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Abstract—This work considers inverse determinant sums, which
arise from the union bound on the error probability, as a tool for
designing and analyzing algebraic space-time block codes. A gen-
eral framework to study these sums is established, and the con-
nection between asymptotic growth of inverse determinant sums
and the diversity-multiplexing gain tradeoff is investigated. It is
proven that the growth of the inverse determinant sum of a divi-
sion algebra-based space-time code is completely determined by
the growth of the unit group. This reduces the inverse determi-
nant sum analysis to studying certain asymptotic integrals in Lie
groups. Using recentmethods from ergodic theory, a complete clas-
sification of the inverse determinant sums of the most well-known
algebraic space-time codes is provided. The approach reveals an
interesting and tight relation between diversity-multiplexing gain
tradeoff and point counting in Lie groups.

Index Terms—Algebra, diversity-multiplexing gain tradeoff
(DMT), division algebra, Lie groups, multiple-input mul-
tiple-output (MIMO), number theory, space-time block codes
(STBCs), unit group, Zeta functions.

I. INTRODUCTION

I N this paper, we introduce a new technique to analyze the
performance of lattice space-time block codes in the high

SNR regime. By developing the analysis based on the union
bound of the pairwise error probabilities of such codes, we show
that the high-SNR performance is related to the asymptotic be-
havior of the inverse determinant sums of these codes. The new
performance criterion based on inverse determinant sums fills in
the middle ground between the diversity-multiplexing tradeoff
(DMT) [16] and the normalized minimum determinant.
The normalized minimum determinant criterion has been

used effectively to choose which space-time code one should
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use in order to get the best performance. For a relatively
high-SNR level this optimization has produced very good
results. However, this criterion concentrates on minimizing the
worst-case pairwise error probability, and does not consider its
overall distribution, disregarding for example the question of
how many times the worst-case scenario occurs.
The DMT, on the other hand takes into account the overall

error probability, but only in the asymptotic sense as the SNR
and codebook size grow to infinity. Moreover, the DMT focuses
only on the diversity exponent, and in many cases it is too coarse
for practical code design. For example, from the DMT point of
view almost all full-rate division algebra-based codes are equiv-
alent in terms of diversity exponent, while their actual perfor-
mances often differ strongly.
The asymptotic growth of the inverse determinant sum cap-

tures something between these two concepts. Our analysis re-
veals that the diversity-multiplexing gain bounds of Zheng and
Tse [16] constitute general lower bounds for the asymptotic
growth of inverse determinant sums. The bounds depend on the
dimension of the lattice and on the number of transmit and re-
ceive antennas. Achieving such bounds immediately proves that
a code is DMT optimal for multiplexing gains between ,
while in other cases the asymptotic growth provides informa-
tion on the DMT for multiplexing gains in this region. Further-
more, the behavior of inverse determinant sums can be analyzed
with great accuracy and can provide information also on the nor-
malized minimum determinant. But, in this paper we are mostly
interested in the interplay between DMT and inverse determi-
nant sums and will only consider exponents of the growth of the
latter.
While the first part of the paper is about stating the problem

and proving general lower bounds, the second part concentrates
on analyzing the growth of inverse determinant sums of large
classes of algebraic space-time codes. Most of the division al-
gebra-based codes are subsets of an order [4] inside the division
algebra. Using orders guarantees the nonvanishing determinant
property (NVD), which has been shown to be a sufficient crite-
rion for DMT optimality for lattice codes in the space
having full rank [5] and [6].
We will prove that the growth of the inverse determinant sum

of a division algebra-based space-time code depends only on the
asymptotic growth of the norms of the unit group of the under-
lying order, and can be computed from invariants of the corre-
sponding algebra. This allows us to give a complete analysis of
the inverse determinant sums of the most commonly used divi-
sion algebra-based space-time codes.
Maybe unsurprisingly, we find that for all the -dimen-

sional division algebra-based codes, this growth corresponds
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exactly to the DMT lower bound. This offers an intuitive ex-
planation of why these codes are DMT optimal and of why
the simple normalized minimum determinant optimization has
been so successful. However, when we consider division al-
gebra-based lattice codes having less than full rank in ,
we will see that the choice of the algebra can have a dramatic
effect on the growth of the inverse determinant sum. As we will
see in Section III-B, different growth rates seem to lead also
to vast differences in performance. Our results thus provide a
general framework to compare the DMTs of different types of
algebraic space-time code constructions.
While our analysis of division algebra codes relies on alge-

braic concepts such as the Dedekind and Hey zeta functions as
well as on the analysis of unit group, our work is fundamentally
based on recent results in the field of ergodic theory. The reason
that we are able to analyze the asymptotic behavior of the norms
of the unit group, is that this group can be seen as an arithmetic
lattice inside a Lie group, and the asymptotic growth problem
is related to a point counting problem for Lie groups.
The study of such point counting problems is part of a rather

recent but highly developed mathematical area having a rich
spectrum of general methods. For the most recent approach
based on ergodic methods we refer to the monograph by
Gorodnik and Nevo [7].
We point out the surprising tightness of the relation between

algebraic and information-theoretic results. In some cases the
completely general lower bounds for inverse determinant sums,
derived from information theory, do meet the upper bounds
derived from deep algebraic results. In the case of complex
quadratic center, the DMT results manage to correctly predict
the distribution of (algebraic) norms of elements of an order in
a division algebra.

A. Contents of the Paper

In Section II, we begin by recalling the notion of DMT and
some basic definitions of lattice theory. In Section III, we first
formalize the inverse determinant sum problem, give an ex-
ample of its practical interest as well as some simple bounds
for the asymptotic growth. We then consider how the asymp-
totic behavior of the inverse determinant sum of a space-time
code is related to its DMT. As an example, we study the deter-
minant sum for the Alamouti code [8] and recognize that it is
the truncated Epstein zeta function. This gives a new proof of
the fact that the Alamouti code is DMT optimal for a single-an-
tenna receiver. Finally in Section III-F, we point out how the
DMT results can help to study some problems arising from lat-
tice theory.
In Section IV, we study diagonal MISO codes from algebraic

number fields.We show how the corresponding inverse determi-
nant sum can be asymptotically approximated by combining the
information about the geometric structure of the unit group and
about the behavior of the truncated Dedekind zeta function at
integer points. This study reveals that the growth of the inverse
determinant sums of different number field codes, coming from
fields with equal degree, only differ by a multiplicative constant.
As a corollary, we give a new proof of the DMT-optimality of
these algebraic codes. In order to keep the presentation of the

paper suitable for a larger audience, we have postponed some
of the proofs to Section V.
In Section VI, we begin to study inverse determinant sums of

division algebra-based space-time codes. First, we show how
these inverse determinant sums depend on the behavior of the
Hey zeta function and of the unit group of an order of the al-
gebra. In particular, we prove that the growth of the inverse de-
terminant sum depends only on the algebraic properties of the
division algebra and in particular on the unit group.
In Section VII, we translate the inverse determinant sums re-

sults to the language of DMT and give new DMT lower bounds
for a large class of division algebra-based codes.
Section VIII is devoted to the point counting problem in Lie

groups. Results of asymptotic growth rate are given for discrete
lattice subgroups of three Lie groups that are most central to
our theory. After arming ourselves with enough point counting
results, we will give the proofs of Section VI in Section IX.
Finally, we have collected some relevant Lie algebra theory,

that is needed in Section VII in the Appendix.
We have tried to keep most of the paper easily approachable.

Apart from Section V, the first seven sections should be readable
with a rather modest algebraic background.

B. Related Work

The study of inverse determinant sums is a natural question in
multiple antenna fading channels. For example, in [6], Tavildar
and Viswanath analyzed the DMT of several coding schemes
by using the union bound approach. However, they did not con-
sider determinant sums, but eventually restricted their attention
to coding schemes where elementary combinatorial methods
could be applied. In [9], the authors studied the blind detection
of QAM and PAM symbols. In their analysis they considered
the Dedekind zeta function of the field . In Example 4.1,
we discuss briefly how their approach can be seen as the most
simple case of our theory.
Already in 1998 Boutros and Viterbo considered the product

kissing number in the context of number field codes [10], and
noted that one should develop a criterion which could take into
account not only the minimum determinant, but also the multi-
plicity of occurrence of the worst-case scenario. The normalized
criterion presented in the beginning of Section III-A addresses
this issue (and more). As presented in Section IV-D, our rough
asymptotic methods can be straightforwardly modified to work
in the way Boutros and Viterbo probably had in mind. For a re-
cent work on product kissing numbers, we refer the reader to
[11], where the authors consider this question in the context of
quasi-orthogonal codes.
The closest and independent line of research that is related to

our work has been carried out recently by F. Oggier and J.-C.
Belfiore. In [12], they consider Rayleigh fast fading wiretap
channels and number field codes. In particular, by measuring
error probabilities in wiretap channels they end up with the same
number field sums as we do. In [13], Belfiore and Oggier con-
sider the Rayleigh fading MIMO wiretap channel, where their
work also leads to the same inverse determinant sums. How-
ever, their analysis considers only the Alamouti code, although
in greater detail.
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In the crossroad of ours and the work of Oggier and Belfiore
is the work by Hollanti and Viterbo [14]. They considered the
error probability of wiretap codes using similar methods to ours.
In particular, their goal has been to give a finite version of the
bound given in Section IV-D.
While the growth of inverse determinant sums of orders of

division algebras or rings of algebraic integers is related to the
distribution of norms of elements in these rings, to the best of
our knowledge, there does not seem to be any previous algebraic
work on the subject.

C. Main Contributions of This Paper

The contributions of this paper are the following.
1) A formal definition of inverse determinant sums as a code
design criterion and a tool for analyzing the DMT of a code.

2) General upper and lower bounds for inverse determinant
sums.

3) A connection between error probability, Dedekind zeta
function, and unit group of algebraic number field codes.

4) A connection among error probability, Hey zeta function,
and unit group of division algebra codes.

5) A complete analysis of the growth of inverse determinant
sums of several families of algebraic space-time codes.

6) New DMT lower bounds for the aforementioned division
algebra codes.

II. PLAYERS

A. DMT

Consider a Rayleigh block fading MIMO channel with
transmit and receive antennas. The channel is assumed to be
fixed for a block of channel uses, but vary in an i.i.d. fashion to
vary from one block to another. Thus, the channel input–output
relation can be written as

(1)

where is the channel matrix and
is the noise matrix. The entries of and

are assumed to be i.i.d. zero-mean complex circular symmetric
Gaussian random variables with variance
is the transmitted codeword, and denotes the SNR.
Assuming the channel is block-ergodic, and the matrix

is known completely to the receiver but not to the transmitter,
Telatar [15] showed that the capacity of the MIMO channel (1)
is given by

(2)

in bits per channel use (bpcu), provided that the transmitted
codeword satisfies an average power constraint

. The logarithm in (2) is taken with base 2.
The capacity formula (2) means that an error-free commu-

nication, i.e., having an error probability arbitrarily close to 0,
over the MIMO channel (1) is possible only when transmis-
sion rate . However, for any fixed SNR level , it is

commonly believed that making the error probability arbitrarily
small requires a coded transmission over infinitely many blocks
of channel, which is by no means practical. As a result, it is of
a great interest to determine how small the error probability can
be when the coding is limited to only one block of channel
uses. This has been studied in great detail by Zheng and Tse in
[16]. Below we provide a brief overview of some of the impor-
tant results in [16], including the notion of DMT.
Definition 2.1: A space-time block code (STBC) for some

designated SNR level is a set of complex matrices sat-
isfying the following average power constraint:

(3)

A coding scheme of STBC is a family of STBCs, one
at each SNR level. The rate for the code is thus

.
Paralleling the prelog factor in (2), which is

commonly known as the total number of degrees of freedom
[16], we say the coding scheme achieves the DMT of
spatial multiplexing gain and diversity gain if the rate
satisfies

and the average error probability is such that

where by the dotted equality we mean if

(4)

Notations such as and are defined in a similar way.
Remark 2.1: We will still use, for example,

even when the limit at the RHS of (4) does not exist. By this, we
only mean that can be upper bounded by some function

where .
With the above, the most important result in [16] is the

following.
Theorem 2.1 (DMT [16]): Let , , , , and

be defined as before. Then, any STBC coding scheme
has error probability lower bounded by

(5)

or equivalently, the diversity gain

(6)

when the coding is limited within a block of
channel uses. The function of the optimal diversity gain

, also termed the optimal DMT, is a piecewise linear
function connecting the points for

.
An example of optimal DMT for is given

in Fig. 1.We also remark that there exist space-time lattice codes
[5], [17] that are optimal in the DMT sense, i.e., achieve the
optimal diversity gain . The condition of in Theorem
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Fig. 1. DMT for .

2.1 has been improved to by Elia et al. in [5]. Due to
the outstanding error performance of space-time lattices codes,
we shall study these codes in general in the next section.
Before concluding this section, we make the following re-

mark to further motivate the remainder of this paper. First, while
the notion of DMT provides an asymptotic measure of the error
performance of the code by focusing on the diversity expo-
nent as , there are certain limitations. For example,
it is often observed in simulations that two coding schemes

and , having the same diversity gain , can
differ significantly in error performance when the SNR is fi-
nite. In other words, without conducting a simulation it is im-
possible to determine which code has better error performance
at moderate SNR level from the DMT analysis. This happens es-
pecially when the error probability for takes the form
of and similarly
for , and when the functions and behave
like a constant in the asymptotic sense, i.e., in terms of the dotted
notations

On the other hand, the above asymptotic ambiguity can be re-
solved by the inverse determinant sum, which will be introduced
in Section III. Furthermore, it will be seen that the inverse deter-
minant sum also represents an alternative, and probably better,
criterion for designing STBC in general.

B. Matrix Lattices and Spherically Shaped Coding Schemes

In this paper, we will consider STBC with ,
and therefore these codes live in the space . With this
choice, using results from classical lattice theory in , we
can define a natural inner product that induces the Frobenius
norm in .
We can “flatten” to obtain a -dimensional

real vector first by forming a vector of length out of the
entries (e.g., vectorizing row by row, or column by column) and
then by replacing each complex entry with the pair formed by its
real and imaginary parts. This defines a mapping from
to :

(7)

which is clearly -linear:

(8)

Let denote the Frobenius norm of .
Note that the following equality holds:

(9)

where denotes the Euclidean norm of a vector. This makes
an isometry. It also gives us a natural inner product in the

space . Given two matrices , we define
, where the last nota-

tion stands for the natural Euclidean inner product in .
Definition 2.2: A matrix lattice has the form

where the matrices are linearly independent over ,
i.e., form a lattice basis, and is called the rank or the dimension
of the lattice.
Definition 2.3: If the minimum determinant of the lattice

is nonzero, i.e., it satisfies

we say that the lattice satisfies the NVD property.
We now consider a spherical shaping scheme based on a -di-

mensional lattice inside . Given a positive real number
we define

We will also use the notation

for the sphere with radius .
The following two results are well known.
Lemma 2.2 (Spherical Shaping): Let be a -dimensional

lattice in and be defined as above; then

where is some positive constant, independent of .
Proof: For the proof, we refer the reader to [19].

Proposition 2.3: Let be a -dimensional lattice in .
Then,

where are constants independent of .
Proof: The proof is a basic exercise in lattice theory. We

refer the reader to [19] for the needed background.
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In particular, it follows that we can choose real constants
and such that

For subsequent discussions, the following definition will be
useful.
Definition 2.4: Suppose that is a -dimensional lattice in
. The function , where

is well defined, when and is called the Epstein zeta
function [20].
With the above, we are now prepared to give a formal defini-

tion of a family of space-time lattice codes of finite size.
Definition 2.5: Given the lattice , a space-time

lattice coding scheme associatedwith is a collection of STBCs
where each member is given by

(10)

for the desired multiplexing gain and for each level.
The normalization factor in (10) is only appropriate, but

not exact, for meeting the average power constraint (3). Specif-
ically, one might wonder whether the STBC has average
power exceeding the upper constraint in (3). From Proposition
2.3, we have

On the other hand, we also have that from
Proposition 2.2. Combining the above shows that the code

has the correct average power from the DMT perspec-
tive, i.e., in terms of the dotted equality. Henceforth, we simply
ignore the scaling factor of in the channel equation (1)
as it is irrelevant to DMT calculations.

III. INVERSE DETERMINANT SUMS OVER MATRIX LATTICES

In this section, we introduce inverse determinant sums, study
their basic properties and show how they are related to DMT.
We first begin with a nonrigorous introduction, which shows
how these sums appear naturally as a continuation of more fa-
miliar sums.
Consider a -dimensional lattice code for the

following additive complex Gaussian noise channel

where and is a length- complex Gaussian random
vector with zero mean and covariance matrix .
We have the familiar expression of the pairwise error proba-

bility (PEP) upper bound for confusing with at the receiver

If the codewords from the code are sent equiprobably, we
can upper bound the average error probability by the following
sum:

where the term follows from the fact that we have to con-
sider differences of codewords. The right-hand side is indeed a
well-known truncated exponential sum taking values on lattice
points.
The second example is a quasi-static Rayleigh fading channel

with single transmit and receive antennas. Assume that the
channel vector is known perfectly to the receiver but not to the
transmitter. We then have for the code

and the corresponding upper bound on overall error probability

We can then see that if , the RHS is the truncated
Epstein zeta function.
We now turn to the more general case of having a
-dimensional NVD lattice and consider a finite code

and a slow Rayleigh fading MIMO channel
with transmit and receive antennas. The channel equation
can then be written as

where and are respectively the channel and noise matrices
and where . In terms of PEP, we have for

and the corresponding upper bound on the overall error
probability

We summarize the three cases below.
1) Single antenna channel AWGN: is upper bounded by
the sum of , an exponential sum.

2) Single antenna slow fading channel: is upper bounded
by the sum of , an Epstein zeta function.

3) Quasi-static Rayleigh fading MIMO channel: is upper
bounded by the sum of , an inverse determinant
sum.

We will see that the behavior of the third sum is the most pecu-
liar. While in the second case the limit of the sum for
can be made to converge by increasing , in the last case of
inverse determinant sums we will show that they might not con-
verge.
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A. Basic Problem

Let be a -dimensional lattice. For any fixed
, we define

Our main goal is to study the growth of this sum as increases.
In particular, we are interested to find, if possible, a function

such that

As we will later see this “dotted” accuracy is enough to deter-
mine the DMT of the code under consideration. Furthermore,
it gives us a way to select codes with better error performance.
Suppose that we have two -dimensional lattices and , and
corresponding functions and

. It is not far fetched to assume that if ,
the lattice would be a better code, at least for large code sizes.
Let us, however, shortly discuss inverse determinant sums in

a more accurate sense. Let us denote with the volume
of the fundamental parallelotope of a -dimensional lattice
in . The normalized version of the inverse determinant
sums problem is then to consider the growth of the sum

(11)

Here the relevant accuracy level is to find, if possible, functions
and , where , such that

Again it is reasonable to surmise that the smaller the function
, the better the corresponding code will be. Comparing

codes in this sense does take into account the size of the normal-
ized minimum determinant and the number of times this worst-
case appears. Obviously, comparing two codes in this normal-
ized sense is more reliable than comparing two codes in the pre-
viously described dotted sense. However, only in Section IV-D
we will consider inverse determinant sums with an accuracy
needed for this analysis.

B. Example of the Effect of the Difference in the Growth of
Inverse Determinant Sums On the Performance of
Space-Time Codes

The work in this paper is mostly theoretical, but let us give an
example that suggests that the inverse determinant sum is also
a very practical research subject.
Consider the following lattices:

Fig. 2. Block error rates of codes and at 4 bpcu.

Both and are 4-dimensional lattice codes in , and
as lattices they are isometric and have exactly the same normal-
ized minimum determinant. Suppose that these codes are to be
used for communication on a Rayleigh fading channel with a
single receive antenna. The corresponding inverse determinant
sums are of the type

We will later see that

Here from the normalized minimum determinant and shaping
point of view these two codes are identical. Yet, their inverse
determinant sums differ dramatically and suggest that the code

derived from the lattice has much better error perfor-
mance than derived from . The question is whether this
difference will be visible in practice. After all, these inverse de-
terminant sum considerations have an asymptotic nature.
In Fig. 2, we see the performance of and where the

components and takes values in the 16-QAMmodulation.
It can be clearly seen that performs much better than
as predicted by the inverse determinant sums.

C. Elementary Bounds and Some Basic Results for Inverse
Determinant Sums

We now provide some simple upper and lower bounds for
the asymptotic behavior of for a -dimensional NVD-
lattice in .
Proposition 3.1: Suppose that is a -dimensional NVD-

lattice in , with
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We then have that

for some constants , , , and .
Proof: Hadamard inequality combined with the arithmetic

mean-geometric mean (AM-GM) inequality gives us

We then have that

Applying Proposition 2.3 yields the lower bounds.
On the other hand, if for all nonzero as

the worst case, then

where is a constant independent of and where the last
inequality follows from Lemma 2.2.
We next provide an unsurprising invariance result, revealing

that the growth of the inverse determinant sum of amatrix lattice
is similar to the corresponding growth of the lattice

, where is an invertible matrix in . We need a few
lemmas.
Lemma 3.2 [21]: Let and be invertible matrices in

and let be the eigenvalues of and
be the eigenvalues of . We then have that

Lemma 3.3: Suppose that is a set of matrices in
and that is an invertible matrix in . If is a function
such that for all

then there exists a constant such that for all

where .
Proof: Let be the smallest eigenvalue of . Lemma

3.2 implies that for all the elements ,
. It follows that for the matrix , where

we must have that . We now see that is a
suitable constant for .
Proposition 3.4: Let be a matrix lattice and

be an invertible matrix. If for
some , then

Proof: Let be the smallest eigenvalue of . Using
the same argument as in the previous lemma, we have

Changing the roles of and and replacing with give
the other direction of the inequality

The previous proposition obviously works also in the case
where the lattice is multiplied by a matrix from the right.

D. Inverse Determinant Sum in Relation to DMT

In this section, we will show how we can use DMT to prove
lower bounds for the asymptotic growth of inverse determinant
sums. At the same time, we will get a criterion for a code to
achieve the optimal DMT for multiplexing gains
Let be a -dimensional lattice, and consider the

finite codes defined in (10). Assume there are receive
antennas. Then, following the union bound together with the
PEP-based determinant inequality [22], we get the following
bound for the average error probability for the code

(12)

Themoral of the following proposition is that the determinant
sum of a space-time lattice code must grow with considerable
speed, or otherwise the code would have DMT exceeding
given in Theorem 2.1.
Proposition 3.5: Let be a -dimensional fully diverse

lattice in and be a positive integer. Suppose that
for some . We then have that

Proof: Consider the previously mentioned coding scheme
. As we have shown, the union bound

(12) yields the following lower bound for :

where . Theorem 2.1, on the other hand, shows that
for integer values of
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Combining the above gives for integer values of

Hence,

The maximum here is achieved obviously for , but in this
case we do not have growth for our matrix sum as the corre-
sponding . The next integer point is . In this case,
we have

Corollary 3.6: Let be a -dimensional fully
diverse lattice. If the corresponding inverse determinant sum
achieves the lower bound in Proposition 3.5, then
achieves the optimal DMT for , when received with
antennas.
Proof: Here we have

. Setting and
substituting the above into (12) yield

Comparing the above to the DMT lower bound,
for , where is a straight line connecting the points

and yields the desired result.
Remark 3.1: We have stated Proposition 3.5 in the sim-

plest possible form by assuming has a limit
when approaches infinity. While this condition is not
that restrictive, the proof of Proposition 3.5 gives us more.
It actually states that if there is a function , having
a limit in the dotted sense, for which ,
then . In particular, we
cannot upper bound with any , where

and is some constant.

E. Inverse Determinant Sum and DMT of the Alamouti Code

In this section, we will show that the Alamouti code does
reach the bound in Proposition 3.1. This result then allows us
to rediscover the DMT of Alamouti code when received with
antennas.
The 2 2 Alamouti code is the following:

for some indeterminate , , , and , where .
The corresponding lattice of the Alamouti code can be written
as

which is a 4-dimensional lattice in . We then consider the
corresponding inverse determinant sum

Proposition 3.7: Let be a real number. Then,

where and are some constants.
Proof: Due to the orthogonality of the rows of the Alam-

outi code, for any codeword we have

We now have that

The rest follows from Proposition 2.3.
Remark 3.2: In particular, if is large enough the inverse de-

terminant sum of the Alamouti code is the Epstein zeta function.
Corollary 3.8: When received with antennas, the Alam-

outi code achieves the DMT curve

which is optimal in DMT for any 4-dimensional lattice codec in
.

Proof: In order to study the DMT of codes derived from
the lattice , we consider the spherical coding scheme

. The usual union bound argument (12) then
implies

Also, by Proposition 3.7, we have

where is some constant independent of . This gives us that
the Alamouti code does achieve the claimed DMT. The rest fol-
lows from [1, Proposition 3.3] where it is shown that this is the
best possible for all 4-dimensional lattice codes in .

F. Applying DMT to Lattice Theory

In this section, we give an example showing how Proposition
3.5 can be used in lattice theory.
Let be an 8-dimensional lattice and consider the

function defined by
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Assume that for any nonzero element in
. The reader can immediately see that can be reformulated
as a matrix lattice and is the absolute value of the determi-
nant of 2 2 matrices. We now see what can be said about the
asymptotic behavior of the sum

By Proposition 3.1, we have

for some constants and . However, if we can bound the
growth of with any , where and
are constants, then Proposition 3.5 tells us that . This
reveals that the lower bound obtained from Proposition 3.5 is
considerably stronger than the one from Proposition 3.1 and tells
us something nontrivial about the asymptotic behavior of this
sum.
However, it should be noted that Proposition 3.5 only applies

to the cases when in the sum is an even integer.
We will see that the lower bound is also the best possible in

the sense that there are 8-dimensional lattices in for which

It is very likely that there are more direct methods that give
this result, but it is intriguing that we can derive such lattice
theoretic result from information theory.

IV. INVERSE DETERMINANT SUMS OF ALGEBRAIC NUMBER
FIELDS AND DMT OF DIAGONAL CODES

We now consider inverse determinant sums arising from al-
gebraic number field codes [23]. In particular, we will show how
the error probability of these codes is tied to the unit group and
Dedekind zeta function of the corresponding algebraic number
field. These connections allow us to give a better look at the be-
havior of these codes and to prove their DMT optimality. The
proof of this case will give some insight into the case of codes
arising from division algebras.
For simplicity, let us consider a degree cyclic number

field extension , where the Galois group is
, and is a principal ideal domain (PID). We

will comment more on these conditions in Section IV-D.
We can define a relative canonical embedding of into

by

where is an element in . The ring of algebraic integers
has a -basis and therefore

is a -dimensional lattice of matrices in . The main
reason to use such a construction is that for each nonzero el-
ement , we have that .

Let be the -dimensional number
field lattice code and consider the coding scheme in (10).
Before measuring the DMT for this type of codes, the following
definition will be useful. Let be the set of nonzero ideals
of the ring . The Dedekind zeta function of the number field
is

(13)

where is a complex number with .
We give the following example for illustration.
Example 4.1: The simplest example of the previous con-

struction arises from the trivial extension . The Ga-
lois group then consists simply of the identity element. We then
have a lattice , which is a 2-dimensional lattice
in . Furthermore, let be the finite code derived
from . When received by antennas, the error probability of

has a union bound (12) containing the following sum:

The above is actually the truncated Epstein zeta function and
the growth of this sum can be analyzed by using Proposition
3.1. However, we can look at this problem from another angle
that can be easily generalized. Notice that for every element

, we have , hence

We know that has only four invertible elements
and that is a PID. Therefore, for every ideal , we have
exactly four different generators , and . We can
then write

which is related to the truncated Dedekind zeta function
at the point . In particular, whenwe let grow to infinity
we obtain that the sum approaches .
We point out that this approach was earlier taken in [9]. Yet,

it only applies to the case when the extension has degree 1. We
will next show how this can be extended tomore general number
fields.
Consider a cyclic extension , where .

With defined as before, let be the finite
code derived from . When received by antennas, the error
probability of has a union bound (12) containing the
following sum:

(14)



VEHKALAHTI et al.: INVERSE DETERMINANT SUMS AND CONNECTIONS BETWEEN FADING CHANNEL INFORMATION THEORY AND ALGEBRA 6069

where is a set of elements , , each
generating a separate ideal in . Accordingly, is the
number of elements , , each generating
the same principal ideal as the one generated by .
If we neglect for the moment the terms , and consider

only the sum , we see that it can be upper
bounded by the truncated Dedekind zeta function at the point
.
In the following, we will give bounds for and the

truncated sum. The bounds depend only on the value of ; they
are independent of the choice of .

A. Bounds for and Truncated Dedekind Zeta Function

We begin our analysis with . This is the number of
elements in the unit group of the ring such that

.
Lemma 4.1: Let be a cyclic field extension with

. Then, the cardinality of the set

has an upper bound

where is a constant independent of .
Proof: For the ease of reading, the proof to this lemma is

relegated to Section V.
Based on Lemma 4.1, we can upper bound the value of

for all .
Proposition 4.2: Let be a cyclic field extension with

and let be a nonzero element with
. Then,

where is a constant independent of as well as of the ele-
ment .

Proof: Given , we can write
. The condition implies

for all . We also have that . It
follows that for all

(15)

Now let be a unit such that
, where

. We have that for all , and (15) im-
plies . Therefore, we have that .
Lemma 4.1 now gives that

where is a constant independent of .
The essential part of this result is that we could find a constant
such that upper-bounds for all
with .

Let us now give a bound for the truncated Dedekind zeta
function.
Proposition 4.3: Let be a cyclic field extension with

. Then,

(16)

where is a subset of in which each element gen-
erates a separate integral ideal and satisfies , as
defined in (14), and is a constant independent of .

Proof: The proof is relegated to Section V for the ease of
reading.
We remark that if the upper bound in (16) is trivial

as the resulting Dedekind zeta function converges to a con-
stant, and we can limit the truncated sum that constant. See
Section IV-D for a discussion.

B. Inverse Determinant Sum and DMT of Algebraic Number
Field Codes

Armed with Propositions 4.2 and 4.3, we are now ready to
continue the derivation of (14) to obtain an upper bound for the
inverse determinant sum of number field codes.
Proposition 4.4: Let be a cyclic field extension with

. Then,

where is some constant independent of .
Proof: Continuing from (14), we have

where the first inequality follows from Proposition 4.2 to upper-
bound with a constant , and the second inequality is
due to Proposition 4.3 with another constant .
Remark 4.1: Here we have an example of -dimensional

lattices where the growth of inverse determinant sums is loga-
rithmic. Comparing this bound to that in Proposition 3.1 we can
see that we are somewhat close to lower bounds if , but
are far from them if . This suggests that the bounds in
Proposition 3.1 are not very tight.
Finally, we are ready to determine the DMT curve achieved

by number field codes derived from lattice , by which wemean
the following. Let be a cyclic field extension of degree
, and consider the -dimensional lattice

Given SNR and multiplexing gain , let
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be the corresponding finite code obtained by the spherical
coding scheme (10).
Theorem 4.5: If the receiver has antennas, the code

achieves the following DMT curve:

where .
Proof: Note that is anNVD lattice. It can be easily shown

that the maximal pairwise error probability achieved by
is [1], hence . For the upper
bound on , the usual union bound argument gives

where the last dotted inequality follows from Proposition 4.4
after neglecting the constant factor. Combining the upper and
lower bounds on proves the claim.

C. Remark on the Constant Values

In Proposition 4.4, we showed the following result:

For cyclic extensions, where is PID, we point out the as-
sumption of being cyclic is not needed anywhere. This bound is
also true in the case where is not a PID, but it is only looser.
The proof of this result was quite elementary and satisfactory

for our purposes, and it can be easily tightened. Belowwe briefly
discuss how our methods can give quite tight asymptotic bounds
for number field codes, when the number of receiving antennas
is greater than 1.
We note that the term from Proposition 4.3 can

simply be replaced with (see the proof of Proposition
4.3), and the function converges to some constant when

. This already reduces the bound in Proposition 4.4
to . We can say furthermore a few words
about the constant .
The main theorem in [18] gives us the following asymptotic

bound:

(17)

where is the number of roots of unity in and is the
regulator.
Let us now prove that uniformly for all nonzero we

have

Let be a nonzero element in . We can then write that

where is a diagonal matrix with the property and
is a positive constant. This means that , where

is extended to a map from (see Section V for a definition)
is in the plane generated by some basis of . The lattice

has a fixed covering radius . Let us now suppose that
is an element in closest to . This means that

. We can now write

This bound is dependent only on and and is therefore
uniform for all .
Assume . By collecting all the previous results, we

now have an upper bound

(18)
and a lower bound

where . As , (11)
gives us that

and

where . For the PID case,
this bound is probably quite tight asymptotically for the leading
term , but generally we are overestimating be-
cause by using the Dedekind zeta function we have included
in the sum all the ideal classes that might not be principal.

V. SOME PROOFS OF SECTION IV

Lemma 4.1 is an elementary corollary to the Dirichlet unit
theorem, but we give a proof, as it offers some insight.

Proof of Lemma 4.1: The number field has signature
. The Dirichtlet unit theorem then tells us that the unit

group has the following multiplicative structure:

where is a finite torsion group containing roots of unity
in . Let us consider the mapping

It is well known that is a -dimensional lattice
inside .
Consider . If happens to be inside the

ball of radius , we have in particular that
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for all . It follows that for coordinates having absolute
value greater than 1 we have . On the
other hand, if , we have that

, which is a consequence of the facts that for positive
coordinates and
. In summary, we have for
all .
Therefore, if is inside a ball of radius , then is

inside a hypercube with side of length . We have
that is a -dimensional lattice, and therefore a
hypercube with side has less than
discrete elements, where is a constant independent of . It
follows that . Now each
of the elements in is a unitary matrix. Hence, for any

with and , we have
. Therefore, we see that

It follows that

As the group is finite, the claim follows.
In the following, we will denote by the set of integral

ideals of the ring .
Proof of Proposition 4.3: Using basic properties of alge-

braic norm and the AM-GM inequality, we have

for any element and . This implies

where is a set of elements , each generating a separate
ideal in
From the relation between ideals and element norms, we can

further upper bound the above quantity by

where represents the set of all integral ideals. Note that
the right-hand-side corresponds exactly to the beginning of the
Dedekind zeta function at the point . It then follows that

where the first inequality is based on a similar reasoning as in
[24, Proposition 7.2 and Corollary 3] as well as some elementary
approximation.

VI. GROWTH OF INVERSE DETERMINANT SUMS OF DIVISION
ALGEBRA BASED SPACE-TIME CODES

In this section, we will determine the growth of inverse de-
terminant sums of the most well-known algebraic space-time
codes. In our main results, we will see that the growth of these
sums, and conjecturally also their DMT, only depend on the unit
groups of these algebras.

A. Space-Time Codes From Division Algebras

We now recall how to naturally build space-time lattice codes
from division algebras. The algebraic results in this section are
standard and can be found for example in [25]. Suppose that

or , where is a square free natural
number. Let be a cyclic field extension of degree with
Galois group . Define a cyclic algebra

where is an auxiliary generating element subject to the
relations for all and . We
assume that is a division algebra.
Considering as a right vector space over , every element

has the following left
regular representation as a matrix :

...
...

The mapping is an injective -algebra homomorphism that
allows us to identify with its image in . Every nonzero
element in the set is invertible, but is
dense and therefore not directly suitable for space-time coding.
An order of a division algebra will offer us a remedy.
Definition 6.1: An -order in is a subring of , having

the same identity element as , and such that is a finitely
generated module over and generates as a linear space
over .
Lemma 6.1: For any element , we have that

.
Proposition 6.2: Suppose that . If is a -order in

an index- division algebra , then is an -dimensional
NVD lattice in , with

for all the elements .
Proposition 6.3: Suppose that . If is an
-order in an index- division algebra , then is a
-dimensional NVD lattice in , with

for all the elements .
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Remark 6.1: We note that in both cases an order is also a
free -module. This means that we have elements
so that

Therefore,

and we can see that form a basis for the lattice
.

The above two families cover many of the most well-known
codes. While we will focus only on orders, the corresponding
results hold also for principal ideals of orders (see Section IX).
For example, the Perfect codes [17] and maximal order codes
[26] are of the type described in Proposition 6.3. On the other
hand, the Alamouti code and the fast decodable codes in [27]
are of the type described in Proposition 6.2.
We now have two families of NVD lattices with and

dimensions in , respectively. Below we would like to an-
alyze the asymptotic growth of their inverse determinant sums

The analysis will be presented in Sections VI-B and VI-C for the
cases of and , respectively. Prior to analyzing the
sums, we introduce some central objects needed in both cases.
An obvious lower bound for the growth of an inverse deter-

minant sum is given by the number of elements in the set

This set, consisting of elements having the smallest deter-
minant in absolute value in the lattice, can be characterized
algebraically.
Definition 6.2: The unit group of an order consists of

elements such that there exists with .
Lemma 6.4: If the center of the algebra is or a complex

quadratic field, we have that

We can then write

We still need one more object. The following subgroup of
will play a crucial part in the analysis of .
Lemma 6.5 ([28, p. 221]): Suppose that the center of the

algebra is or a complex quadratic field. The unit group
has a subgroup

and .
The following result reveals why we are interested in the

group .

Lemma 6.6: Let be an index- -central division algebra
and be an order in . We then have that

for some constant that is independent of .
Proof: The left side inequality is trivial. The right side is

part of the proof of Proposition 9.3.
In the following sections, we will see that in the dotted sense

gives not only a lower bound for the growth
of the inverse determinant sum, but also an upper bound!

B. Inverse Determinant Sums of -Central Division
Algebras

We first focus on the case where is an index-
-central division algebra.
The following proposition is an analog to the corresponding

result, Proposition 4.4, in the number field case. The proof fol-
lows similar lines.
Proposition 6.7: Let be an index- central division algebra

over and be an -order in . Then, for
, we have

where and are constants independent of .
Proof: The proof will be given in Section IX.

We can now see that in order to measure the asymptotic
behavior of the determinant sum it is enough to measure the
growth of . However, this is not as simple a
task as in the case of number fields. The unit group is
a wild object [28], and we need some advanced tools to solve
the problem.
Lemma 6.6 allows us to consider the asymptotic behavior of

instead of the whole unit group and translates
the problem into solvable form.
Definition 6.3: The set

is the Lie group .
The term cocompact, appearing in the following lemma, will

be explained in Section VIII.
Lemma 6.8 [28, Th. 1]: Let be an index- central division

algebra over and an order in . We then
have that

is a discrete cocompact subgroup of .
The reader who is not familiar with these terms can think of an

additive lattice inside of . The relation between these ad-
ditive groups is similar to that between the multiplicative groups

and .
The previous lemma now identifies the group as a co-

compact lattice in , and we can apply the machinery of
point counting in Lie groups to prove the following.
Lemma 6.9: Let be an index- central division algebra

over and an -order in . We then have
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Proof: The proof can be found in Appendixes A–D.
We can now combine Proposition 6.7 and Lemma 6.9 for the

following.
Theorem 6.10: Let be an index- -central divi-

sion algebra and be an order in . Then, for

This result reveals that asymptotically the growth of the in-
verse determinant sum of a division algebra-based code only de-
pends on the unit group of the underlying order. We can also see
that this growth is optimal in the sense that it meets the bound
of Proposition 3.5.
The analysis also reveals that all the inverse determinant sums

for -central division algebras of index have the same
asymptotic behavior.
Remark 6.2: We point out that Proposition 3.5 already told us

that the determinant sums for the algebras of this typemust grow
at least like . In this section, we showed that this is also
an upper bound in the dotted sense. Noting that Proposition 3.5
is based completely on information theory, it is very surprising
that the DMT can help to predict the distribution of norms of
elements of an order. It appears that the DMT is forcing an order
to have a fairly large, that is, dense unit group.

C. Inverse Determinant Sums of -Central Division Algebras

We now concentrate on the case where the center of the di-
vision algebra is . The most well-known code of this type is
the Alamouti code. Earlier we did analyze the determinant sum
of this code by observing that the sum is an Epstein zeta func-
tion, and we showed that the growth is in class in the dotted
sense. In this section, we will see that this behavior is actually
a particular case of a far more general theory.
Suppose that is a -central division algebra and a
-order in . Then, is an -dimensional NVD lattice in

.
As in the previous section we have:
Proposition 6.11: Let be an index- -central division

algebra and be a -order in . Then, for we have

where and are constants independent of .
Proof: The proof will be given in Section IX-C.

Similar to the previous case, we face the problem of mea-
suring , and again this reduces to measuring

. Promisingly, we can again see as a part
of .
Lemma 6.12: Let be an index- -central division algebra

and a -order in . We then have that

is a discrete subgroup of .
Proof: By definition . It is discrete as it

is a subset of a discrete set .
The lacking part here is that is not “large enough” to

be cocompact in and we cannot directly employ the

methods in Section VIII. Instead we have to make a detour to re-
alize the group as part of a “smaller” Lie group that will give
us a tight enough fit for the ergodic methods needed for point
counting in Lie groups. Unlike the case of complex quadratic
centered division algebras, the structure of this algebra will have
a dramatic effect on the unit group. Before proceeding, we need
some definitions and results.
Consider matrices

where refers to complex conjugation and and are com-
plex matrices in . We denote the set of matrices of this
type by . Indeed, there is a natural isomorphism between
this ring and the ring of matrices over the Hamilton quater-
nions .
Definition 6.4: Suppose that is an index- -central divi-

sion algebra. If

we say that is not ramified at the infinite place. If and

we say that is ramified at the infinite place.
Lemma 6.13: [25] Suppose that is an index- -central

division algebra. Then, has two options. Either it is ramified
at the infinite place or it is not.
If the reader is not familiar with tensoring, the main point is

that there are exactly two types of central division algebras.
Tensoring can then be seen as something that reveals the under-
lying geometric structure of the algebra.
Definition 6.5: The set

is a subgroup of the Lie group .
Definition 6.6: The set

is a subgroup of the Lie group .
Lemma 6.14: Suppose we have an index- -central divi-

sion algebra and that is a -order in . If is ramified at
the infinite place, there exists an invertible matrix
such that

If is not ramified at the infinite place there exists an invert-
ible matrix , such that

Proof: The proof will be given in Section IX-C.
In the following lemma is either or .
Lemma 6.15: Suppose that is an index- -central divi-

sion algebra with an order . If is the matrix of
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Lemma 6.14, then is a cocompact subgroup in
and

Proof: The proof will be given in Section IX-C.
The next lemma now follows as we can apply point counting

in Lie groups to the group . Depending of the rami-
fication at the infinite place, the counting will be done in
or in .
Lemma 6.16: Let be an index- -central division algebra

and be a -order in . If is ramified at the infinite place we
have that

If is not ramified at the infinite place, we have

Proof: The proofs will be given in Appendixes A–D.
We can now conclude the following.
Theorem 6.17: Let be an index- -central division al-

gebra where the infinite place is not ramified and a -order in
. Then, for we have

Theorem 6.18: Let be an index- , , -central division
algebra where the infinite place is ramified. Let be a -order
in . Then, for

Remark 6.3: In order to use these results in code design or in
the analysis of known codes, it is crucial to recognize whether
the underlying algebra is ramified at the infinite place. We refer
the reader to [27] for some simple methods, which will be used
in the analysis of the codes in the next example.
Example 6.1: Let us now return to the two example codes

mentioned in Section I: and
. Both of the division algebras have natural or-

ders . A straight calculation reveals that these
orders have the same geometric structure and normalized min-
imum determinant. However, these codes have drastically dif-
ferent inverse determinant sums. Corollary 6.18 gives growth

for the code and Corollary 6.17 gives growth
for the code .

VII. COROLLARIES TO THE DMT

It is our belief that the inverse determinant sum of an order
code derived from a division algebra indeed describes the DMT
of the corresponding coding scheme for multiplexing gain

. In this section, we will turn our inverse-determinant-sum
results into lower bounds for the DMT. We will see that in the
cases where theDMT of the code is known, the prediction gotten
from the inverse determinant sum does give the correct result.

Corollary 7.1: Let be a -central division algebra with
index and be a -order in . Then, is an -dimen-
sional lattice in . If and is ramified at the infinite
place, then the coding scheme derived from lattice based
on spherical shaping (10) achieves the DMT curve for

, which is a straight line connecting the points

(19)

when received by receiving antennas. This curve
coincides with the optimal curve for if and
only if and .

Proof: The DMT lower bound (19) follows directly from
Theorem 6.18 and from an argument similar to the proof of
Corollary 3.6. The last statement follows as the optimal DMT
curve in the channel, for , is a straight line con-
necting the points

Corollary 7.2: Let be a -central division algebra with
index and be a -order in . Then, is an -dimen-
sional lattice in . If is not ramified at the infinite place,
then the coding scheme derived from the lattice based
on spherical shaping (10) achieves the DMT curve for

, which is a straight line connecting the points

(20)

when received by receiving antennas. This curve
never coincides with the optimal curve.

Proof: The result follows from Theorem 6.17.
Corollary 7.3: Let be an -central division algebra with

index and . If is an -order inside ,
then is a -dimensional lattice in . The coding
scheme derived from lattice based on spherical shaping
(10) achieves the DMT curve for , which is
a straight line connecting the points

when received by receiving antennas. It coincides with
the optimal DMT curve in the range of for any
and .
Proof: The result follows Theorem 6.10.

VIII. POINT COUNTING IN LIE GROUPS

From this section, we begin to work on proving the previously
claimed results on determinant sums. As we saw in Section VI,
the growth of the inverse determinant sum of a division al-
gebra code depends essentially on the asymptotic growth of

. The latter can be estimated thanks to the fact
that admits a realization as a discrete cocompact sub-
group of a suitable Lie group . The term cocompact simply
means that the quotient is a compact topological space
with respect to the quotient topology.
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In this section, we will present some general results on the
asymptotic growth of these subgroups.
Let be a Lie group, where is , , or

, and be a discrete cocompact subgroup of . In
the following, we will discuss the problem of counting the
number of points of that lie inside a sphere defined with
respect to the Frobenius norm. We refer the reader to [7] for the
relevant definitions and an introduction to the subject. In all the
statements in this section, we suppose that is one of the three
aforementioned Lie groups. The results of [7] are actually far
more general than what is needed in this paper.
Each of the groups admits a Haar measure that gives us a

natural concept of volume . In particular, we can consider
the volumes of the balls

where here refers to all the matrices in having Frobe-
nius norm less than .
The discrete group being cocompact in yields that the

measure induced by is finite. A group with this
property is called an arithmetic lattice of . This is a natural
generalization of an additive lattice in .
The following theorem is stronger than what is needed for

measuring the growth of the unit group, but we need this result
for the proofs of Propositions 6.7 and 6.11.
Theorem 8.1 ([29], Corollary 1.11 and Remark 1.12): Con-

sider a Lie group , a discrete cocompact subgroup and
an element . We then have that

where is some nonzero constant independent of . The limit
approaches uniformly for all .
By setting to the identity matrix, one can see that the pre-

vious theorem does transform the point counting problem into
an integration problem. However, integration on a manifold
such as is not completely straightforward.
Theorem 8.2 ([30, Th. 7.4]): Suppose that is a Lie group.

We then have that

for some constant .
The value of is well known in the case and

we have that [31]. The corresponding results for
and , although probably well known to spe-

cialists, are not readily available in the literature, but there are
general methods for calculating these asymptotic integrals (see
[30] and [32]). In order to use these methods one needs to deter-
mine some invariants of Lie algebras, related to the Lie groups
under consideration. We explain these technical concepts in de-
tail in Appendix A, where we prove that for

and for , see Exam-
ples A.6, A.7.

IX. PROOFS OF SECTION VI

In this section, we suppose that the reader is familiar with
algebraic number theory and the theory of central simple alge-
bras. One should note that we will exclusively work with max-
imal orders. However, the results on the unit groups and growth
of the inverse determinant sums hold also true for other orders.
The upper bounds follow as for any order we can find a
maximal one such that . On the other hand, the
lower bound does come from the density of the unit group and
the proofs work for any order and for principal ideals of orders.
In particular, our results do cover the Golden code and most of
the other perfect codes. This is due to the fact that these codes
have the form , where is an order and is a matrix in

. The claim then follows from Lemma 3.4.

A. Some Preliminary Algebraic Results

Let be an index- -central division algebra and a
-order in . The (right) Hey zeta function [34] of the order
is

where and is the set of right ideals of . When
, this series is converging [35]. However, we can also

consider the truncated form of this sum at the point . We
have the following lemma.
Lemma 9.1: Let be an index- -central division algebra

and be a maximal -order in . If , we have that

for some constants and that are independent of .
Proof: When the sum converges and the bound is

trivial. Let us now consider the case when . It first follows
from [36, p. 175] where the authors state Hey’s result

where is the Dedekind zeta function defined in (13), and
is a function having finite Dirichlet series. In our asymptotic
upper bound, we can ignore the term . The terms ,
for , do stay limited, when approaches 1, and the
relevant term is then

where has positive termed Dirichlet series and converges
at 1. Generally for truncated positive termed Dirichlet series

and and for a positive real number , we
have that

where is the formal product of Dirichlet series. This
inequality holds even when the series do not converge.
We now have that
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where we consider as a Dirichlet series, with
as a variable, and where is a constant independent of . We
can now write

where are the coefficients of the original Dirichlet series
. Truncating, we have

and in particular

The final result now follows from Proposition 4.3.

B. Proofs of Section VI-B

Let us now concentrate on the case where we have a division
algebra with a complex quadratic center . The following
lemma will remind the reader of some of the previously men-
tioned results and state a crucial relation between the norm and
index of elements in . The result is analogous to the corre-
sponding one in the number field case.
Lemma 9.2 [25]: If is a maximal -order in an index-

-central division algebra , then is a -dimensional
lattice in and

(21)

where is a nonzero element of .
Lemma 9.3: Let be an index- -central division al-

gebra and an -order in . For any , we have

for some constant , that is independent of and .
Proof: We know that has a finite index inside . Sup-

pose that are some representatives of the cosets of
the group in . We then have that

As , we can multiply each by a di-
agonal matrix such that and .
Clearly, for all
. According to Theorem 8.1, we then have that

where is independent of and .
Now we are ready to prove that

Proof of Proposition 6.7: From the ideal theory of orders
we have that if , then and must differ by a unit.
Therefore, we can write

where is a collection of nonzero elements ,
, each generating a separate (right) ideal

(and we suppose that does include all elements in
) generating different ideals. According to

Lemma 9.3, we can upper bound the previous with

(22)

where is some constant independent of .
Using the inequality between Frobenius norm and determi-

nant, we have

for any element . Together with (21), this implies that

According to Lemma 9.1, we then have that

where and are some constants independent of . The final
result now follows by substituting this into (22).

C. Proofs of Section VI-C

The reader shall notice that in order to keep Section VI-C as
simple as possible we postponed the proofs, which can be easily
derived from the results in this section.
Suppose that is an index- -central division algebra and

a -order. We are now interested in the behavior of the
determinant sum

However, unlike in the case where the center is complex
quadratic, we cannot approach the problem directly. Instead
we will use another, geometrically more revealing, embedding

(to be defined later) and we will study the
corresponding sum
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In the end, we will prove that the behavior of this sum com-
pletely describes the behavior of the original sum, too.
Recall that there are exactly two options for a -central divi-

sion algebra , either

or

In both cases, we will denote the corresponding isomorphisms
by . With abuse of notation, we define
for .
Lemma 9.4 [25]: If is a maximal -order in an index-

-central division algebra , then is an -dimensional
NVD lattice in and

(23)

Now, we can proceed just as in the case of division algebra
with complex quadratic center.
Proposition 9.5: Let be an index- -central division al-

gebra and be a maximal -order in . Then, for
we have

where and are constants independent of .
In the following, we will denote and by .

Just as in the case of , we have the following.
Lemma 9.6 [28, Th. 1]: Suppose that is a -central divi-

sion algebra and a -order in . We then have that

is a cocompact lattice in .
Using point counting in Lie groups, we now have:
Proposition 9.7: Let be an index- -central division al-

gebra and a maximal -order in . Then, for

According to Examples A.6 and A.7, we now have the fol-
lowing desired results.
Corollary 9.8: Let be an index- -central division al-

gebra where the infinite place is not ramified and a maximal
-order in . Then, for we have

Corollary 9.9: Let be an index- , , -central division
algebra where the infinite place is ramified. Let be a maximal
-order in . Then, for

We are now ready to return to the original embedding of the
division algebra.
Lemma 9.10: Suppose that is an index- -central divi-

sion algebra and that is a -order in . Then, there exists
such that

for every element .
Proof: We can build a well-defined mapping

where and is the identity ma-
trix. It is then easy to prove that this is a bijective -algebra
homomorphism.
We also have a -algebra morphism ,

where . This is just as well a bijection.
The Skolem Noether theorem now states that there exists an
invertible matrix , such that
for every element in . In particular, we have that

.
Proposition 9.11: Suppose that is a -central division al-

gebra and that is a -order in we then have that

Proof: Combining Lemma 9.10 and Proposition 3.4 gives
us this result.
Theorems 6.18 and 6.17 now directly follow from Corollaries

9.8 and 9.9.

X. CONCLUDING REMARKS AND SUGGESTIONS
FOR FURTHER WORK

In this paper, we laid a basis for studying inverse determi-
nant sums and developed methods for analyzing inverse deter-
minant sums and DMTs of large families of algebraic codes.
We introduced several techniques, not used before in algebraic
space-time coding, and revealed surprisingly tight connections
between information theoretic and algebraic concepts.
There are now several directions where this study can be

continued. Let us shortly describe a few of them. The most
straightforward problem is the tightening of the results we have
gotten, so that we can make a difference between codes that in
the rough asymptotic sense, which we have mostly focused on,
are similar. Preliminary research suggests that our methods can
be sharpened to consider also the sums , introduced in
Section III-A. Can these more refined methods then be used to
find the division algebras that yield the optimal growth for the
corresponding sums ?
It seems to be that the growth of an inverse determinant sum

always describes the DMT of a minimum delay space-time code
for multiplexing gains . Can this be proved or dis-
proved? Can one give a more direct proof for the results in
Section III-F?
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APPENDIX
COMPLEX AND REAL LIE ALGEBRAS, ROOT SYSTEMS AND

HIGHEST WEIGHT

The aim of this appendix is to compute the constant in The-
orem 8.2 when the group is , , or .
In order to do so, we need some basic facts about Lie algebras.

For a general introduction to Lie algebras and beyond, we refer
the reader to [38], [39].
A (finite dimensional) Lie algebra over the field is a fi-

nite-dimensional vector space over endowed with a bilinear
product , called the Lie bracket, such that

and satisfying the Jacobi identity

For any Lie algebra , we can define a mapping

such that , , and a bilinear form
(Killing form) on given by . We
will only consider the case where is equal to or . In this
case, is semisimple if the Killing form is nondegenerate. We
will say that is Abelian if , or equivalently,

Even though we are mainly interested in real Lie algebras, it will
be easier to define the notions of root system and weights in the
case of complex Lie algebras and then derive the corresponding
definitions for the real case.

Notation: We denote by the standard basis of
and by the corresponding dual basis. To simplify

notation, we write and . We will always
suppose that in the sequel.

A) Root Space Decomposition and Irreducible Represen-
tations of Complex Lie Algebras: Let be a semisimple Lie
algebra over . A Cartan subalgebra is a maximal Abelian
subalgebra such that , is diagonalizable. Given a
Cartan subalgebra , let be its dual as a vector space.
For , let

If , we say that is a root of (or simply a root
of with abuse of notation). We denote the set of all roots of
by . The following root space decomposition holds:

(24)

Consider the -vector space

(25)

One can show that , so that an basis of
over is also a basis of over . Every choice of an ordered
basis of induces a partition of the roots into
positive and negative roots as follows.

Given a root , we write if such that
for and , and

otherwise [39]. We denote the set of positive roots by . A
positive root is called simple if it cannot be written as
a sum of positive roots. We denote the set of simple roots by .
Now consider a complex representation of , that is a mor-

phism where is a finite-dimensional complex
vector space. Here viewed as a Lie algebra
with the commutator as Lie bracket.
A subspace is invariant under the representation

if , . The representation is irreducible
if does not contain any nontrivial invariant subspace.
Given , we define

If we say that is a weight. Let be the set of
weights: then we have the weight space decomposition

A highest weight vector is a nonzero vector that belongs to
some weight space and such that ,

. In this case, is called a highest weight.
It can be shown that every finite-dimensional representation

of a semisimple Lie algebra admits a highest weight vector;
the highest weight vectors of an irreducible representation of
are unique up tomultiplication by nonzero scalars. Equivalently,
the highest weight is unique and the corresponding weight space
is 1-dimensional.

Example A.1 ( as a Complex Lie Algebra):
The complex Lie algebra corresponding to the Lie group

is

with the Lie bracket . One can show that
it is semisimple; the set of trace zero diagonal matrices is a
Cartan subalgebra; it is a vector space of dimension over
. We choose the ordered basis of
.
Note that for , if we consider two elements

, , we
have ,

(26)

so is diagonal with diagonal elements , and

It is not hard to see that the set of roots is

In fact, from (26) we find that , is contained in the
root space with . By (24), all the root spaces
are 1-dimensional and of the form . Moreover,
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1) the set of positive roots is

(27)

2) the set of simple roots is

Now consider the irreducible representation over
induced by the usual multiplication of matrices by vectors.
If is a highest weight vector

for this representation, then for
, and , we must have
. Consequently, . So

the only possible highest weight vector (up to multiplication
by scalars) is . The corresponding must
satisfy and

. Therefore, the highest weight
is .

B) Real Lie Algebras, Restricted Root Systems, and Re-
stricted Weights: Up to now, we have only considered com-
plex Lie algebras; however, a complex Lie algebra can also
be viewed as a real Lie algebra by restriction of scalars. In this
case, we will denote it by , the realification of . On the other
hand, given a real Lie algebra we can define its complexifica-
tion , which is again a real Lie algebra with the
following extension of the Lie bracket: ,

We will say that the real Lie subalgebra of the complex Lie
algebra is a real form of if [40].
We will thus consider real Lie algebras that fall into these

two main cases:
a) is the realification of a complex Lie algebra ;
b) is a real form of a complex Lie algebra .

We start by focusing on the second case. The main reference for
this section is [40].

Real Forms of Complex Lie Algebras: Real forms are
better understood by studying the corresponding real structures.
A real structure of a complex Lie algebra is an anti-invo-

lution , that is, an -linear map such
that . Given a real structure of
, the -subalgebra of its fixed points is a real form of ;
conversely, every real form is the fixed subalgebra of some real
structure.
A complex semisimple Lie algebra always admits a real struc-

ture such that the restriction of the Killing form to is nega-
tive definite; in this case, is called a compact real form.
Any involutive automorphism of commuting with de-

termines a real structure . Since is the identity, is
diagonalizable with eigenvalues , and considering the corre-
sponding eigenspaces we obtain a decomposition ,
where . If , let .
We say that a decomposition is a Cartan decom-

position if and
.

It is not hard to see that the decomposition given by ,
is indeed a Cartan decomposition of .

Consider a maximal commutative subalgebra in . One can
show that all such subalgebras have the same dimension , called
the real rank of [41].
Let be a maximal commutative subalgebra of containing
. Then, one can show that [38]. Clearly, we have
the decomposition , where . Moreover, the
complexification is a Cartan subalgebra of [38].
In this case, we say that is a Cartan subalgebra of .
It is not hard to see that defined in (25) is another real

form of ; one can show that . Since every root
in the set of roots of is real-valued on , by choosing

a suitable ordered basis of we can obtain a new partition
of into positive and negative roots. It is essential to choose
a “smart” ordered basis which is “compatible” with , in the
sense that a root such that its restriction to is positive must
also be positive. For example, we can choose an ordered basis
of followed by an ordered basis of [38].
Consider the set of positive roots of with respect to this

basis. Let be the subset of positive roots which vanish on
(also called compact roots) and let (noncompact
roots). Then, we can obtain the set of positive restricted
roots of with their multiplicities by restricting the roots
in to .
The simple restricted roots are defined from the positive

restricted roots in a similar way to the complex Lie algebra case.
From the root space decomposition of , we can thus obtain

a restricted root space decomposition

where the restricted root spaces are given by

The multiplicity of the restricted root is .
Irreducible Real Representations of Real Lie Algebras: Let

be a representation of a real Lie algebra over a real vector
space . Then, we can extend to a complex representation

on the complexification of . If is
irreducible, then is also irreducible, but the opposite is not
necessarily true.
Conversely, given a complex representation

of the real Lie algebra on the complex vector space , we can
regard as a real representation of on the realification
of . If is irreducible, then also is.
Furthermore, it can be proven [40] that given

irreducible, then either
i) irreducible, or
ii) where is an irreducible complex representation.

In either case, we denote by the corresponding complex
representation of (the straightforward extension to of in
case (i), and of in case (ii)), which turns out to be irreducible
too.
The restricted weight spaces of are defined in a similar way

to the weight spaces [37]: for , we can set
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The restricted weight subspace of is the sum of the weight
subspaces of corresponding to such that .
The restriction to of the highest weight of is the highest
restricted weight of .

Example A.2 ( as a Real Form of ): The in-
volution of the complex Lie algebra
gives rise to a compact real form.
The involutive automorphism which com-

mutes with determines the real structure
, which corresponds to real form of

real matrices with trace zero. The involution can be used to
define a Cartan decomposition into symmetric matrices

and antisymmetric matrices
.

The set of real diagonal matrices with trace zero is clearly
a commutative subalgebra of of dimension and it is not
hard to see that it is maximal, so that referring to the notation
of Section C we can choose and . The
set of positive roots of defined in (27) is compatible
with . None of the positive roots vanish on , therefore

(see Example A.1). The real representation on induced
by matrix-vector multiplication is irreducible and the highest
weight is (this corresponds to case (i) in the previous
discussion about real irreducible representations).

Example A.3 ( as a Real Form of ): If
is even, we consider the real structure of given

by , where

The set of fixed points of is the real Lie algebra

which is a real form of , since
. Its dimension as a real vector space is clearly .

Referring to the terminology defined before, and considering
the compact real structure of , and the
anti-involution , we get the Cartan
decomposition with respect to , with

It is not hard to see that

is a maximal commutative subalgebra of of dimension
over , and

is a maximal commutative subalgebra of con-
taining , of dimension over . Moreover, keeping the
notation of Section C, we have

which has dimension over , and is the set of
diagonal matrices in .
Let us now consider an ordered basis of which is com-

patible with , for example, the one consisting of the basis
of followed by the basis

of . Recall that the roots of
are given by

With the chosen ordering, it is not hard to see that the set of
positive roots is

of cardinality .
We find positive compact roots

and positive noncompact roots

The restrictions of the roots

coincide on , so there are positive restricted roots
with multiplicity , and

restricted simple roots .
Consider the irreducible complex representation of
over induced by the usual matrix-vector multiplication,
and consider its restriction . Then, by taking the re-
alification of , we can see as an irreducible real repre-
sentation (which coincides with the matrix/vector multiplica-
tion over ; this corresponds to case (ii) in the previous dis-
cussion about irreducible real representations). The restricted
weight spaces for are the sum of
the weight spaces for and and are generated by the vec-
tors in such that the th and th component may be
nonzero. The highest weight is .

Realifications of Complex Lie Algebras: The realification
of a complex Lie algebra is a real form of corre-

sponding to the involution . It can be shown
[41] that the (positive) restricted root system of coincides
with the (positive) root system of , but with the difference that
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the multiplicities of all restricted roots are
equal to 2.

Example A.4 ( as a Real Lie Algebra): From Ex-
ample A.1, we have and

. The maximum weight of the realifica-
tion of the complex representation considered in Example A.1
is still .

C) Growth Rate of the Unit Group for Discrete Subgroups
of : In this section, we will compute the constant
in Theorem 8.2 in the case where is a cocompact discrete
subgroup of , or . From Theorem
8.1, we know that the growth rate of depends
only on the volume of the corresponding ball and is the
same for every discrete cocompact subgroup of . Referring to
the terminology of Lie algebras given in the previous sections,
we can now state a more precise version of Theorem 8.2 ([30,
Th. 7.4]). Let be a connected semisimple real Lie group,
the corresponding real Lie algebra, a real vector space,
and an irreducible representation so that is
identified with a subset of . Let be a Cartan subalgebra
of (corresponding to some choice of ), the restricted
positive root system and the corresponding
set of restricted simple roots. Denote by the highest weight
of this representation.
Let be a basis of such that

. Consider the linear form , and the

normalized basis .
Theorem A.1 (Growth Rate of Units in a Ball): If the min-

imum is achieved for only one vector
, then for every linear norm on , we have

for some constant .
Example A.5 ( ): In the case ,
. For this volume estimation, we will need to see the

Lie algebra as a real Lie algebra, as explained in Ex-
ample A.4. As we have seen, all the restricted positive roots
have multiplicity . It is not hard to see that

. Using the fact that ,
we obtain

The minimum

is achieved for the unique value and is equal to
. So .

Example A.6 ( ): The case ,
is similar to the previous one except for the fact that

(see Example A.2). Consequently, we obtain
.

Example A.7 ( ): For , ,
we refer to Example A.3. We can choose the dual basis

and the linear form

and similarly to before, we find .
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