning algorithm, 4000 chromosomes are operated 
on in each learning iteration. That is, 4000 tasks are created 
and performed concurrently in this stage. Each concurrent task 
performs the computation of a stand-alone neural network with 
10 training instances. The overall speedup achieved by the 
parallel hybrid neural network learning algorithm for example 
1 is dominated by the first learning stage. As the genetic 
algorithm is an intrinsically parallel algorithm, the maximum 
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network leaming algorithm without vectorization. 

Speedup for examples 1-3 using the parallel hybrid genetic/neural 

speedup of example 1 due to microtasking is about 7.9 
using eight processors of the Cray Y-MP8/864 supercomputer 
(Fig. 12). A maximum average speedup of about 9 is achieved 
when microtasking is combined with vectorization using eight 
processors of the Cray machine (Fig. 13). In this example, 
the value of speedup due to a combination of microtasking 
with vectorization is not high because the loop performed by 
vector operation is short. 

A very large neural network with 5950 links is used in 
example 2. Two hundred fifty (250) chromosomes are operated 
on in each learning iteration. That is, 250 tasks are created and 
performed concurrently in this learning stage. Each concurrent 
task performs the computation of a stand-alone neural network 
with 30 training instances. The overall speedup achieved 
by the parallel hybrid neural network leaming algorithm for 
example 2 is also dominated by the first learning stage. The 
maximum speedup due to microtasking is about 7.4 using eight 
processors of the Cray Y-MP8/864 supercomputer (Fig. 12). 
A maximum average speedup of about 17.6 is achieved due 
to a combination of microtasking with vectorization (Fig. 13). 

A very large neural network with 4160 links is used in ex- 
ample 3 with 2304 training instances. Two hundred fifty (250) 
chromosomes are operated on in each learning iteration. The 
maximum speedup due to microtasking is about 7.3 using eight 
processors of the Cray Y-MP8/864 supercomputer (Fig. 12). 
A maximum average speedup of about 33 is achieved when 
microtasking is combined with vectorization (Fig. 13). 

VI. FINAL REMARKS 
We have presented a parallel hybrid neural network learning 

algorithm by integrating genetic algorithm with an adaptive 
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Speedup for examples 1-3 using the parallel hybrid geneticheural Fig. 13. 
network leaming algorithm with vectorization. 

conjugate gradient neural network learning algorithm. Follow- 
ing observations are made and conclusions drawn: 

The results of neural network learning are sensitive to 
the initial value of the weight vector. In this work, 
a genetic algorithm is employed to perform global 
search and to seek a good starting weight vector for 
the subsequent neural network learning algorithm. The 
result is an improvement in the convergence speed of 
the algorithm. 
The problem of entrapment in a local minimum is 
encountered in gradient-based neural network learning 
algorithms. In the hybrid learning algorithm presented 
in this paper, this problem is circumvented by using a 
genetic algorithm which is guided by the fitness function 
of a population rather than gradient direction. After 
several iterations of the global search, the first leaming 
stage retums a near-global optimum point that is used as 
the initial weight vector for the second leaming stage. 
A large-scale multilayer neural network requires sub- 
stantial computing processing time in order to converge 
to an acceptably small system error value. By developing 
efficient parallel learning algorithms on multiprocessor 
computers we can increase the computational speedup 
by an order of magnitude. 
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