
900 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994

A Parallel Geneticmeural Network Learning
Algorithm for MIMD Shared Memory Machines

S. L. Hung and H. Adeli

Abstract-A new algorithm is presented for training of mul-
tilayer feedforward neural networks by integrating a genetic
algorithm with an adaptive conjugate gradient neural network
learning algorithm. The parallel hybrid learning algorithm has
been implemented in C on an MIMD shared memory machine
(Cray Y-MP8/864 supercomputer). It has been applied to two
different domains, engineering design and image recognition. The
performance of the algorithm has been evaluated by applying
it to three examples. The superior convergence property of the
parallel hybrid neural network learning algorithm presented in
this paper is demonstrated.

I. INTRODUCTION

UPERVISED learning algorithms have been investigated S and explored in several domains. The convergence speed
of these algorithms is often slow. Several hours or even days
of computer time are often required to train neural networks
using the conventional serial workstations. In addition, the
total number of iterations for learning an example in neu-
ral networks is often in the order of thousands [l], [lo].
Thus, how to improve the learning performance of neural
networks is currently an important research problem. One
approach, inspired by the human brain neurons performing
many operations simultaneously, is the development of learn-
ing algorithms on general-purpose parallel computers with
the objective of reducing the overall computing time [l l] .
Hung and Adeli [12] present parallel backpropagation neural
networks learning algorithms employing the vectorization and
microtasking capabilities of vector MIMD machines. They
report a maximum speedup of 6.7 using eight processors for
a large network with 5950 links.

Another approach is the development of more effective
neural network learning algorithms with the objective of
reducing the leaming time. For example, we have developed
an adaptive conjugate gradient neural networks learning al-
gorithm and applied it to the domains of engineering design
and image recognition. The problem of arbitrary trial-and-error
selection of the learning and momentum ratios encountered in
the momentum backpropagation algorithm is circumvented in

Manuscript received September 21, 1992; revised July 26, 1993. This work
has been supported in part by the National Science Foundation under Grant
MSS-9222114.

S . L. Hung is with the Department of Civil Engineering, National Chiao
Tung University, HsinChu, Taiwan 30050, R.O.C.

H. Adeli is with the College of Engineering, The Ohio State University,
Columbus, OH 43210-1275 USA.

IEEE Log Number 9212202.

the new adaptive algorithm. Instead of constant learning and
momentum ratios, the step length in the inexact line search is
adapted during the learning process through a mathematical
approach. Also, it is shown that the adaptive neural networks
algorithm has superior convergence property compared with
the momentum backpropagation algorithm.

A third approach is the development of hybrid learning algo-
rithms by integrating genetic algorithms with neural network
learning algorithms [5] , 1111, [131.

In this research, we have developed a parallel hybrid learn-
ing algorithm by integrating genetic algorithm with the adap-
tive conjugate gradient neural network learning algorithm and
implemented it in C on an MIMD machine (Cray Y-MP8/864
supercomputer). The parallel hybrid learning algorithm has
been applied to two different domains, engineering design
and image recognition. Three examples have been used to test
the performance of the new parallel learning algorithm. The
first example is design of steel beams used in multistory steel
structures. A small neural network with 52 links is used for
this example. The other two examples are from the domain of
image recognition. Large neural networks with 4160 and 5950
links are used for these examples, respectively.

11. GENETIC ALGORITHMS

A. GA Abstraction
For solution of optimization problems, genetic algorithms

have been investigated recently and shown to be effective
at exploring a large and complex space in an adaptive way
guided by the equivalent biological evolution mechanisms of
reproduction, crossover, and mutation [3], [51, [71.

There are five basic components in a genetic algorithm: a
method for encoding of chromosomes, a fitness (or objective)
function, an initial population, a set of operators to perform
evolution between two consecutive chromosome populations,
and working parameters [l l] , [13]. Hoffmeister and Back [8]
presented genetic algorithm as an eight-tuple entity. In this
work, we extend the previous five components of genetic
algorithm and abstract them as a nine-tuple entity:

where

1045-9227/94$04.00 0 1994 IEEE

HUNG AND ADELI: A PARALLEL GI” LEARNING ALGORITHM FOR MIMD SHARED MEMORY MACHINES 90 1

(ai , ... , a i) in the tth generation. Any a:t = ai = s (p t)
in ptt is selected by a given random real number ai satisfying
the following condition:

x

‘A chromosome (n x m digik)

Fig. 1. Encoding decision variables as a chromosome.

I = (0, l}L
X E N
L E N
f : I + R
s : I X + I
c : I2 + 1 2

m : I + I
T : I’ + (0, l}

Initial population

Encoding of chromosomes
Population size
Length of Chromosome
Fitness function
Parent-selection operation
Crossover operation
Mutation operation
Termination criterion

There are X chromosomes in each population. The initial
population of chromosomes, po, is generated randomly. The
entity ai denotes the kth chromosome in the tth generation
of population, pt. A chromosome, I , is encoded as a string of
binary digits, 1’s and 0’s. If there are w decision variables in
an optimization problem and each decision variable is encoded
as an n-digit binary number, then a chromosome is a string of
L = w x n binary digits (Fig. 1) and represented as a column
vector [u k , l , . . ‘ , a k , L] T . The term g : X + Y denotes a
function g maps x to y where x E X and y E Y . Variables N
and R are sets of integer and real numbers, respectively. The
evolution process of genetic algorithm is continued (T = 0)
until one of the termination criteria is met (7’ = 1).

j = 1

The index q is obtained from

1 x
q = min IC I V~C E (1 , . .. , A > , s.t. ai 5 f(at,) . { k = l

C . Crossover Operation
For any pair of selected chromosomes in a population p t ,

an associated real value, 0 5 p I 1, is generated randomly.
If p is greater than the predefined crossover threshold, pc,
the crossover operator is applied to this pair of chromosomes.
Three different crossover strategies have been applied in this
work. The first one is two-point crossover, ctptr that produces
an intermediate population p f t from the population pt and is
defined below in (l), where 1 5 p1 < pz 5 L. In this
crossover strategy, two positions in a pair of chromosomes
are selected. The pair of chromosomes are divided into three
sub-chromosomes by these two points and crossed over to each
other by swapping the first and third sub-chromosomes.

The second crossover strategy is multi-point crossover,
cmp, that produces an intermediate population pit from the
population p t and is defined as (see (2) below) where 0 5
p k , pmp I 1. In this crossover strategy, more than one
crossover points are selected in a pair of chromosomes.
The crossover operator is performed in bit level (allele in a
chromosome). That is, the process of crossover is performed
bit by bit. The numbers of crossover points and crossover
positions in each pair of chromosomes are selected randomly,
distinctly from each other.

The third crossover strategy is uniform crossover, tun, that
produces an intermediate population ptt from the population
pt . First, a mask, a binary array with length L, is generated.
L real values, 0 5 rj 5 1 (j = 1 , 2 , . . . , L) , are generated
randomly. If the jth random number, r j , is greater than or
equal to the predefined threshold value, pma, the value of the
j th element in the binary array is set as 1. Otherwise, it is set

B. Parent Selection

The parent selection operation, s, produces an intermediate
population p’t = (ay , . . . ,a’,”) from the population pt =

{ }=emp({ (! }) V i € (1 , 3 , . . . , 2 k + l , . . . , X - l)
a’tz+l) atz+l)

902 IEEE TRANSACIIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 1994

Before crossover
Strmg 1 i I I "

After crossover

New String 1

I ' p, p, L (1). Two-ooint crossova

Before crossover
.................... After crossover

New Stnne 1

Before crossover After Crossover

New String 1 String 1

IlllIIlIIllIll "TW
Siring 2 II) New String2

mm LulI"

1 P; PI, r,i L (3). Uniform c-

Fig. 2. Two-point, multi-point, and uniform crossovers.

as 0. The mask, ma, is defined as

ma = u,L_,(([1]%ifrj L. pma) v ([01,if rJ < Pma)}

The uniform crossover is defined as shown in (3) below.
Similar to the multi-point crossover strategy, the process
of uniform crossover is performed bit by bit in a pair of
chromosomes. In the uniform crossover strategy, the crossover
positions are predefined in a mask. All chromosomes in a
population are crossed over in the same positions. On the
other hand, in the multi-point crossover strategy, each pair
of chromosomes are crossed over at different points because
no predefined mask is used. Three aforementioned crossover
operators are shown schematically in Fig. 2.

D. Mutation Operation
For any chromosome in a population p t , an associated real

value, 0 5 p 5 1, is generated randomly. If p is less than
the predefined mutation threshold, pm, the mutation operator
is applied to this chromosome. The mutation operator simply
alters one bit from 0 to 1 (or 1 to 0) in a chromosome. As
the mutation operator is not guided by the fitness (objective)
function, the result of mutation operator can make an instant
change between two successive generations. The operator of

Second Stace a First,Staee

Genetic Algoorith

The control flow of thc f m t l carn in~ rlage " "
The control flow of the second learning stage

Fig. 3.
conjugate gradient neural network leaming algorithm.

A hybrid leaming algorithm using genetic algorithm with adaptive

mutation, m, produces an intermediate population p't from the
population pt and is defined as:

ait =: m(at) V i E {1; . . ,X]

U + fork E {1,2,.,.,p- l , p + 1 , . . . ! L }
U i , k for k = p

where 1 5 p < L.

111. A HYBRID GENETIC/ NEURAL
NETWORK LEARNING ALGORITHM

A hybrid leaming algorithm using genetic algorithm with
adaptive conjugate gradient multilayer neural networks is
presented in Fig. 3. It consists of two leaming stages. The first
learning stage is used to accelerate the whole leaming process
by using a genetic algorithm with the feedfonvard step of the
adaptive conjugate gradient neural network (ACGNN) leaming
algorithm. The genetic algorithm performs global search and
seeks a near-optimal initial point (weight vector) for the second
stage. In this stage, each chromosome is used to encode the
weights of neural network. The fitness (objective) function
for the genetic algorithm is defined as the average squared
system error of the corresponding neural network. Therefore, it
becomes an unconstrained optimization problem: find a set of

HUNG AND ADELI: A PARALLEL G/” LEARNING ALGORITHM FOR MIMD SHARED MEMORY MACHINES

~

903

Fig. 4. Global search using genetic algorithm.

decision variables minimizing the objective function. The best
fitness function value in a population is defined as the smallest
value of the objective function in the current population.

The process of global search using genetic algorithm is
schematically presented in Fig. 4. Consider three consecutive
generations, t l , t2 , and t3. The chromosomes in tl generation
perform local search in some discrete domain. After applying
the crossover and mutation operators to the tl generation,
the chromosomes with lower fitness function are selected as
the parents, the chromosomes with higher fitness function
are discarded, some new chromosomes are generated via the
selected parent chromosomes, and the t l generation is replaced
by the new population of chromosomes called t 2 generation.
In the t2 generation, the chromosomes perform local search
in a larger domain than t l generation and approach to some
local minimums with lower fitness function values. In the t3
generation, the chromosomes with lower fitness function in the
t2 generation are selected and new chromosomes are generated
that cover the whole bounded domain. In this last generation,
the chromosomes perform global search in the whole bounded
domain and approach to the global minimum in the domain.

After performing several iterations and meeting one of the
stopping criteria, the first learning stage is terminated and the
chromosome retuming the minimum objective function (the
best seed) is considered as the initial weights of the neural
network in the second stage. Next, the adaptive conjugate gra-
dient learning algorithm performs the second learning process
until the terminal condition is satisfied.

In order to reduce the memory storage requirement and
increase the computational efficiency, the allele (binary digit)
of each chromosomes in a population is encoded as a bit rather
than an integer. In this case, the length of each chromosome
is equal to the length of an integer, such as 16 bits on a
SUN SPARC station. Hence, the memory storage used for
each chromosome is an integer rather than a sixteen-element

X

integer array. Since we encode the chromosome as an integer,
the operations of crossover and mutation can be operated using
bitwise operators that are directly performed via computer
hardware.

Consider a multilayer neural network with N [i] nodes in
layer i. The learning problem is mapped from N[1] input
nodes to N[m] output nodes and a number of N, instances
are given as training examples. The total number of weights
and nodes are denoted by N , and N,, respectively. For the
genetic algorithm, we assume Np chromosomes are generated
and operated on in each iteration. The operators and other
features of the genetic algorithm are the same as those defined
previously.

The first learning stage is a combination of the genetic
algorithm with the feedforward process of the adaptive con-
jugate gradient learning algorithm. In each iteration of this
learning stage, the chromosome with the smallest value of
objective function is saved as subbest-chromosome and com-
pared with the one saved in the previous iteration, called
best-chromosome. After the first learning stage is terminated,
the best-chromosome is used as the initial weight vector
for the second learning stage. In order to reduce redundant
computations in this learning stage, three different stopping
criteria are employed to terminate this learning process. If one
of these three stopping criteria is met, the first learning stage
is terminated.

The smallest value of the objective functions in a
population is less than the acceptable predefined value.
The fitness ratio, defined as the value of the
best-chromosome’s objective function to the average
value of objective functions, is greater than 0.95.
If the objective function of the best-chromosome does
not change in a predefined number of consecutive
iterations (in this work, a value of 10 is used for this
number).

904 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994

TABLE I
THE FIRST STAGE OF THE PARALLEL HYBRID LEARNING ALGORITHM

First Learning Stage * I
Initialize the chromosomes randomly as current generation, initialize working parameters, and set the first chromosome
as the best- chromosome.
Parallel region l -entry
For i = 1 to Np , do concurrently
a) Initialize sub-totalfitness to zero and subbest- chromosomes as null.
b) For j = 1 to chunksize, do sequentially

a) For k = 1 to N,, do sequentially
a l) Perform feedforward procedure of the adaptive conjugate gradient learning algorithm.
a2) Calculate the objective function (system error for the neural network).

Next k
b) Calculate the sub-total- fitness by accumulating objective function of each chromosome.
c) Store the best- chromosome as subbest-chromosome.

Next j
Guarded section l-entry
c) Calculate the total- fitness by accumulating sub-total- fitness.
d) Compare the sub-best-chromosome with each other and set the best subbest-chromosome as the best- chromosome.
Guarded section l - end
Next i
Parallel region l - end
DO
Parallel region 2-entry
e) For i = 1 to (N p / 2) , do concurrently

d) Initialize sub-total- fitness to zero and subbest- chromosome as null.
e) For j = 1 to chunksize, do sequentially

e l) Select parents using roulette wheel parent selection.
e2) Apply two-point, multi-point, or uniform crossovers and mutation to the parents.
e3) For k = 1 to N,, do sequentially

e3.1) Perform feedforward procedure of the adaptive conjugate gradient learning algorithm to parent chro-

e3.2) Calculate the objective function (system error for the neural network) for parent chromosomes.
mosomes.

Next k
e4) Calculate the sub-total- fitness by accumulating objective function of each chromosome.
e5) Store the best- chromosome as subbest- chromosome.

Next j
Guarded section 2 - e n t r y

f) Calculate the total- fitness by accumulating sub-total- jitness.
g) Compare the subbest- chromosome to each other and set the best subbest- chromosome as the best- chromosome.

Guarded section 2--end
Next i
Parallel region 2 - e n d
f) Replace the old generation by the new generation.

WHILE ('stopping criteria).

The first stage of the parallel hybrid learning algorithm is
presented in Table I and shown schematically in Fig. 5.

The second learning stage is a stand-alone adaptive conju-
gate gradient neural network learning algorithm. A number of
N , tasks are created and executed concurrently. The second
stage of the parallel hybrid neural network learning algo-

rithm is presented in Table I1 and shown schematically in
Fig. 6.

IV. APPLICATIONS

We apply the parallel hybrid geneticheural network learning
algorithm developed in this research to two different domains:

HUNG AND ADELI: A PARALLEL G/” LEARNING ALGORITHM FOR MIMD SHARED MEMORY MACHINES 905

TABLE I1
THE SECOND STAGE OF THE PARALLEL HYBRID LEARNING ALGORITHM

Second Learning Stage *I
Set the best-chromosone as the initial weight vector, set up the topological structure of neural network, and set the
counter cnt to zero.
DO
Parallel region-entry
a) For i = 1 to Ns, do concurrently

a) Initialize subsystem-error and subdeltaweights to zero.
b) For j = 1 to chunksize, do sequentially

bl) Perform feedforward procedure of the adaptive conjugate gradient learning algorithm.
b2) Calculate subsystem-error.
b3) Calculate the deltas in output layer.
b4) Calculate the deltas in hidden layers (from layer m - 1 to layer 1).
b5) Calculate the subdeltaweights in hidden layers (from layer m - 1 to layer 1).

Next j .
Guarded section-ntry

c) Calculate the system error, E, by accumulating subsystem-error.
d) Calculate deltas of weights by accumulating the subdelfa-weights.

Guarded section-nd
Next i.
Parallel region-nd
If cnt 2 1, calculate the new conjugate gradient direction.
Perform inexact line search to calculate the step length.
Update the weight vector.
WHILE (“stop criteria).)

engineering design and image recognition. Three examples are
presented, one in the domain of engineering design and two
in the domain of image recognition.

Example I Engineering Design: This example is the selec-
tion of a minimum weight steel beam from the AISC LRFD
wide-flange (W) shape database [4] for a given loading condi-
tion [2], [9], [lo]. Each instance consists of five input pattems:
the member length, the unbraced length, the maximum bending
moment in the member, the maximum shear force in the
member, and the bending coefficient. The output pattern is the
plastic modulus of the corresponding least weight member.

A four-layer feedforward neural network with two hidden
layers was used to learn this problem. The numbers of nodes
in the input layer, the first and second hidden layers, and the
output layer are 5, 5, 3, and 1, respectively. There are 52 links
in this neural network. We use ten training instances in this
example. The total number of iterations for learning process
is limited to 100. The working parameters for the first stage
of leaming (genetic algorithm) are as follows: population size:
4000, length of decision variable: 16 bits, chromosome length:
832 (52 x 16) bits, crossover rate: 0.8, mutation rate: 0.08, and
range of decision variables: -5 to 5.

Initialize a population
of c h m ” e s as
cumnt generahon

Perfom feedforward
p-s of ACGNN
algorithm

Calculate the fitness
for each chmmosom

Calculate the
summahon of total
fitness and store the
best-chromosome

S e k t parent chromosomes
and apply crossover and
mutahon operators to the
parent chromosomes

Perform feedforward
p-s of ACGNN
algorithm

Calculate the fitness
for each chromosome

Calculate the summahon
of total fitness and store
the best-chromorome

Generate a new generation and
use it as current generation

Store the best-chromosome . N o A I D ~ ~ ~ ? Yes 22gz:d a ACGNN

Example 2 h u g e Recognition (7 X 7 Binary hageS Of
Numerals): This example is recognition of seven by seven
(7 x 7) binary images of the numerals (0 to 9) (Fig. 7). A
three-layer neural network with one hidden layer was used
to learn this problem. The numbers of nodes in the input

Fig. 5. The first learning stage of the parallel hybrid neural network learning
algO*thm.

layer, the hidden layer, and the output layer are 49, 99, and
10, respectively. The total number of links in this three-layer

906 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 1994

lnihalize weights using
the mul t of the fint
learning stage by decoding
the chromsome with the
smallest fitness function

Inihalize working
variable

Perform feedforward
process, calmlate the
error term for each
haining instanrr. and
calculate the deltar
for each instance

Calculate the system
error E and the
summation of deltas of
weights

Calculate the new
conjugate dtrwtion

Perform parailel
inexact line search to
find the step length

Update the weight
vector

Fig. 6.
learning algorithm.

The second leaming stage of the parallel hybrid neural network

neural networks is 5950. The total number of iterations for
leaming process is limited to 200. There are 30 instances in
the training set: ten noiseless image instances and 20 image
instances with about 10% noise (5 pixels out of 49 pixels).
The working parameters for the first stage of learning (genetic
algorithm) are as follows: population size: 250, length of
decision variable: 16 bits, chromosome length: 95 200 (5950
x 16) bits, crossover rate: 0.8, mutation rate: 0.08, range of
decision variables: -1 to 1.

Example 3 Image Recognition (Lenna Image): This exam-
ple is to recognize an 8-bit gray-scale (256 gray levels) of
the Lenna image (Fig. 8). Each training instance is an eight
by eight (8 x 8) square image Thus, the 384 x 384 pixel Lenna
image is decomposed into 2304 training instances used to
train the feedforward neural network. A flat (two-layer) neural
network was used to learn this example. The number of nodes
in both input and output layer is 64. The total number of links
in this two-layer neural networks is 4,160. The total number
of iterations for learning process is limited to 50. The working
parameters for the first stage of learning (genetic algorithm) are
as follows: population size: 250, length of decision variable:
16 bits, chromosome length: 66 560 (4160 x 16) bits, crossover
rate: 0.9, mutation rate: 0.095, range of decision variables: - 1
to 1.

Fig. 7. Ten noiseless and 20 noisy 7 x 7 binary images of numerals (0 to 9).

V. COMPUTATION RESULTS
Fig. 8. The 8-bit gray-scale (256 levels) Lenna image.

A . Convergence History
Example 1 : The system error for this example using the

adaptive conjugate gradient neural network learning algorithm
and the parallel hybrid neural network algorithm are shown in
Fig. 9. After 12 iterations of learning process, the first leaming

stage of the parallel hybrid neural network learning algorithm
met one of the stopping criteria. The best fitness function was
a value of about 0.0023. The result of the first leaming stage
is used as an initial weight vector in the second learning stage.

HUNG AND ADELI: A PARALLEL GI” LEARNING ALGORITHM FOR MIMD SHARED MEMORY MACHINES

750

700
650

~

907

~ - .~ ,
I ,

System error

Adaphve Conjugate g r d e n t neural
network learmng algonthm

I 0 0 ~I...

000

L- . ~ ~ -1-- lrcrarlons
OW 2000 4000 6000 sow 10000

Fig. 9. System error for the minimum weight steel beam design.

System error
E

- H y h d genehclneural network
learrung algorithm

--____. Adaphve Conjugate grahent neural
network leanung alpnthm

I I
I10

I

090 1”

080 :

I - i l I

om
0 IO

OW

000 2000 4000 6000 80W 10000
Iterations

Fig. 10.
(0 to 9).

System error for the 7 x 7 binary image recognition of numerals

After a total of 100 iterations of the learning process, the
system error in the parallel hybrid neural network learning
algorithm converges to a value 6.5 x The stand-alone
adaptive conjugate gradient neural network learning algorithm
converges to 1.84 x after 100 iterations of the learning
process.

ExumpZe2: The system error for this example using the
adaptive conjugate gradient neural network learning algorithm
and the parallel hybrid neural network learning algorithm are
shown in Fig. 10. After 18 iterations, the first learning stage of
the parallel hybrid neural network learning algorithm met one
of the stopping criteria. The best fitness function has a value
of about 0.3. The result of the first learning stage is used as

System error
E

Adaphve Conjugate gradient neural
network leanung algonthm

no0 moo 2000 3000 ~ o o o ,000

System error for the Lenna image recognition problem Fig. 11.

an initial weight vector for the second learning stage. After 12
more iterations, the system error in the parallel hybrid neural
network learning algorithm converges to a value of less than
0.001 and the algorithm achieves 100% recognition of all the
30 training instances.

After the same number of iterations, the stand-alone adap-
tive conjugate gradient neural network learning algorithm
converges to a value of 0.17 and recognize about 63% (19
out of 30) of the training set.

ExampZe3: The system error for this example using the
adaptive conjugate gradient neural network learning algorithm
and the parallel hybrid neural network learning algorithm are
shown in Fig. 11. After eight iterations of learning process,
the first learning stage of the parallel hybrid neural network
learning algorithm met one of the stopping criteria. The best
fitness function was a value of about 4.4. The result of the first
learning stage is used as an initial weight vector for the second
learning stage. After 42 more iterations, the system error in the
parallel hybrid neural network learning algorithm converges to
a value of 0.10. The stand-alone adaptive conjugate gradient
neural network learning algorithm converges to a value of 0.15
after 50 iterations.

B . Speedup
The speedup is measured by using an expert system tool,

called utexpert. A neural network with 52 links is used in ex-
ample 1. In the first learning stage of the parallel hybrid neural
network learning algorithm, 4000 chromosomes are operated
on in each learning iteration. That is, 4000 tasks are created
and performed concurrently in this stage. Each concurrent task
performs the computation of a stand-alone neural network with
10 training instances. The overall speedup achieved by the
parallel hybrid neural network learning algorithm for example
1 is dominated by the first learning stage. As the genetic
algorithm is an intrinsically parallel algorithm, the maximum

908 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6 , NOVEMBER 1994

10

8

3 6 -a
k
VI

4

2

0

I.. < ‘ / _

. < I

I-

t I I I I I I I

0 2 4 6 8
I I I I I I I I 1

No of processors

Fig. 12.
network leaming algorithm without vectorization.

Speedup for examples 1-3 using the parallel hybrid genetic/neural

speedup of example 1 due to microtasking is about 7.9
using eight processors of the Cray Y-MP8/864 supercomputer
(Fig. 12). A maximum average speedup of about 9 is achieved
when microtasking is combined with vectorization using eight
processors of the Cray machine (Fig. 13). In this example,
the value of speedup due to a combination of microtasking
with vectorization is not high because the loop performed by
vector operation is short.

A very large neural network with 5950 links is used in
example 2. Two hundred fifty (250) chromosomes are operated
on in each learning iteration. That is, 250 tasks are created and
performed concurrently in this learning stage. Each concurrent
task performs the computation of a stand-alone neural network
with 30 training instances. The overall speedup achieved
by the parallel hybrid neural network leaming algorithm for
example 2 is also dominated by the first learning stage. The
maximum speedup due to microtasking is about 7.4 using eight
processors of the Cray Y-MP8/864 supercomputer (Fig. 12).
A maximum average speedup of about 17.6 is achieved due
to a combination of microtasking with vectorization (Fig. 13).

A very large neural network with 4160 links is used in ex-
ample 3 with 2304 training instances. Two hundred fifty (250)
chromosomes are operated on in each learning iteration. The
maximum speedup due to microtasking is about 7.3 using eight
processors of the Cray Y-MP8/864 supercomputer (Fig. 12).
A maximum average speedup of about 33 is achieved when
microtasking is combined with vectorization (Fig. 13).

VI. FINAL REMARKS
We have presented a parallel hybrid neural network learning

algorithm by integrating genetic algorithm with an adaptive

35

30

25

9 20

15

10

5

0
0 2 4 6 8

No. of processors

Speedup for examples 1-3 using the parallel hybrid geneticheural Fig. 13.
network leaming algorithm with vectorization.

conjugate gradient neural network learning algorithm. Follow-
ing observations are made and conclusions drawn:

The results of neural network learning are sensitive to
the initial value of the weight vector. In this work,
a genetic algorithm is employed to perform global
search and to seek a good starting weight vector for
the subsequent neural network learning algorithm. The
result is an improvement in the convergence speed of
the algorithm.
The problem of entrapment in a local minimum is
encountered in gradient-based neural network learning
algorithms. In the hybrid learning algorithm presented
in this paper, this problem is circumvented by using a
genetic algorithm which is guided by the fitness function
of a population rather than gradient direction. After
several iterations of the global search, the first leaming
stage retums a near-global optimum point that is used as
the initial weight vector for the second leaming stage.
A large-scale multilayer neural network requires sub-
stantial computing processing time in order to converge
to an acceptably small system error value. By developing
efficient parallel learning algorithms on multiprocessor
computers we can increase the computational speedup
by an order of magnitude.

REFERENCES

[l] H. Adeli and C. Yeh, “Perceptron leaming in engineering design,”
Micmcomp. Civil Eng., vol. 4, no. 4, pp. 247-256, 1989.

[2] H. Adeli and C. Yeh, “Neural network leaming in engineering design,” in
Proc. Znr. Neural Ner. Con$, Paris, France, July 9-13,1990. pp. 412-415.

131 H. Adeli and N.-T. Cheng, “Integrated genetic algorithm for optimiza-
tion of space structures,” J . Aerospace Eng., ASCE, vol. 6, no. 4, pp.
315-328, 1993.

HUNG AND ADELI: A PARALLEL G/” LEARNING ALGORITHM FOR MIMD SHARED MEMORY MACHINES 909

[4] Manual of Steel Construction, Load and Resistance Factor Design.
Chicago, IL: American Institute of Steel Construction, 1986.

[5] R. K. Belew, J. McInemey, and N. N. Schraudolph, “Evolving networks:
Using the genetic algorithm with connectionist learning,” Computer
Science and Engineering Tech. Rep. CS90-174, Univ. of California at
San Diego, 1990.

[6] L. Davis, ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[8] F. Hoffmeister and T. Back, “Genetic algorithms and evolution
strategies-Similarities and differences,” in Parallel Problem Solving
from Nature H.-P. Schwefel and R. M m e r , eds. Berlin, Germany:
Springer-Verlag, 1991, pp. 455-469.

[9] S. L. Hung and H. Adeli, “Multi-layer perceptron learning for design
problem solving,” in Proc. Int. Neural Net. Conf.. Espoo, Finland, July
24-28, 1991, pp. 1225-1228.

[IO] S. L. Hung and H. Adeli, “A model of perceptron learning with a hidden
layer for engineering design,” Neurocomputing, vol. 3, pp. 3-14, 1991.

[I 11 S. L. Hung and H. Adeli, “A hybrid learning algorithm for distributed
memory multicomputers,” Heuristics-The J. Knowledge Eng., vol. 4,

’ no. 4, pp. 58-68, 1991.
[12] S. L. Hung and H. Adeli, “Parallel backpropagation learning algorithms

on Cray Y-MP8/864 supercomputer,” Neurocomputing, vol. 5, pp.

[13] D. J. Montana and L. Davis, “Training feedfonvard networks using
genetic algorithms,” in Proc. Int. Joint Conf. Artificial Intell., San Mateo,

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning intemal
representation by error propagation,” in Parallel Distributed Processing,
D. E. Rumelhart, et al., ed. Cambridge, MA: MIT Press, 1986, pp.
318-362.

287-302, 1993.

CA, 1989, pp. 762-767.

S. L. Hung received the B.S. degree from the
National Chiao Tung University, Taiwan in 1982,
and the M.S. and Ph.D. degrees from The Ohio State
University in 1990 and 1992, respectively.

He has published 14 papers in the areas of neural
networks, genetic algorithms, parallel processing,
fuzzy systems, and database management. He is
currently an Associate Professor at the National
Chiao Tung University.

Hojjat Adeli received the Ph.D. degree from Stan-
ford University in 1976.

Currently, he is a Professor of Engineering and
Member of the Center for Cognitive Science at
The Ohio State University. A contributor to 40
research and scientific joumals, he has authored 260
research and scientific publications, including four
books in various fields of computer science and
engineering. He has also edited 10 books, including
Knowledge Engineering, Volume I-Fundamentals
and Knowledge Engineering, Volume 2 4 p p l i c a -

tions (McGraw-Hill, 1990); and Supercomputing in Engineering Analysis and
Parallel Processing in Computational Mechanics, (Marcel Dekker, 1992).

Dr. Adeli was the Editor-in-Chief of Heuristics-The Journal of Knowledge
Engineering during 1991-1993. He is the Founder and Editor-in-Chief of the
joumal Integrated Computer-Aided Engineering. He has been an organizer or
member of advisoIy boards of over 25 national and international conferences
and a contributor to over 80 other conferences held in 24 different countries.
He was a Keynote and Plenary Lecturer at computing conferences held in
Italy (1989), Mexico (1989), Japan (1991), China (1992), Canada (1992),
U.S. (1993), Germany (1993), Morocco (1994), and Singapore (1994). He
has received numerous academic, research, and leadership awards, honors,
and recognitions. His recent awards include The Ohio State University
College of Engineering 1990 Research Award in Recognition of Outstanding
Research Accomplishments, and the Lichtenstein Memorial Award for Faculty
Excellence.

