

Infrared absorption of 3-propenonyl (CH2CHCO) radical generated upon photolysis of acryloyl chloride [CH2CHC(O)CI] in solid para-H2

Prasanta Das and Yuan-Pern Lee

Citation: The Journal of Chemical Physics 139, 084320 (2013); doi: 10.1063/1.4818880

View online: http://dx.doi.org/10.1063/1.4818880

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/8?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices

J. Chem. Phys. 136, 124510 (2012); 10.1063/1.3696894

Reactions between chlorine atom and acetylene in solid para-hydrogen: Infrared spectrum of the 1-chloroethyl radical

J. Chem. Phys. 135, 174302 (2011); 10.1063/1.3653988

Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical—an intermediate formed in the OH + allene reaction en route to CH3 + ketene

J. Chem. Phys. 134, 054301 (2011); 10.1063/1.3525465

193-nm photodissociation of acryloyl chloride to probe the unimolecular dissociation of CH 2 CHCO radicals and CH 2 CCO

J. Chem. Phys. 120, 4223 (2004); 10.1063/1.1644096

C–Cl bond fission, HCl elimination, and secondary radical decomposition in the 193 nm photodissociation of allyl chloride

J. Chem. Phys. 116, 2763 (2002); 10.1063/1.1433965

Re-register for Table of Content Alerts

Create a profile.

Sign up today!

Infrared absorption of 3-propenonyl (·CH₂CHCO) radical generated upon photolysis of acryloyl chloride [CH₂CHC(O)CI] in solid *para*-H₂

Prasanta Das¹ and Yuan-Pern Lee^{1,2,a)}

¹Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

(Received 13 June 2013; accepted 6 August 2013; published online 29 August 2013)

Irradiation at 193 nm of a p-H₂ matrix containing acryloyl chloride CH₂CHC(O)Cl at 3.2 K yielded infrared absorption lines at 3143.6 (ν_1), 3057.0 (ν_2), 3048.0 (ν_3), 2103.1 (ν_4), 1461.0 (ν_5), 1349.8 (ν_6), 1223.7 ($\nu_{11}+\nu_{12}$ or $2\nu_{12}$), 1092.8 (ν_8), 918.1 (ν_9), 691.0 (ν_{10}), 624.3 (ν_{11}), and 597.1 (ν_{12}) cm⁻¹ that are assigned to the 3-propenonyl (·CH₂CHCO) radical. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers and infrared intensities with those predicted with the B3PW91/aug-cc-pVDZ method. The observation is consistent with a major radical formation channel CH₂CHCO + Cl followed by escape of the Cl atom from the original p-H₂ cage. The observation of 3-propenonyl (·CH₂CHCO) radical but not 3-propenalyl (s-cis- or s-trans-CH₂CHCO) radical indicates that the former is the most stable isomer and that the barrier heights for conversion from s-cis- or s-trans-CH₂CHCO are small. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818880]

I. INTRODUCTION

Acryloyl chloride (CH₂CHC(O)Cl, also known as propenoyl chloride, acrylyl chloride, or acrylic acid chloride) is a simple α , β -unsaturated chlorocarbonyl compound. Because of the presence of the enone (C=C-C=O) functional group, acryloyl chloride exhibits rich photochemistry with various photolytic paths. It serves as an important building block for further functionalization and an excellent substrate for cross-metathesis in various polymerization, biological, and medical applications. ¹⁻⁴ The fission of the C-Cl bond of CH₂CHC(O)Cl produces Cl atom and C₂H₃CO radical, a crucial intermediate that has been proposed in reactions between O atom and propargyl (C₃H₃) radical in combustion and atmospheric chemistry. ⁵

Extensive experimental investigations on $CH_2CHC(O)Cl$ have been conducted. These include structural and spectral studies, $^{6-11}$ pyrolysis, 12 photolysis, $^{13-18}$ and photoionization. Quantum-chemical calculations were also performed to predict the enthalpy, vibrational frequencies, electronic states, and reaction paths for isomerization and dissociation of $CH_2CHC(O)Cl.$ 10 , 15 , 17 , 19 , 20

Szpunar *et al.* employed photofragment translational spectroscopy to investigate the primary and secondary dissociation channels of $CH_2CHC(O)Cl$ excited at 193 nm. ¹⁵ They observed two C-Cl fission channels that produced C_2H_3CO with large and small kinetic energies, respectively, but the C_2H_3CO radicals produced in both channels had sufficient internal energy to undergo secondary decomposition so that only products $C_2H_3 + CO$ were detected. Lau *et al.* excited

CH₂CHC(O)Cl at 235 nm, at which most C₂H₃CO fragment is stable, and employed two-dimensional product-velocity-map imaging to determine the barrier height for the decomposition of C₂H₃CO to C₂H₃ + CO to be \sim 92 kJ mol⁻¹. Because of the similarity in energy, they employed wavelength 157 nm to photoionize all isomeric C₂H₃CO fragments formed on photodissociation of CH₂CHC(O)Cl at 235 nm; no information about the conformation of the C₂H₃CO fragments was available.

Three conformers of C₂H₃CO were predicted to be stable: s-cis- and s-trans-3-propenalyl radicals (also known as prop-2-en-1-one, 1-oxo-2-propenyl, propenyloxy, or propenoyl, designated CH₂CHCO in this paper) with the carbonyl group cis- and trans- with respect to the CH₂ group, respectively, and 3-propenonyl (also known as prop-2-en-3-one or 3-oxo-2-propenyl, designated ·CH₂CHCO in this paper) with a nearly linear CCO group,²¹ as shown in Fig. 1. In this paper we indicate this radical as C₂H₃CO when the conformation is unspecified. Early calculations using various methods including CCSD(T)//QCISD/6-311G(d,p) predicted that s-trans-CH₂CHCO is the most stable conformer,²¹ but recent calculations using CCSD(T)/ aug-cc-pV(Q+d)Z//CCSD(T)/6-311G(2df,p) and the G3 methods predicted that ·CH₂CHCO is the most stable and that the energy differences among these three conformers are within 8 kJ mol⁻¹. ¹⁶ The potential-energy curves along the torsional coordinate to transform between these three conformers were predicted to be nearly flat, with barriers less than 11 kJ mol⁻¹.²¹

No spectral information on gaseous C_2H_3CO in any conformation has been reported. Baskir and Nefedov observed characteristic IR features of $CH_2CH\dot{C}O$ isolated in solid Ar at 1823.1 and 1832.0 cm $^{-1}$ along with some weak lines at 1094.4, 975.3, and 870.7 cm $^{-1}$ upon photolysis of allylperoxy

²Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

a) Author to whom correspondence should be addressed. Electronic mail: yplee@mail.nctu.edu.tw.

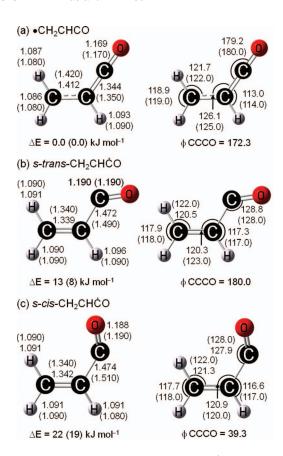


FIG. 1. Geometries and relative energies (in kJ mol⁻¹, corrected for zeropoint energy) of (a) ·CH₂CHCO (3-propenonyl), (b) *s-trans*-CH₂CHCO (3-propenalyl), and (c) *s-cis*-CH₂CHCO predicted with the B3PW91/aug-cc-pVDZ method. Bond distances are in Å and angles are in degrees. Parameters predicted with the QCISD/6-311G(d,p) method and energies obtained with the B3LYP/6-311G(d,p) method are listed in parenthesis.²¹

radical, H₂C = CHCH₂OO, which was produced upon pyrolysis of 1,5-hexadiene, followed by reaction with O₂ during deposition.²² Pietri et al. used light of wavelength ≥310 nm from a high-pressure Hg lamp to photolyze CH₂CHC(O)Cl isolated in an Ar matrix at 10 K and observed IR absorption of only 3-chloro-1,2-propenone, CH2CICHCO, with a characteristic broad feature near 2139 cm⁻¹; they ascribed the mechanism of formation to involve 1,3-chlorine migration, and reported no absorption ascribable to CH₂CHCO.¹⁴ The formation of only CH2CICHCO in this experiment might be due to the matrix cage effect; 14 upon C-Cl fission, the Cl fragment cannot escape from the original cage so the secondary reaction of Cl + C₂H₃CO yields CH₂ClCHCO. Cui et al. undertook various quantum-chemical calculations to map the potentialenergy surfaces of isomerization and dissociation reactions of $CH_2CHC(O)Cl$ in its S_0 , T_1 , T_2 , and S_1 states.²⁰ They indicated that, upon photoexcitation at 310 nm, $S_1 \rightarrow T_1$ intersystem crossing is the dominant primary process, which is followed by 1,3-Cl migration along the T_1 path, whereas, for excitation at a wavelength smaller than 230 nm, C-Cl bond cleavage is the exclusive primary channel.

Wu et al. employed time-resolved Fourier-transform infrared (FTIR) absorption spectroscopy to detect the photolysis products of CH₂CHC(O)Cl in solution upon excitation at 193 or 266 nm. ¹⁷ They ascribed the intense feature near 2128 cm⁻¹ with a life time \sim 280 μ s to CH₂ClCHCO and a weak line near 1813 cm⁻¹ to CH₂CHCO that decays within a few μ s; the former was produced from a stepwise mechanism involving dissociation and recombination. The reason that the most stable conformer ·CH₂CHCO predicted by quantum-chemical calculations is observed neither in a low-temperature inert-gas matrix nor in a solution remains to be explained.

The quantum solid *para*-hydrogen (*p*-H₂) has a diminished cage effect that allows the production of free radicals via photofragmentation^{23–25} *in situ* or bimolecular reactions induced on irradiation.^{26–30} In this work, we have photolyzed a CH₂CHC(O)Cl/*p*-H₂ matrix at 3.2 K with laser light at 193 nm and observed absorption lines ascribable to 11 fundamental vibrational modes of 3-propenonyl (⋅CH₂CHCO) radical.

II. EXPERIMENTS

As the apparatus and experimental procedures for IR absorption spectra of p-H₂ matrix-isolation are similar to those discussed previously, only a brief description is given.^{26,30} A gold-plated copper block was attached to a closed-cycle refrigerator system and cooled to 3.2 K. It served as both a matrix sample substrate and a reflector of the incident IR beam to the detector. A gaseous mixture of CH₂CHC(O)Cl/p-H₂ (1/2500-1/3000) was typically deposited at flow rate of \sim 14 mmol h⁻¹ over a period of 9 h. IR absorption spectra at resolution 0.25 cm⁻¹ were recorded with a FTIR spectrometer, equipped with a KBr beam splitter and a HgCdTe detector cooled to 77 K; 900 scans were typically averaged after each stage of experiments. The IR beam of the spectrometer was passed through a filter (2.4 μ m cutoff) to block light of wavenumber greater than 4000 cm⁻¹ to avoid the reaction of Cl atoms with vibrationally excited H₂ produced upon absorption of the unfiltered IR light.³¹

We employed light at 295 nm and 193 nm for photolysis of matrix samples in separate experiments. The 532-nm output (280 mJ pulse⁻¹) of a pulsed Nd:YAG laser (Spectra Physics, GCR5, 10 Hz) was used to pump a dye laser (Sirah, Precision Scan) containing a dye solution of sulforhodamine B in methanol to generate visible radiation in the region 585–600 nm. The dye output was then frequency-doubled with a potassium dihydrogen phosphate (KDP) crystal to yield light at 295 nm with energy 5–7 mJ pulse⁻¹. An ArF excimer laser (Coherent, COMPexPro-50), operated at 10 Hz with energy 3–5 mJ pulse⁻¹, provided radiation at 193 nm. The light source for secondary photolysis was a KrF excimer laser (248 nm, Lambda Physik, LPX200) operated at 1 Hz with energy 5–8 mJ pulse⁻¹.

The mixing ratios of the precursor and observed photolysis products were estimated according to the expression,³²

$$c \text{ (in ppm)} = \frac{2.303 \int \log_{10}(I/I_0) dv}{\varepsilon l} V_0 \times 10^6,$$

in which the numerator is the integrated line intensity (in cm⁻¹), ε (in cm mol⁻¹) is the absorption coefficient, l (in cm)

is the optical path length through the $p\text{-H}_2$ matrix measured according to the procedure described by Tam et~al., ³³ and $V_0=23.16~\text{cm}^3~\text{mol}^{-1}$ is the molar volume of solid $p\text{-H}_2.^{34}$ Experimental absorption coefficients were used for CO, ³² C₂H₂, ³⁵ C₂H₄, ³⁶ and HCl, ³⁷ whereas IR intensities calculated with the B3PW91/aug-cc-pVDZ method were used for C₂H₃C(O)Cl, CH₂CHCO, C₂H₅, CH₂CCO, CH₂ClCHCO, C₂H₃Cl, and ClCO. Typical values of l are \sim 0.2 cm after 9 h deposition with a flow rate of \sim 14 mmol h⁻¹. Typically we chose 2–4 absorption lines of one species and averaged the derived mixing ratios; the fitting errors are typically within \pm 20%, but in cases when only quantum-chemically predicted IR intensities were available the error might be greater.

As acryloyl chloride (96%, Aldrich, containing \sim 400 ppm phenothiazine stabilizer) undergoes slow polymerization at room temperature, we applied the freeze-pumpthaw method to remove the impurities before preparation of a sample mixture. The mixing ratio of o-H₂ is estimated to be less than 100 ppm when we cooled the hydrous iron (III) oxide catalyst to \sim 12 K.

III. COMPUTATIONS

The geometries, harmonic and anharmonic vibrational wavenumbers, and IR intensities of *s-cis/s-trans* conformers of CH₂CHC(O)Cl, CH₂CICHCO, and three conformers of C₂H₃CO radicals were calculated with the B3PW91 density-functional theory^{38,39} using Dunning's correlation-consistent polarized-valence double-zeta basis set, augmented with *s*, *p*, *d*, and *f* functions (aug-cc-pVDZ).⁴⁰ Vibrational wavenumbers were calculated analytically at each stationary point. The anharmonic effects were calculated with a second-order perturbation approach using an effective finite-difference evaluation of the third and semidiagonal fourth derivatives. All theoretical calculations were conducted with the GAUSSIAN 09 program.⁴¹

A. s-cis- and s-trans-CH₂CHC(O)CI and CH₂CICHC=O

The structural parameters of s-trans- and s-cis-CH₂CHC(O)Cl and CH₂ClCHCO optimized with the B3PW91/aug-cc-pVDZ method are shown in Figs. S1(a)-S1(c) in the supplementary material;⁴² those previously measured with the electron diffraction method for s-cisand s-trans-CH₂CHC(O)Cl conformers⁸ and those predicted with the MP2/6-31G* method for CH2ClCHCO are listed parenthetically. 14 According to the B3PW91/aug-cc-pVDZ and B3PW91/aug-cc-pVQZ methods, s-trans-CH2CHC(O)Cl is more stable than s-cis-CH₂CHC(O)Cl by 0.4 and 0.1 kJ mol⁻¹, respectively. Considering the errors in theoretical predictions, we conclude that both isomers are close in energy, consistent with a value of only $\sim 1.0 \text{ kJ mol}^{-1}$ determined with gas-phase electron diffraction at varied temperature for the energy of s-cis-CH₂CHC(O)Cl relative to that of s-trans-CH₂CHC(O)Cl. The energy of CH₂ClCHCO is predicted to be 39 kJ mol⁻¹ greater than that of s-trans-CH₂CHC(O)Cl, slightly smaller than the reported value 43 kJ mol⁻¹ obtained with the MP2/6-31G* method.

At the B3PW91/aug-cc-pVDZ level of theory, the anharmonic (harmonic) vibrational wavenumbers for IR absorption lines of *s-trans*- and *s-cis*-CH₂CHC(O)Cl with intensities greater than 30 km mol⁻¹ are 1806 (1842), 1381 (1418), 1137 (1161), 990 (1022), 983 (1006), and 601 (605) cm⁻¹ and 1817 (1853), 1636 (1677), 1380 (1415), 970 (988), and 704 (709) cm⁻¹, respectively. The anharmonic vibrational wavenumbers and relative IR intensities of some representative modes for both conformers are presented in Table I. A comparison of harmonic and anharmonic vibrational wavenumbers of both conformers is available in Table SI.⁴²

Harmonic and anharmonic vibrational wavenumbers and relative IR intensities of $CH_2CICHCO$ predicted with the B3PW91/aug-cc-pVDZ method are listed in Table II. The C=O stretching mode at 2184 (2222) cm⁻¹ is the most prominent, with weaker modes having IR intensities greater than 20 km mol⁻¹ at 1231 (1253), 1003 (1037), 668 (686), and 548 (556) cm⁻¹.

B. ·CH₂CHCO and s-cis/s-trans-CH₂CHCO radicals

The C₂H₃CO radical has three stable conformers: s-cis and s-trans form of 3-propenalyl (CH₂CHCO) with the unpaired electron located on the carbonyl carbon atom and 3-propenonyl (·CH₂CHCO) with the unpaired electron located mainly on the terminal carbon atom. The geometries of these conformers computed with the B3PW91/aug-ccpVDZ method are shown in Figs. 1(a)-1(c). The structural parameters previously predicted with the OCISD/6-311G(d.p) method are listed in parentheses for comparison.²¹ The structures of these isomers are consistent with the previously reported structures, except that Cooksy²¹ reported that s-cis-3propenalyl is planar, whereas our calculations indicate that C=O group bends from the CH₂CH molecular plane by $\sim 40^{\circ}$. The most stable structure among these isomers is the ·CH₂CHCO radical, which has a linear C=C=O structure. The energies of the s-trans- and s-cis-CH2CHCO radicals relative to CH2CHCO are 13 and 22 kJ mol⁻¹, respectively, slightly larger than the values of 8 and 19 kJ mol⁻¹ calculated with the B3LYP/6-311G* method.²¹ The experimental enthalpies of formation ΔH_1^0 of ·CH₂CHCO and s-cis/strans-CH₂CHCO radicals are unreported; we evaluated ΔH_f^0 $=-131, -109, \text{ and } -118 \text{ kJ mol}^{-1}$ for these three conformers at 298 K, respectively.

The harmonic and anharmonic vibrational wavenumbers and relative IR intensities predicted with the B3PW91/aug-cc-pVDZ method for ·CH₂CHCO and *s-cis/s-trans*-CH₂CHCO are listed in Table II. The anharmonic (harmonic) vibrational modes of ·CH₂CHCO with IR intensities greater than 8 km mol⁻¹ are predicted at 3019 (3179), 2139 (2184), 674 (710), and 605 (578) cm⁻¹; the intensity (634 km mol⁻¹) of the C=O stretching mode at 2139 cm⁻¹ is at least 14 times as great as that of another line. In contrast, the most intense C=O stretching modes in *s-cis-* and *s-trans*-CH₂CHCO are predicted to be near 1881 and 1870 cm⁻¹, with IR intensities 182 and 245 km mol⁻¹, respectively, and lines near 955, 946, and 691 cm⁻¹ for

TABLE I. Comparison of experimental vibrational wavenumbers (cm⁻¹) and relative IR intensities of s-cis- and s-trans-CH₂CHC(O)Cl with anharmonic vibrational wavenumbers and relative IR intensities predicted with the B3PW91/aug-cc-pVDZ method.

Mode	Sym	p-H ₂ (cm ⁻¹ (%))		Gas phase (cm ⁻¹)		Ar-matrix (cm ⁻¹)		B3PW91/aug-cc-pVDZ	
		s-trans	s-cis	s-trans	s-cis	s-trans	s-cis	s-trans	s-cis
$\overline{\nu_1}$	A'	3118.4 (0.7) ^a		3122				3119 (0.1) ^a	3123 (0.0) ^a
ν_2	A'	3039.9 (0.7)		3069	3087			3059 (0.3)	3100 (0.2)
ν_3	A'	2993.1 (0.2)	3034.8 (0.8) ^a	3043				2991 (0.5)	3054 (0.8)
ν_4	A'	1768.2 (100)	1779.6 (80)	1789 ^b	1775 ^b	1766	1779	1806 (100)	1817 (87)
v_5	A'	1625.9 (2.1)	1616.7 (8.5)	1628	1620	1626	1619	1656 (1.2)	1636 (14)
ν_6	A'	1395.6 (31) ^c	1395.6 (31) ^c	1397		1394	1398	1381 (8.5)	1380 (22)
v_7	A'	1284.0 (1.1)	1287.5 (0.4)	1285		1284	1288	1275 (0.4)	1279 (1.2)
ν_8	A'	1149.9 (53)	1074.0 (2.1)	1152		1150	1075	1137 (40)	1069 (5.3)
ν9	A'	937.9 (63)	976.3 (100)	939	979	936	973	932 (26)	970 (100)
v_{10}	A'	607.1 (39)	708.1 (37)	609	708	605	705	601 (21)	704 (34)
v_{11}	A'	494.8 (16)		494 ^d	446	494	446	488 (6.7)	439 (7.0)
v_{12}	A'			445	386			430 (4.3)	383 (6.2)
ν_{13}	A'			257				256 (0.0)	252 (0.4)
v_{14}	$A^{\prime\prime}$		982.7 (13)	981 ^d	983	984	999	990 (5.1)	992 (11)
v_{15}	$A^{\prime\prime}$			977 <mark>d</mark>	975	979 ^b	986 <mark>b</mark>	983 (9.2)	976 (5.7)
v_{16}	$A^{\prime\prime}$	756.5 (7.6)	743.2 (5.1)	757	744	756	744	759 (3.6)	746 (5.2)
ν ₁₇	$A^{\prime\prime}$			452 ^d	485			442 (0.0)	473 (0.0)
v_{18}	$A^{\prime\prime}$			108	95			110 (0.2)	73 (0.0)
Reference		This work	This work	9	9	14	14	This work	This work

^aPercentage IR intensities relative to the most intense line are presented in parentheses. IR intensities of these most intense lines are predicted to be 350 (1806 cm⁻¹) and 288 km mol⁻¹ (970 cm⁻¹) for s-trans- and s-cis-CH₂CHC(O)Cl, respectively.

TABLE II. Comparison of observed vibrational wavenumbers (in cm⁻¹) and relative IR intensities of ·CH₂CHCO with anharmonic vibrational wavenumbers and relative IR intensities of CH2CHCO, CH2CHCO (s-cis and s-trans), CH2CICHCO, and CH2CCO predicted with the B3PW91/aug-cc-pVDZ method and experimental data of CH2CCO.

	p -H $_2$	B3PW91/aug-cc-pVDZ					
Mode	·CH ₂ CHCO cm ⁻¹ (%)	·CH ₂ CHCO cm ⁻¹ (%)	s-cis-CH ₂ CHĊO cm ⁻¹ (%)	s-trans-CH ₂ CHĊO cm ⁻¹ (%)	CH ₂ CICHCO cm ⁻¹ (%)	CH_2CCO cm^{-1} (%)	${\rm CH_2CCO} \atop {\rm cm}^{-1}$
v_1	3143.6 (0.3) ^b	3139 (0.3) ^b	3111 (1.1) ^b	3105 (0.6) ^b	3067 (1.3) ^b	3014 (0.6) ^b	3049/3024
ν_2	3057.0 (0.5)	3046 (0.4)	3039 (0.6)	3015 (1.5)	3025 (0.2)	2944 (3.0)	2978/2974
ν_3	3048.0 (1.2)	3019 (1.4)	3004 (0.7)	2956 (4.1)	2978 (1.0)		
v_4	2103.1 (100)	2139 (100)	1881 (100)	1870 (100)	2184 (100)	2187 (100)	2125
ν_5	1461.0 (0.1)	1442 (0.2)	1552 (2.7)	1638 (0.9)	1419 (1.4)	1742 (1.0)	1690
ν_6	1349.8 (0.3)	1348 (0.2)	1369 (4.2)	1370 (8.0)	1394 (1.8)	1433 (0.1)	1444
с	1223.7 (0.7)	1235					
ν ₇		1167 (1.0)	1263 (0.8)	1251 (0.1)	1231 (6.1)	1040 (2.1)	1046
ν_8	1092.8 (0.4)	1080 (0.9)	1050 (1.7)	1075 (10)	1159 (2.5)	1000 (2.5)	980
ν9	918.1 (0.4)	908 (0.4)	955 (27)	988 (13)	1124 (0.0)	911 (0.3)	903
v_{10}	691.0 (4.7)	674 (6.4)	946 (8.9)	962 (8.5)	1003 (3.2)	676 (1.1)	668
v_{11}	624.3 (0.4)	630 (0.4)	835 (2.6)	870 (4.8)	859 (1.3)		
v_{12}	597.1 (6.5)	605 (7.1)	691 (7.5)	600 (1.7)	668 (16)		
v_{13}		390 (2.1)	437 (3.2)	527 (2.4)	630 (1.2)	474 (1.2)	473
v_{14}		294 (0.1)	246 (4.6)	320 (0.6)	548 (2.9)	260 (0.2)	
v_{15}		212 (0.4)	147 (1.6)	143 (0.0)	521 (0.1) ^d	156 (2.3)	

^aFrom Ref. 47. Additional lines at 2603 ($2\nu_8 + \nu_{10}$), 2177 ($\nu_5 + \nu_{13}$), 2079 ($2\nu_7$), and 1959 ($2\nu_8$) cm⁻¹ were reported with our tentative assignments given in parentheses.

^bAssignments might have to be switched between these two conformers according to theoretical calculations.

^cTotal intensity of these two overlapped lines.

^d Assignments of these two modes are switched from the original report according to theoretical calculations.

^bPercentage relative IR intensities to the most intense line are listed in parenthesis. IR intensities of these lines are 634, 182, 245, 842, and 973 km mol⁻¹ for ·CH₂CHCO, s-cis-CH2CHCO, s-trans-CH2CHCO, CH2CICHCO, and CH2CCO, respectively.

^cTentatively assigned to $v_{11} + v_{12}$ and/or $2v_{12}$.

dAdditional modes of CH2CICHCO are predicted to have anharmonic vibrational wavenumbers (relative IR intensities): 301(2.4), 200 (0.1), 73 (0.2).

s-cis- CH₂CHCO and those near 1370, 988, and 962 cm⁻¹ for *s-trans-*CH₂CHCO have intensities greater than 7% of that of the most intense feature.

C. CH₂CCO

Propadienone, CH₂CCO, might be produced from CH2CHC(O)Cl via elimination of HCl. An analysis of microwave spectra for the vibrational ground state indicates that the equilibrium structure of propadienone belongs to point group C_s with the C=C=O moiety slightly nonlinear. 43,44 as shown in Fig. S2 of the supplementary material;⁴² the structural parameters of CH₂CCO optimized with the B3PW91/aug-cc-pVDZ method are also shown for comparison. The anharmonic vibrational wavenumbers and IR intensities for CH₂CCO calculated with the B3PW91/aug-ccpVDZ method are listed in Table II. The anharmonic (harmonic) vibrational modes of CH₂CCO with IR intensities greater than 20 km mol⁻¹ are predicted at 2944 (3096), 2187 (2227), 1040 (1059), 1000 (1027), and $156 (171) \text{ cm}^{-1}$, with the line at 2187 cm⁻¹ being the most intense (973 km mol⁻¹) and other lines at most 1.2% that intensity.

IV. EXPERIMENTAL RESULTS

A. CH₂CHC(O)CI/p-H₂ matrices

The IR spectrum of a sample of CH₂CHC(O)Cl/p-H₂ (1/3000) at 3.2 K is shown in Fig. 2(a). Lines observed in two sets at 3034.8, 1779.6, 1616.7, 1395.6, 1287.5, 1074.0, 982.7, $976.3, 743.2, \text{ and } 708.1 \text{ cm}^{-1} \text{ and at } 3118.4, 3039.9, 2993.1,$ 1768.2, 1625.9, 1395.6, 1284.0, 1149.9, 937.9, 756.5, 607.1, and 494.8 cm⁻¹ are assigned to s-cis and s-trans conformers of CH₂CHC(O)Cl, and marked as "c" and "t," respectively. Piétri et al. observed partial conversion of s-trans-CH2CHC(O)Cl to s-cis-CH2CHC(O)Cl upon irradiation of the CH₂CHC(O)Cl/Ar matrix sample with light of $\lambda > 310$ nm. ¹⁴ We irradiated the matrix sample at 295 nm and also found that the s-trans conformer was converted to the scis-conformer. A difference spectrum obtained on subtracting the spectrum of a CH₂CHC(O)Cl/p-H₂ matrix recorded upon deposition [Fig. S3(a)] from that recorded after irradiation with light at 295 nm for 2 h is presented in Fig. S3(b) of the supplementary material;⁴² lines due to s-cis- and s-transconformers are clearly distinguished as they are pointing upwards and downwards, respectively. Observed vibrational wavenumbers are compared with the predicted values and reported experimental values in the gaseous phase⁹ and in an Ar-matrix 14 in Table I. The original assignments of v_{11} and v₁₇ for s-trans-CH₂CHC(O)Cl are interchanged according to theoretical calculations. We estimated the mixing ratios of s-cis-CH2CHC(O)Cl and s-trans-CH2CHC(O)Cl to be approximately (78 \pm 14) and (150 \pm 10) ppm according to Fig. S3(a); assuming a Boltzmann distribution at 298 K, the ratio of 0.52 ± 0.14 corresponds to an energy difference of $1.6 \pm 0.7 \text{ kJ mol}^{-1}$, slightly greater than the reported value of 1.0 kJ mol⁻¹ determined from electron diffraction,⁸ but within experimental uncertainties. After irradiation of the matrix sample at 295 nm for 2 h, the mixing ratios were

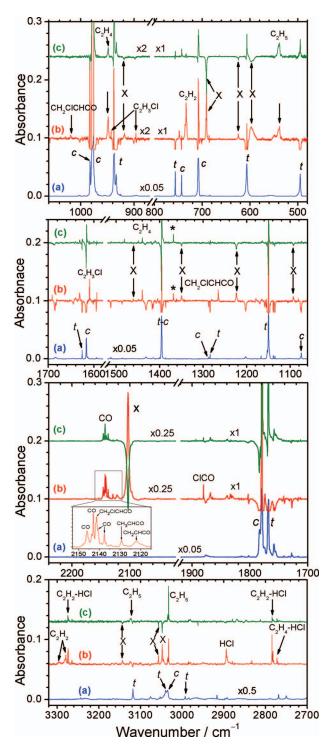


FIG. 2. (a) Absorption spectrum of a CH₂CHC(O)Cl/p-H₂ (1/3000) matrix deposited at 3.2 K for 9 h. (b) Difference spectrum of this matrix upon irradiation with light at 193 nm for 70 min. (c) Difference spectrum of this matrix after further photolysis with 248 nm for 10 min. All experimental spectra were recorded at resolution 0.25 cm $^{-1}$. Lines marked with "c" and "t" in trace (a) are assigned to s-cis- and s-trans-CH₂CHC(O)Cl, respectively. Lines in group X (·CH₂CHCO) are indicated with arrows in traces (b) and (c). Prominent lines of C₂H₂, C₂H₂-HCl, C₂H₄, C₂H₄-HCl, C₂H₅, C₂H₃Cl, CH₂CICHCO, CH₃CHCO, and CH₂CCO are also indicated.

found to be approximately (103 ± 16) and (84 ± 4) ppm for *s-cis* and *s-trans* conformers, respectively, according to Fig. S3(b),⁴² indicating that some CH₂CHC(O)Cl was photolyzed at this wavelength.

B. Photolysis of CH₂CHC(O)Cl/p-H₂ matrices at 193 nm

When the CH₂CHC(O)Cl/p-H₂ (1/3000) matrix sample at 3.2 K was irradiated with light at 193 nm, lines due to *s-cis*-and *s-trans*-CH₂CHC(O)Cl decreased and new IR features in several groups appeared. A difference spectrum obtained on subtracting the spectrum recorded upon deposition from that recorded upon irradiation for 70 min is presented in Fig. 2(b); lines pointing upwards indicate production, whereas the most intense parts of the downward lines due to destruction of the precursor are truncated. We performed secondary photolysis with several light sources to distinguish lines from various carriers. For comparison, we present in Fig. 2(c) a difference spectrum obtained on subtracting the spectrum in Fig. 2(b) from that recorded upon secondary photolysis at 248 nm for 10 min.

These new features in Fig. 2(b) are separated into several groups. Intense lines observed near 2145.9, 2142.9, 2140.6, and 2137.6 cm⁻¹ are assigned to CO; these line positions are similar to those reported for rotational lines of CO isolated in p-H₂. 45 Lines of groups A, B, and C, listed in Table III, are readily assigned to C_2H_2 , C_2H_4 , and C_2H_5 , according to literature reports; they are directly marked as " C_2H_2 " " C_2H_4 ," and " C_2H_5 " in Fig. 2(b), respectively. The intensities of lines at 3294.9, 3279.6, and 733.7 cm^{-1} (group A, assigned to C₂H₂)⁴⁶ attained maxima after photolysis at 193 nm for 15 min, but remained nearly unchanged when the matrix was subsequently irradiated with light at 248 nm. The intensity of features of C_2H_4 (group B)⁴⁶ at 1440.0 and 948.6 cm⁻¹ increased gradually when the matrix was irradiated further at 193 nm or with light at 248 nm for 10 min. The intensities of lines observed at 3124.8, 3032.6, and 538.5 cm⁻¹ (group C, assigned to C₂H₅)⁴⁶ increased significantly at the initial stage of irradiation at 193 nm and increased further upon secondary photolysis at 248 nm for

Lines at 3143.6, 3057.0, 3048.0, 2103.1, 1461.0, 1349.8, 1223.7, 1092.8, 918.1, 691.0, 624.3, and 597.1 cm⁻¹ appeared upon photolysis at 193 nm but their intensities decreased upon secondary photolysis at 248 nm. These lines, denoted as group X and indicated with "X" in Fig. 2, match no known absorption lines of possible products. They are assigned to 3-propenonyl (\cdot CH₂CHCO) radical, to be dis-

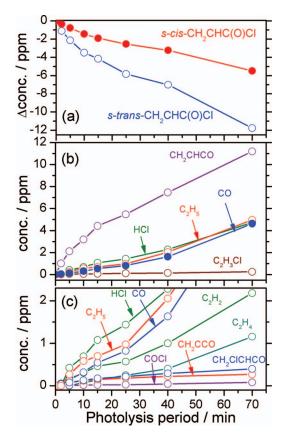


FIG. 3. Mixing ratio profiles as a function of photolysis period at 193 nm for precursors and photolysis products. (a) *s-cis-*CH₂CHC(O)Cl and *s-trans-*CH₂CHC(O)Cl; the initial mixing ratios are 78 \pm 14 and 150 \pm 10 ppm, respectively. (b) ·CH₂CHCO, C₂H₅, CO, HCl, and C₂H₃Cl. (c) C₂H₂, C₂H₄, CH₂ClCHCO, CH₂CCO, and ClCO; initial stages of HCl, C₂H₅, and CO are also shown.

cussed in section V A. Observed vibrational wavenumbers and relative intensities of these new features are listed in Table II.

We estimated the changes in mixing ratios of *s-trans*-CH₂CHC(O)Cl, *s-cis*-CH₂CHC(O)Cl, and ·CH₂CHCO after irradiation at 193 nm for 70 min (Fig. 2(b)) to be approximately $-(12 \pm 2)$, $-(5.5 \pm 1.0)$, and (11 ± 2) ppm, respectively; the errors reflect only standard deviations in fitting. The temporal evolutions in the mixing ratios of these species are shown in Fig. 3. Upon secondary photolysis at 248 nm

TABLE III. Observed wavenumbers and relative IR intensities for lines in various groups ascribable to known species.

Groups	Species	ν /cm ⁻¹ and relative intensities ^a
A	C_2H_2	3294.9 (14), 3279.6 (41), 733.7 (100)
В	C_2H_4	1440 (16), 948.6 (100)
C	C_2H_5	3124.8 (3.6), 3032.6 (19), 538.5 (100)
D	C ₂ H ₃ Cl	1609.5 (100), 943.2 (30), 896.5 (34)
E	CH ₂ CICHCO	2141.4 (100), 1265.4(7.5), 1019.1 (2.9)
A1	C ₂ H ₂ -HCl	3274.2 (183.2), 2784.3/2782.4/2780.6 (273), 1974.2 (27), 748.2 (100)
B1	C ₂ H ₄ -HCl	2772.7/2770.5 (415), 964.4 (100)
	CH ₃ CHCO	2129.2
	CH ₂ CCO	2122.4

^aPercentage IR intensities relative to the most intense line of the species are listed in parentheses.

(Fig. 2(c)), the variations in the mixing ratios (ppm) are approximately $\Delta[\cdot CH_2CHCO]:\Delta[C_2H_5]:\Delta[C_2H_4]:\Delta[CO] = -(7.3 \pm 1.0):(5.1 \pm 0.9):(0.56 \pm 0.02):(4.1 \pm 0.8).$

We observed also weak absorption lines of stable products C_2H_3Cl at 1609.5, 943.2, and 896.5 cm⁻¹ (group D), 46 CH₂CICHCO at 2141.4, 1265.4, and 1019.1 cm⁻¹ (group E), 14 C₂H₂-HCl at 3274.2 and 2784.3 cm⁻¹ (group A₁), 46 and C_2H_4 -HCl at 2772.7 cm⁻¹ (group B_1), 27,46 as indicated in Fig. 2 and listed in Table III. Weak lines observed at 2122.4 and 2129.2 cm⁻¹ are tentatively assigned to CH₂CCO and CH₃CHCO, respectively; the corresponding lines for these two species isolated in solid Ar are at 2125 (Ref. 47) and 2130 cm⁻¹, ⁴⁸ respectively. Because only the most intense features (C=O stretching mode) of these species were observed, these assignments are tentative. According to Fig. 2(b), we estimated the mixing ratios of C₂H₂, C₂H₄, C₂H₅, C₂H₃Cl, CH₂ClCHCO, and CO after photolysis of the matrix at 193 nm for 70 min to be approximately (2.2 \pm 0.2), (1.2 ± 0.1) , (4.9 ± 0.9) , (0.3 ± 0.1) , (0.4 ± 0.1) , and (4.6 \pm 0.7) ppm. The temporal evolution of the mixing ratios of these species as a function of photolysis duration is shown in Fig. 3. Original difference spectra are shown in Fig. S4 of the supplementary material.42

Photolysis with light of additional wavelengths was also conducted. When a light-emitting diode (365 nm, 200 mW) was used, we observed no new product. When the light of a medium-pressure mercury lamp filtered to pass the spectral range 313 ± 10 nm was used, only two weak lines at 2103 and 2140 cm⁻¹ were observed. We performed photolysis also at 266 nm, but the products were more complicated and the yield of lines in group X (·CH₂CHCO) is much smaller. Because the main purpose of this paper is to identify IR spectrum of ·CH₂CHCO, we discuss only the photolysis experiments of CH₂CHC(O)Cl at 193 nm.

V. DISCUSSION

The UV absorption cross section of $CH_2CHC(O)Cl$ is unreported; we have calculated it to be $\sim 1.5 \times 10^{-20}\, cm^2$ molecule⁻¹ near 300 nm and $\sim 4 \times 10^{-17}\, cm^2$ molecule⁻¹ near 200 nm using time-dependent density-functional theory (TD-DFT). The *s-trans* \rightarrow *s-cis* isomerization of $CH_2CHC(O)Cl$ was reported to occur upon photolysis with wavelength greater than 310 nm. ¹⁴ We also observed such conversion upon irradiation of the matrix sample at 295 nm, but we were unable to convert all *s-trans*- $CH_2CHC(O)Cl$ to *s-cis-* $CH_2CHC(O)Cl$ after irradiation for 2 h.

According to Szpunar *et al.*, the major channel upon photolysis of CH₂CHC(O)Cl in a molecular beam at 193 nm is the fission of the C–Cl bond; all C₂H₃CO radicals thus produced have enough internal energy to undergo subsequent dissociation to form CH₂CH + CO.¹⁵ A minor channel for formation of HCl + CH₂CCO was also observed, and all CH₂CCO (propadienone) underwent secondary dissociation to form CH₂C: + CO. Because energy quenching is expected to be efficient in solid *p*-H₂, the primary products C₂H₃CO and CH₂CCO might be stabilized under our experimental conditions; hence CH₂CCO and three possible conformers, *s-cis-*CH₂CHCO, *s-trans-*CH₂CHCO, and

·CH₂CHCO, of C₂H₃CO are the possible carriers of the newly observed lines in group X.

A. Assignment of lines in group X to the 3-propenonyl (·CH₂CHCO) radical

Baskir and Nefedov reported infrared spectra of *s-cis* and *s-trans*-CH₂CHCO radicals obtained after UV ($\lambda > 248$ nm) photolysis of H₂C = CHCH₂OO in an Ar matrix.²² They reported characteristic intense lines at 1832.0 and 1823.1 cm⁻¹ for the CO stretching mode of *s-cis-* and *s-trans*-CH₂CHCO, respectively, with the latter being more intense; additional weak lines at 1094.4, 975.3, and 870.7 cm⁻¹ were also assigned to CH₂CHCO. There is no report of an IR spectrum of the CH₂CHCO radical. Chapman *et al.* reported IR spectrum of propadienone (CH₂CCO) in Ar or N₂ matrices; CH₂CCO was prepared by pyrolysis of gaseous 3-diazo-2,4(5H)-furadione.⁴⁷ The most intense line observed at 2125 cm⁻¹ corresponds to the C=C=O antisymmetric stretching mode; other reported lines are listed in Table II.

The intensities of absorption lines in group X, listed as relative values in Table II, increased rapidly during irradiation in the first 15 min and increased less rapidly afterwards; those of other lines are smaller than 7% of the most intense one at 2103.1 cm $^{-1}$. Upon secondary photolysis at 248 nm, the intensities of these lines in group X decreased whereas those of lines of C_2H_5 , C_2H_4 , and CO increased.

No reported species has a spectral pattern similar to that observed for lines in group X. We observed a characteristically intense line near 2103.1 cm⁻¹ in group X, but no significant absorption near the 1830 cm⁻¹ region. The wavenumber of this line is near that of the line at 2125 cm⁻¹ of CH₂CCO, but other reported lines of CH2CCO (Table II) do not match with other lines in group X.47 Furthermore, a line observed at 2122.4 cm^{-1} (Fig. 2(b)) is near the line at 2125 cm^{-1} reported for CH2CCO isolated in solid Ar. We observed also a weak IR absorption feature of CH₃CHCO at 2129.2 cm⁻¹, of which the intensity increased significantly upon IR irradiation of the 193-nm-irradiated matrix; the corresponding line was reported to be 2130 cm⁻¹ in an Ar matrix.⁴⁸ Another weak line observed at 2141.4 cm⁻¹ is assigned to CH₂ClCHCO; the corresponding value is reported as (2143.6-2138.0) cm⁻¹ in an Ar matrix. 14 The wavenumber of the observed intense line at 2103.1 cm⁻¹ that is slightly smaller than those of ketene (2142.0 cm⁻¹), ⁴⁹ CH₂CICHCO (2141.4 cm⁻¹), CH₂CCO (2125 cm^{-1}) , and CH₃CHCO (2129.2 cm^{-1}) but greater than those of s-cis- and s-trans-CH2CHCO indicates that the most likely carrier of this line in group X is ·CH2CHCO; this observation is consistent with the calculated bond length of 1.169 Å for CO in ·CH₂CHCO, slightly greater than 1.164 Å in CH2ClCHCO but much smaller than corresponding values 1.188/1.190 Å in *s-cis/s-trans*-CH₂CHCO.

In Fig. 4(a) we inverted the difference spectrum obtained upon secondary photolysis at 248 nm for 10 min (Fig. 2(c)) so that lines in group X are pointing upward; the negative lines are truncated and regions due to interference by absorption of CH₂CHC(O)Cl and secondary products are marked with grey. In Figs. 4(b)–4(f) we plot IR spectra of CH₂CHCO, CH₂CICHCO, CH₂CCO, s-cis-CH₂CHCO, and

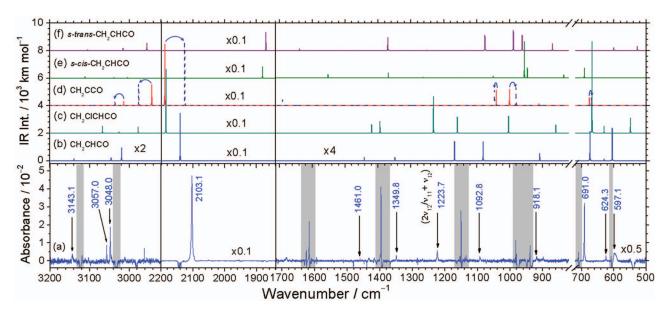


FIG. 4. Comparison of experimental spectrum with those simulated for possible candidates. (a) Inverted spectrum of Fig. 2(c), obtained upon secondary photolysis of the 193-nm-irradiated matrix of CH₂CHC(O)Cl/p-H₂ (1/3000) at 248 nm for 10 min. IR spectra simulated according to anharmonic vibrational wavenumbers and IR intensities of ·CH₂CHCO (b), CH₂CICHCO (c), CH₂CCO (d), *s-cis-*CH₂CHCO (e), and *s-trans-*CH₂CHCO (f) predicted with the B3PW91/aug-cc-pVDZ method. The lines in group X, assigned to the 3-propenonyl (·CH₂CHCO) radical, are marked with wavenumbers in trace (a). Experimental values of CH₂CCO (Ref. 47) are shown as dotted lines in trace (d). Regions due to interference by absorption of CH₂CHC(O)Cl and secondary products are marked with grey.

s-trans-CH₂CHĊO radicals, respectively, simulated according to the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/aug-cc-pVDZ method and a spectral width of 0.25 cm⁻¹. For CH₂CCO, the experimental values are plotted as blue dotted lines in trace (d) for comparison with predicted values; the shifts are marked with arrows. As discussed previously, the most intense line observed at 2103.1 cm⁻¹ is characteristic of the C=C=O antisymmetric stretching mode of species with a C=C=O moiety; the spectral patterns of *s-cis*-CH₂CHĊO and *s-trans*-CH₂CHĊO (Figs. 4(e) and 4(f)) disagree with that observed for group X.

The observed wavenumbers and relative IR intensities of lines in group X agree satisfactorily with those predicted for ·CH₂CHCO radical (Fig. 4(b)), but neither CH₂ClCHCO nor CH_2CCO (Figs. 4(c) and 4(d)), as shown in the figures and listed in Table II. The most intense feature at 2103.1 cm⁻¹ agrees better with the value 2139 cm⁻¹ predicted for the C=C=O antisymmetric stretching (v_4) mode of ·CH₂CHCO than that of the C=O stretching mode at 2184 cm⁻¹ for CH₂ClCHCO and 2187 cm⁻¹ for CH₂=CCO; the experimental value is 2125 cm⁻¹ for the latter.⁴⁷ Other significant features at 3048.0, 691.0, and 597.1 cm⁻¹ agree satisfactorily with values 3019 (v₃, CH stretching mode), 674 $(v_{10}, \text{ CH out-of-plane bending mode}), \text{ and } 605 \text{ cm}^{-1} (v_{12},$ CH₂ wagging mode), respectively, predicted for ·CH₂CHCO. Eight additional weak lines also agree with those predicted for ·CH₂CHCO, as compared in Table II and Fig. 4. The average deviation between observed and predicted anharmonic vibrational wavenumbers is $14 \pm 10 \text{ cm}^{-1}$, with the largest deviation $\sim 30 \text{ cm}^{-1}$ for the v_4 mode.

The weak line at 1223.7 cm^{-1} observed in group X corresponds to no predicted fundamental vibrational wavenumber of ·CH₂CHCO. Tentatively, the line observed at 1223.7 cm^{-1}

is assigned to the combination modes ($\nu_{11} + \nu_{12}$) and/or $2\nu_{12}$; the predicted values are 1236 cm⁻¹ for $\nu_{11} + \nu_{12}$ and 1235 cm⁻¹ for $2\nu_{12}$.

After considering the observed photolytic behavior upon primary and secondary photolysis of a $CH_2CHC(O)Cl/p-H_2$ (1/3000) matrix at 3.2 K and the agreement in vibrational wavenumbers and relative IR intensities between lines in groups X and those predicted quantum-chemically, we assigned these new features in group X to IR absorption of the 3-propenonyl ($\cdot CH_2CHCO$) radical.

B. Photolytic mechanism of CH₂CHC(O)Cl in solid *p*-H₂

The enthalpies of reaction for the fission of the C–Cl bond of CH₂CHC(O)Cl was calculated to be 348 and 342 kJ mol⁻¹ for formation of *s-cis*-CH₂CHCO and *s-trans*-CH₂CHCO conformers, respectively, with the G3//B3LYP method. ¹⁵ The C–Cl bond fission of CH₂CHC(O)Cl is known to occur on the singlet S₁ surface; ^{13,20} the S₁ \leftarrow S₀ transition origin was calculated to be 353 and 457 kJ mol⁻¹ according to the MRCI//CASSCF/cc-pVDZ and the MP2/6-31G* methods, respectively. ^{20,14} Five primary dissociation channels are possible:

$$CH_2CHC(O)Cl \rightarrow C_2H_3CO + Cl,$$
 (1)

$$\rightarrow$$
 CH₂CCO + HCl, (2)

$$\rightarrow C_2H_3 + ClCO,$$
 (3)

$$\rightarrow C_2H_3Cl + CO,$$
 (4)

$$\rightarrow$$
 CH₂ClCHCO. (5)

Reaction (2) is associated with a four-center elimination, whereas reaction (5) is associated with a 1,3-Cl migration.

The molecular-beam experiments indicate that, upon irradiation of $CH_2CHC(O)Cl$ at 193 nm (619 kJ mol⁻¹), two C-Cl fission channels and one HCl-elimination channel occur. In CH₃CN solution, upon irradiation of CH₂CHC(O)Cl at 193 and 266 nm, the reaction proceeds via nonadiabatic paths $S_1 \rightarrow T_1 \rightarrow S_0$ and the 1,3-Cl migration proceeds via a stepwise mechanism involving radical dissociation followed by recombination to form CH2ClCHCO. In an Ar matrix, irradiation of CH₂CHC(O)Cl with light of $\lambda > 310$ nm yields CH2ClCHCO. In this work, irradiation at 193 nm of $CH_2CHC(O)Cl$ isolated in solid p-H₂ yielded $\cdot CH_2CHCO$ as a major product. We performed irradiation with light also of $\lambda > 310$ nm and observed only one weak line of ·CH₂CHCO at 2103 cm⁻¹ and another one at 2141 cm⁻¹ that is tentatively assigned to CH₂ClCHCO. Observation of ·CH₂CHCO in p-H₂ indicates that the matrix cage effect is indeed diminished.

To derive a photolysis mechanism based on results of continuous photolysis experiments in a solid matrix is difficult because the matrix cage effect and secondary photolysis might play important roles to obscure the results from the primary processes. To examine the temporal evolution of all photodissociation products, we plot in Fig. 3 the mixing ratios (in ppm) of products ·CH₂CHCO, C₂H₂, C₂H₄, C₂H₅, C₂H₃Cl, CH₂ClCHCO, CH₂CCO, CO, ClCO, and HCl, along with the decay of precursors s-cis-CH₂CHC(O)Cl and s-trans-CH₂CHC(O)Cl, as a function of duration of photolysis. The mixing ratios derived for CH₂CHCO, C₂H₅, CH2CICHCO, CH2CCO, ClCO, and C2H3Cl according to quantum-chemically predicted IR intensities might have error as large as a factor of two. Although Cl atom can be probed with the line at 943.7 cm⁻¹ associated with its weak spin-orbit transition ${}^{2}P_{1/2} \leftarrow {}^{2}P_{3/2}$ reported by Raston and Anderson, 50 we observed an insignificant absorption feature of Cl at 943.7 cm⁻¹ due to its small concentration; an upper limit of the mixing ratio of Cl atom was estimated to be 230 ppm when a maximum of integrated absorbance of 0.005 cm⁻¹ and the gas-phase transition strength of 9.45×10^{-26} km molecule⁻¹ was used.⁵⁰ This spin-orbit transition of Cl is too weak to be a suitable probe of Cl atoms produced in our experiments.

To estimate the branching ratios among channels (1)–(5), we should consider the mixing ratios of the primary products that undergo negligible secondary reactions and also cannot be produced via secondary reactions. Our best choices are ·CH₂CHCO, CH₂CCO, ClCO, and CH₂ClCHCO for channels (1)–(3) and (5); for channel (4), because C₂H₃Cl dissociates readily at 193 nm and because CO might be produced from other secondary processes, we used CO to derive the upper limit. Because ·CH₂CHCO, CH₂CCO, ClCO, and CH₂ClCHCO might also undergo secondary photolysis, the corresponding values should be taken as lower limits. As calculated IR intensities might have large errors, the branching ratios estimated here might also have errors as large as a factor of 2. After irradiation with light at 193 nm for 15 min, we estimated the mixing ratios of \cdot CH₂CHCO, CH₂CCO, ClCO, CO, and CH₂ClCHCO to be approximately (4.4 ± 0.4) , (0.15) \pm 0.02), (0.02 \pm 0.01), (0.54 \pm 0.08), and (0.17 \pm 0.03) ppm, with a branching ratio (0.83 ± 0.07) : (0.03 ± 0.01) :(0.004) \pm 0.002):<(0.10 \pm 0.02):(0.03 \pm 0.01) for channels (1)–(5); the errors reflect only the standard deviations of the fitting among several lines of each species. The detailed mechanism for formation of secondary products and the estimation of branching ratios are presented in the supplementary material.⁴²

Perhaps the most significant result from the estimation of branching ratios is that channel (1) is dominant upon photodissociation at 193 nm, and other channels likely have branching ratios less than 10%. Although Szpunar et al. estimated the branching ratio of channels (1) to (2) to be \sim 3– 1 when CH₂CHC(O)Cl in a molecular beam was irradiated at 193 nm, 15 they reported that it was only a rough estimate because of possible errors. Szpunar et al. could not identify the conformation of C₂H₃CO; the two distributions of translational energy for the C-Cl fission processes were attributed to dissociation along the electronically excited surface and the ground surface. In this work we observed IR absorption of the ·CH2CHCO radical, whereas absorption of neither s-cis-CH₂CHCO nor s-trans-CH₂CHCO was identified. This condition is consistent with the quantum-chemical calculations that predict the most stable isomer to be ·CH₂CHCO and the barriers for conversion from CH₂CHCO to ·CH₂CHCO to be small, $<11 \text{ kJ mol}^{-1}$.

The observation of no absorption of ·CH₂CHCO but only lines of CH₂CHCO isolated in solid Ar at 1823.1 and 1832.0 cm^{-1} and several weak ones at 1094.4, 975.3, and 870.7 cm⁻¹ by Baskir and Nefedov is not inconsistent with our observation, because these features were observed upon photolysis of allylperoxy, H₂C=CHCH₂OO,²² not from CH₂CHC(O)Cl. Furthermore, their reported vibrational wavenumbers agree unsatisfactorily with theoretical calculations listed in Table II. To decipher these discrepancies, similar experiments capable of observation of more lines are desirable. The observation of only 3-chloro-1,2-propenone, CH2ClCHCO, with a characteristic broad feature near 2139 cm⁻¹ by Pietri et al. upon photolysis of CH₂CHC(O)Cl isolated in an Ar matrix at 10 K with light >310 nm from a high-pressure Hg lamp might be due to secondary reaction of Cl + C₂H₃CO because of the cage effect.¹⁴ Our observation of ·CH₂CHCO rather than CH2ClCHCO demonstrates again the advantage of a diminished cage effect of p-H₂ to produce free radicals via photolysis in situ.

VI. CONCLUSION

Photodissociation at 193 nm of CH₂CHC(O)Cl isolated in solid p-H₂ has been investigated using IR absorption spectroscopy. IR lines of the 3-propenonyl (·CH₂CHCO) radical were identified with a characteristic intense feature at 2103.1 cm⁻¹ (C=C=O antisymmetric stretch) and 11 weaker features including more significant ones at 3048.0 (ν_3 , CH stretch), 691.0 (ν_{10} , CH out-of-plane bend), and 597.1 cm⁻¹ (ν_{12} , CH₂ wag). The experimentally observed fundamental line positions are new and their wavenumbers and relative IR intensities agree satisfactorily with those predicted with the B3PW91/aug-cc-pVDZ method for ·CH₂CHCO. Our observation of the ·CH₂CHCO radical rather than CH₂CHĊO is consistent with theoretical predictions indicating

that ·CH₂CHCO is the most stable isomer and that the isomerization barrier from CH₂CHCO to ·CH₂CHCO is small. The observation of ·CH₂CHCO from photolysis of CH₂CHC(O)Cl rather than CH₂ClCHCO reported for photolysis of CH₂CHC(O)Cl in solid Ar clearly illustrates that solid *p*-H₂ has a diminished cage effect, so that the Cl atom might escape from the original cage and ·CH₂CHCO becomes isolated.

ACKNOWLEDGMENTS

National Science Council of Taiwan (Grant No. NSC102-2745-M009-001-ASP) and the Ministry of Education, Taiwan ("Aim for the Top University Plan" of National Chiao Tung University) supported this work. The National Center for High-performance Computing provided computer time.

- ¹Y. S. Yang, G. R. Qi, J. W. Qian, and S. L. Yang, J. Appl. Polym. Sci. 68, 665 (1998).
- ²L. Ferrie, S. Bouzbouz, and J. Cossy, Org. Lett. **11**, 5446 (2009).
- ³H. M. Wortelboer, M. Usta, J. J. Zanden, P. J. Bladeren, I. M. C. M. Rietjens, and N. H. P. Cnubben, Biochem. Pharmacol. 69, 1879 (2005).
 ⁴T. Billard, Chem. Eur. J 12, 974 (2006).
- ⁵H. Lee, M. J. Nam, and J. H. Choi, J. Chem. Phys. **124**, 044311 (2006).
- ⁶J. E. Katon and W. R. Feairheller, Jr., J. Chem. Phys. **47**, 1248 (1967).
- ⁷R. L. Redington and J. R. Kennedy, Spectrochim. Acta A **30**, 2197 (1974).
- ⁸K. Hagen and K. Hedberg, J. Am. Chem. Soc. **106**, 6150 (1984).
- ⁹J. R. Durig, R. J. Berry, and P. Groner, J. Chem. Phys. **87**, 6303 (1987).
- ¹⁰J. R. Durig, Y. Li, and Y. Jin, Chem. Phys. **213**, 181 (1996).
- ¹¹L. A. Koroleva, V. I. Tyulin, V. K. Matveev, and Y. A. Pentin, Russ. J. Phys. Chem. A 85, 433 (2011).
- ¹²G. R. Allen and D. K. Russell, New J. Chem. **28**, 1107 (2004).
- ¹³M. F. Arendt, P. W. Browing, and L. J. Butler, J. Chem. Phys. **103**, 5877 (1995)
- ¹⁴N. Pietri, M. Monnier, and J.-P. Aycard, J. Org. Chem. 63, 2462 (1998).
- ¹⁵D. E. Szpunar, J. L. Miller, L. J. Butler, and F. Qi, J. Chem. Phys. **120**, 4223 (2004).
- ¹⁶K.-C. Lau, Y. Liu, and L. J. Butler, J. Chem. Phys. **123**, 054322 (2005).
- ¹⁷W. Wu, K. Liu, C. Yang, H. Zhao, H. Wang, Y. Yu, and H. Su, J. Phys. Chem. A **113**, 13892 (2009).
- ¹⁸ Y. C. Fan, W. W. Qiang, L. K. Hui, W. Huan, and S. H. Mei, Sci. China Chem. 55, 359 (2012).
- ¹⁹M. Ge, C. Ma, and W. Xue, J. Phys. Chem. A **113**, 3108 (2009).

- ²⁰G.-L. Cui, Q.-S. Li, F. Zhang, W.-H. Fang, and J.-G. Yu, J. Phys. Chem. A 110, 11839 (2006).
- ²¹ A. L. Cooksy, J. Phys. Chem. A **102**, 5093 (1998).
- ²²E. G. Baskir and O. M. Nefedov, Russ. Chem. Bull. **45**, 99 (1996).
- ²³N. Sogoshi, T. Wakabayashi, T. Momose, and T. Shida, J. Phys. Chem. A 101, 522 (1997).
- ²⁴M. Bahou and Y.-P. Lee, J. Chem. Phys. **133**, 164316 (2010).
- ²⁵Y.-F. Lee, L.-J. Kong, and Y.-P. Lee, J. Chem. Phys. **136**, 124510 (2012).
- ²⁶Y.-F. Lee and Y.-P. Lee, J. Chem. Phys. **134**, 124314 (2011).
- ²⁷J. C. Amicangelo, B. Golec, M. Bahou, and Y.-P. Lee, Phys. Chem. Chem. Phys. **14**, 1014 (2012).
- ²⁸ M. Bahou, J.-Y. Wu, K. Tanaka, and Y.-P. Lee, J. Chem. Phys. **137**, 084310 (2012).
- ²⁹M. Bahou, H. Witek, and Y.-P. Lee, J. Chem. Phys. 138, 074310 (2013).
- ³⁰P. Das, M. Bahou, and Y.-P. Lee, J. Chem. Phys. 138, 054307 (2013).
- ³¹P. L. Raston and D. T. Anderson, Phys. Chem. Chem. Phys. **8**, 3124 (2006).
- ³²M. Ruzi and D. T. Anderson, J. Chem. Phys. **137**, 194313 (2012).
- ³³S. Tam and M. E. Fajardo, Appl. Spectrosc. **55**, 1634 (2001).
- ³⁴I. F. Silvera, Rev. Mod. Phys. **52**, 393 (1980).
- ³⁵P. Jona, M. Gussoni, and G. Zerbi, J. Phys. Chem. **85**, 2210 (1981).
- ³⁶G. B. Lebron and T. L. Tan, Int. J. Spectrosc. **2012**, 1 (2012).
- ³⁷W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, J. Chem. Phys. 26, 1671 (1957).
- ³⁸A. D. Becke, J. Chem. Phys. **98**, 5648 (1993).
- ³⁹J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B **54**, 16533 (1996).
- ⁴⁰T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989).
- ⁴¹M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, GAUSSIAN 09, Revision A02, Gaussian, Inc., Wallingford, CT, 2009.
- ⁴²See supplementary material at http://dx.doi.org/10.1063/1.4818880 for optimized geometries of s-cis/s-trans CH₂CHC(O)Cl, CH₂CICHCO, and CH₂CCO, harmonic and anharmonic vibrational wavenumbers and IR intensities of s-cis-/s-trans-CH₂CHCOCl calculated with the B3PW91/augcc-pVDZ method, difference spectra of the CH₂CHC(O)Cl/p-H₂ matrix upon 295 nm irradiation to distinguish the two isomers, difference spectra of CH₂CHC(O)Cl/p-H₂ matrix at 3.2 K upon photolysis at 193 nm for 2–70 min, and detailed discussion for determination of branching ratios.
- ⁴³R. D. Brown, P. D. Godfrey, R. Champion, and D. McNaughton, J. Am. Chem. Soc. **103**, 5711 (1981).
- ⁴⁴R. D. Brown, R. Champion, P. S. Elmes, and P. D. Godfrey, J. Am. Chem. Soc. **107**, 4109 (1985).
- ⁴⁵S. Tam and M. E. Fajardo, J. Low Temp. Phys. **122**, 345 (2001).
- ⁴⁶B. Golec and Y.-P. Lee, J. Chem. Phys. **135**, 174302 (2011).
- ⁴⁷O. L. Chapman, M. D. Miller, and S. M. Pitzenberger, J. Am. Chem. Soc. 109, 6867 (1987)
- ⁴⁸P. R. Winter, B. Rowland, W. P. Hess, J. G. Radziszewski, M. R. Nimlos, and G. B. Ellison, J. Phys. Chem. A **102**, 3238 (1998).
- ⁴⁹C. B. Moore and G. C. Pimentel, J. Chem. Phys. **38**, 2816 (1963).
- ⁵⁰P. L. Raston and D. T. Anderson, J. Chem. Phys. **126**, 021106 (2007).