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The development of a hybrid fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulation
method that combines the molecular dynamics of moving particles with the fluctuating hydrodynamics of solvent
fields on Eulerian grid cells is presented. This method allows resolution of solute-solvent interfaces and realization
of excluded volumes of particles in the presence of hydrodynamic coupling. With these capabilities, we show that
the ubiquitous forces mediated by the solvent, hydrophobicity and hydrodynamics, can be linked in a mesoscopic
simulation. The strategies we devise to overcome the numerical issues of mixing variables in the Eulerian and
Lagrangian coordinate systems, i.e., using a pair of auxiliary fluids to realize the excluded volumes of particles and
assigning collocating gridding systems on solutes to interface with solvent fields, are also presented. Simulation
results show that the hybrid FHD and MD method can reproduce the solvation free energies and scaling laws
of particles dynamics for hydrophobes of different sizes. The collapse of two hydrophobic particles was also
simulated to illustrate that the hybrid FHD and MD method has the potential to be generally applied to study
nanoscale self-assembly and dynamics-structure-function relationships of biomolecules.
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I. INTRODUCTION

Solvent-mediated interactions have profound influence on
nanoscale self-assembly and the dynamics-structure-function
relationships of biomolecules [1]. The atomic construct and
electronic structure of the water molecule render its room-
temperature liquid state to have a unique hydrogen bonding
network, strong cohesive energy, and high surface tension
[2]. Solvent-solute interactions, local perturbation in the
hydrogen bonding network, and formation of liquid-vapor-
or liquid-liquid-like interfaces together can cause multiscale
and multifaceted responses in the aqueous solvation of foreign
molecules [3,4]. The free-energy landscapes of biomolecule
conformation and nanoparticle arrangement are thus a strong
function of water-mediated forces [5,6].

Another important class of solvent effects is hydrodynamics
governed by the constraints of conservation laws. Liquid water
has high viscosity and low isothermal compressibility at room
temperature to give rise to the specific properties of dynamic
relaxation and energy dissipation in the condensed phase
[7–9]. Furthermore, at the nanoscale such as close to phase
boundaries, thermal fluctuations have significant magnitudes
and cannot be neglected [10]. Design and engineering of
nanostructures and functions thus face the complexities of
solvation effects coupled with hydrodynamic forces under
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the influence of stochastic noises. In this regard, computer
simulation can potentially be used to integrate physical models
across different spatial and temporal scales to elucidate how
the behaviors of a molecular system emerge through the
convolution of various forces.

Molecular dynamics (MD) simulations provide a way to
incorporate atomistic details of the solvent, but suffer from
requiring a small time step of integration and spending the
majority of computational resource on evaluating the less
interesting solvent-solvent interactions. Although specially
designed hardware and software may overcome these issues
to some extent [11], the accessible time and length scales of
all-atom MD are still severely limited. If mesoscopic models
could be developed to capture the essential physics mediated
by the solvent, with hydrophobicity and hydrodynamics as
the two critical components, computer simulation can be
conducted at more realistic length scales and reach longer
time scales. In this work, we aim to fulfill this objective using
the fluctuating hydrodynamics (FHD) of Landau and Lifshitz
to capture the hydrodynamics of solvent fluctuations at the
nanoscale.

Recently, it was shown that the FHD equations can be
employed to transform the results of all-atom MD simula-
tions onto mesoscopic fluid dynamics with quantitative self-
consistency [12–16]. Density distributions, flow profiles, and
their fluctuations in an atomic-scale simulation can be mapped
onto the field variables in FHD equations. This mapping
allows extraction of the required equations of state, response
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functions, and transport coefficients from the recorded posi-
tions and velocities of atoms for reproducing the observed
profiles and statistics in simulations using the FHD model.
With this compatibility in describing hydrodynamics, FHD is
adopted in this work to couple with the particulate degrees of
freedom in a hybrid model to capture hydrophobicity.

Schemes for coupling a mesoscopic solvent with the MD
of particles have been intensively developed with the goal
of effective simulation of nanoscale systems. A number of
mesoscopic solvent models including FHD were thus proposed
[17–28]. However, developments in this regard focused on
either capturing hydrophobicity or describing hydrodynamics.
This work presents the development of a hybrid FHD and MD
simulation methodology that resolves the boundaries between
fluctuating solvent fields and solute particles. The hybrid FHD
and MD model thus allows an explicit representation of solva-
tion effects by realizing cavity formation while retaining the
effects of interfacial fluctuations and hydrodynamic couplings.

The rest of this paper is organized as follows. We first
present the components of the ansatz we devised for hybridiz-
ing the mechanics of FHD and MD. The local free-energy
densities of the solvent fluid and solute-solvent interactions,
representation of particles in the solvent fluid, and the auxiliary
fluids and their dynamics for realizing the excluded volumes
of particles are discussed in detail. The success of using the
hybrid FHD and MD methodology in capturing important
phenomena induced by hydrophobicity and hydrodynamics is
then presented. We also compare the results of hybrid FHD
and MD simulations with those obtained by all-atom MD
simulations. Specifically, the size dependence of solvation
free energies of hydrophobes, the potentials of mean forces
of associating two hydrophobic particles, the scaling laws
of velocity autocorrelation functions of particle dynamics,
and the feature of Stokes-Einstein diffusion are computed
to illustrate the feasibility of linking hydrophobicity and
hydrodynamics in a hybrid model of field and particulate
variables. Finally, a summary is presented.

II. HYBRIDIZATION OF CONTINUUM AND MOLECULAR
MECHANICS UNDER THERMAL FLUCTUATIONS

The goal of stitching together continuum and molecular
mechanics in the hybrid FHD and MD methodology is to
capture the equilibrium as well as nonequilibrium behaviors of
nanoscale systems. In particular, the following objectives are
desired. First, the hybrid model should be able to represent the
solvation free energy for accommodating finite-size molecules
in the solution. Second, the motions of particles must have
proper hydrodynamic responses. Third, the fluctuations of both
the field and particulate degrees of freedom need to satisfy the
requirements of thermal equilibrium.

To accomplish the aforementioned requirements, we de-
veloped an ansatz of hybrid mechanics to combine FHD and
MD for representing the excluded volumes of moving objects
and the solvent-particle interactions. The length scale of grid
cells for discretizing the space of a simulation model in our
scheme (see Fig. 1) is chosen to be 5 Å. At this level of spatial
resolution, continuum mechanics is still applicable for describ-
ing liquid-state water at room temperature [12–16]. Coupling
the Eulerian gridding of FHD variables with nanoparticles

FIG. 1. (Color online) A solute particle and the two Lagrangian
girding systems imposed in the hybrid FHD and MD methodology.
Each grid cell has a specific volume that is occupied by the particle
for which the symbol is Vocc. Depending on the relative position of
the particle, the values of Vocc for grid cells vary from zero to Vc, the
cell volume. For grid cells inside the particle, its Vocc is equal to Vc

since the entire grid cell is occupied by the particle.

whose sizes are at a similar length scale, however, can cause
unphysical phenomena such as spurious currents of fluids [29],
negative densities [15], and the tendency of particles to stick in
specific locations [30]. The design of our hybridization scheme
for which the components are presented in the following is to
avoid these problems while achieving the objectives stated in
the preceding paragraph.

A. Local free-energy densities of the fluid
and the solvent-particle interactions

Surrounding particles such as the one shown in Fig. 1 is
the solvent fluid with a local free-energy density of F0[ρ(x)];
ρ(x) is the fluid density at the Eulerian grid cell of position
x. To build in the capability of describing the phenomenon of
solvation, we model F0 with an intrinsic free-energy density
of a homogeneous fluid that allows vapor-liquid coexistence.
Without loss of generality, a simple symmetrical double-well
potential with minima at the vapor density ρv and liquid density
ρl is employed:

ψ[ρ(x)] = C

2
[ρ(x) − ρl]

2[ρ(x) − ρv]2. (1)

Furthermore, we also incorporate the square gradient of
density fields and a surface tension coefficient m in F0.
Therefore,

F0[ρ(x)] =
∫ [

ψ[ρ(x)] + m

2
|∇ρ(x)|2

]
d3x. (2)

To represent the excluded volumes of particles and resolve
solute-solvent interfaces in the solvent environment, Fps, the
local free-energy density due to solvent-particle interactions,
is imposed. Motivated by the Gaussian fluctuations of density
fields observed over a wide range of thermodynamic states
[31], we employ a quadratic form for representing Fps:

Fps[ρ(x)] =
∫

k

2

(
Vocc(x)

Vc

)2

ρ(x)2d3x. (3)

Here k is the strength of energy penalty for excluding particle
volumes in a hybrid FHD and MD simulation. For the fluid grid
cell at x, Vocc(x) is the part of the cell volume that is occupied
by the particle (see Fig. 1). In this work, all Eulerian grid cells
for the solvent fluid have the same volume of Vc = 125 Å3.
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The form of Fps in Eq. (3) disfavors the presence of liquid
inside the particle to prevent the fluid from flowing in. There-
fore, Fps predominantly comes from the cells overlapping the
particle surface in simulations as ρ inside the particle has
very small values around ρv and Vocc(x) is zero outside the
particle. The total free-energy density at a specific location in
the simulation model is thus

F [ρ(x)] = F0[ρ(x)] + Fps[ρ(x)]. (4)

The combined effects of F0 and Fps would then create a vapor-
liquid interface around a particle in the solvent. The values of
C, m, and k can be determined by reproducing the solvation
free energy of particles and other observables of liquid water.

B. Representation of particles in the solvent fluid

To imprint solutes onto the Eulerian grid cells of fluid
fields, each particle is assigned a collocating gridding system
composed of cubic cells as shown in Fig. 1. The Lagrangian
grid cells associated with a particle record the different parts
of the total excluded volume. If an on-particle cell is within
the solute, Vocc is equal to the cell size. For cells covering
the particle surface, the corresponding Vocc have smaller
values. The size of the Lagrangian grid cells of particles
thus dictates the intensity of numerical nodes for resolving
the space occupied by the solute. A smaller cell size gives a
better resolution but adds a larger number of parameters for
describing each particle. A larger size, in contrast, gives a
blurrier view of particles with a less expensive representation.
In this work, the size of Lagrangian cubic cells moving with
the particle is chosen to have the same size as the Eulerian
cells of field variables for consistency in the spatial resolution
of particulate and field variables.

In addition to facilitating the calculation of the volume
occupied by particles in Eulerian cells, introducing Lagrangian
grid cells associated with a solute also provides a convenient
way to determine the profiles of solvent variables such as the
density ρ and velocity v around the particle via interpolation.
Since the overlapping between two cubic cells can be trivially
calculated given their centers, quantities associated with a
Lagrangian cell can be distributed to the overlapping Eulerian
cells and vice versa based on their common volumes in space.
For example, the values of Vocc of the Lagrangian cells for
a solute can inform local Eulerian cells of the presence of
the particle. The resulting changes in free-energy density on
Eulerian cells can then be fed back to the particle grids to
calculate the concomitant forces coming from the fluid.

In this way, the N Lagrangian cells of a particle locating
at X compose a set of nonoverlapping interpolation functions
with the shape of a cubic δ function and Xj ’s as their centers,
δc(x − Xj ), j = 1, . . . ,N . These functions collocating with
the particle are normalized such that

∑M
i=1

∑N
j=1 δc(xi −

Xj ) = 1. Here the xi are the centers of M Eulerian grid cells
that are used to discretize the space within the simulation box.
Therefore, for any quantity B such as Vocc whose values on
the Lagrangian cells of a particle locating at X are known, the
corresponding value on an overlapping Eulerian cell locating

at xi is then

B(xi) =
N∑

j=1

δc(xi − Xj )B(Xj ). (5)

Similarly, B(xi) on Eulerian cells can be combined with the
Lagrangian grids of this particle as

B(Xj ) =
M∑
i=1

δc(xi − Xj )B(xi). (6)

The occupied volume Vocc(Xj ) for each Lagrangian cell is
precalculated as the part of the cell overlapping with the
solute (Fig. 1). Overall, the following equation of volume
conservation of the particle is satisfied:

M∑
i=1

N∑
j=1

δc(xi − Xj )Vocc(Xj ) = 4π

3
R3. (7)

To calculate solute-solvent interaction energies and forces
via Eq. (3) the following scheme is used to calculate the
densities and density gradients ρ(Xj ) and ∇ρ(Xj ) on the
Lagrangian grids of each particle. First, the solvent density
filled in a Lagrangian cell is treated like a pseudoparticle and
interacts with the solute radially. Second, estimation of density
gradients on Lagrangian grids is based on the values a distance
l away inward and outward radially. That is,

ρ(Xj ) � ρ(Xj + lr̂) + ρ(Xj − lr̂)

2
,

∂ρ

∂r
(Xj ) � ρ(Xj + lr̂) − ρ(Xj − lr̂)

2l
.

(8)

This approach is to alleviate the spatially dependent bias in
estimating ρ(Xj ) and ∂ρ(Xj )/∂r when projecting Lagrangian
grids onto Eulerian cells with a finite resolution. Such uneven
estimation is most prominent on grids covering the particle
surface. Using the values with a distance l away significantly
reduces this issue along the directions of density gradients.
For particles with a diameter less than 10 Å, l is the particle
diameter. For particles with a diameter larger than 10 Å, l is
fixed at 10 Å. Furthermore, if another particle is within 10 Å of
the focused particle, l is reduced to shift away from the inside
of the neighboring particle.

The resulting values of ρ(Xj ) and ∂ρ(Xj )/∂r are then used
to approximate the solvent-particle interactions

fp(Xj ) ≈ −k

(
Vocc(Xj )

Vc

)2

ρ(Xj )
∂ρ

∂r
ρ(Xj )r̂

− γ0

ρl
ρ(Xj )[V − v(Xj )] + s(Xj ), (9)

ff(xi) = −
N∑

j=1

δc(xi − Xj )fp(Xj ). (10)

Here r̂ is the radial unit vector along the distance r between
Xj and the center of the particle; fp(Xj ) is the force density at
the particle cell of Xj and ff (xi) is that at the fluid cell of xi ;
V is the velocity of the particle and v(Xj ) is the fluid velocity
field estimated at Xj .

In Eq. (9), the friction coefficient γ is treated to have a
linear dependence on the fluid mass density, i.e., γ = γ0ρ/ρl
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for a continuous variation of the friction force with solvent
density. The stochastic force s is modeled as Gaussian random
noise with a covariance of

〈s(X,t)s(X′,t ′)〉 = 2γ kBT δ(X − X′)δ(t − t ′). (11)

This fluctuation-dissipation coupling is employed here as a
thermostat to balance the frictional and stochastic interaction
forces between particles and fields for achieving thermal
equilibrium in the dynamics simulation; kB is the Boltzmann
constant and T is the temperature. A similar approach has been
used for coupling particles and the lattice Boltzmann solvent
model [17,19]. The total force acting on the particle is then
calculated by a numerical integration using the δc(xi − Xj )
values on particle surfaces:

Fps(X) = Vc

∑
Xj ∈A

fp(Xj ), (12)

where A is the surface of the particle.
An inevitable issue that occurs in linking Lagrangian and

Eulerian cells is that the projected structure of the particle
onto space depends on its location in the occupying Eulerian
cell [30] and the proposed scheme of using a Lagrangian
griding system is not exempt. Even with the estimation of
Eq. (9), this problem still causes an imbalance in the estimated
field variables and their derivatives around the particle surface
and generates spatially dependent forces to pin the particle at
specific loci. Different strategies of using more complicated
and longer-range smoothing functions have been suggested
[32,33]. The arithmetic simplicity of our proposed scheme
that uses a collocating gridding system on particles allows a
simple way to significantly alleviate this problem. Introducing
a combination of Lagrangian griding systems with different
phase shifts such as G1 and G2 shown in Fig. 1 is found
to reduce the bias due to finite-size discretization to an
unnoticeable level. This approach only requires using the
local interpolation functions defined in Eqs. (5) and (6) to
resolve the particle interface with all of the gridding systems
on the particle. Analysis of dynamic trajectories indicates
that combining G1 and G2 is sufficient for eliminating the
spatial dependence of particle motions and is used in all of the
simulations performed in this work.

C. Auxiliary fluids and their dynamics for
realizing excluded volumes

Although employing Eqs. (1)–(4) can indeed form a liquid-
vapor boundary around a solute particle, two detrimental
problems would occur in solving FHD equations in the
presence of a particle-fluid interface at the nanoscale for the
simulation results to be unphysical. The first issue is that
under a finite-resolution discretization, numerical imbalance
in evaluating the reversible stress tensor and large density
gradients around a particle lead to the so-called spurious or
parasitic currents, i.e., nonvanishing fluid flows in and out
of the particle surface [29]. Even though a molecular scale
grid cell size of 5 Å is employed, the resolution is not
sufficient to precisely evaluate the density variation across
the solvent-particle interface that has a thickness of only a
few angstroms. Using ultrafine grid cells around the particle
surface not only challenges the applicability of continuum

mechanics but also significantly increases the computational
cost and makes the hybrid model unappealing compared to
conducting all-atom simulations.

The second issue is that there is no explicit constraint in
the governing equations to disallow negative values of solvent
densities inside the particle. In the presence of fluctuating
field variables, negative densities inside the space of particles
are unavoidable [15]. Both of the problems stated above are
unphysical and their occurrence causes numerical instabilities
and erroneous results. To make possible the representation of
both hydrodynamics and hydrophobicity in the hybrid model,
these two issues need to be overcome in a practically feasible
manner.

The scheme we devised to avoid these problems is
motivated by the phenomenological analogy of the phase
boundaries in vapor-liquid coexistence and two immiscible
liquids [15]. Using a fluid insoluble in water to fill in the
space inside particles is thus an alternative way of representing
their excluded volumes. The advantage of this approach
is that the negative-density issue can be bypassed by not
directly dealing the small numerical values of the vapor phase
density. Furthermore, we consider the establishment of phase
boundaries a fast molecular process since the surface thickness
is smaller than the Eulerian grid cells employed in solving the
FHD equations and the unstable region of the free-energy
density of water in Eq. (1) is regularly visited. Resolving this
fast dynamics is thus considered to be beyond the applicability
of FHD as evidenced by the generation of unphysical spurious
currents. The auxiliary dynamics of our hybridization scheme
separates the dynamics of setting up phase boundaries from
fluid advection and particle motions. It is also important to
point out that the design of our hybrid methodology has the
specific aim of modeling solvation phenomena in addition to
capturing hydrodynamic responses and is hence distinct from
the other approaches [17–28] of particle-fluid simulation.

In our scheme of hybridization, the mass density of the
solvent is represented by the sum of the densities of two
auxiliary fluids:

ρ(x) = ρA(x) + ρB(x). (13)

The local free-energy densities due to the mass densities of
both components also contain the two terms of Eqs. (2) and
(3) as that of the solvent:

F A[ρA(x)] = F A
0 [ρA(x)] + F A

ps[ρ
A(x)], (14)

F B[ρB(x)] = F B
0 [ρB(x)] + F B

ps[ρ
B(x)]. (15)

In Eqs. (14) and (15), the terms corresponding to homogeneous
fluids for both components are identical to that of the solvent in
Eq. (2), i.e., F A

0 [ρ] = F B
0 [ρ] = F0[ρ]. The free-energy density

due to solvent-particle interactions for component A is also
identical to that of the solvent in Eq. (3) and F A

ps[ρ] = Fps[ρ].
Component A is thus essentially the same as the solvent.
Component B, however, differs from the solvent only in the
free-energy density of interacting with particles:

F B
ps[ρ

B(x)] =
∫

k

2

(
Vocc(x)

Vc

)2

[ρB(x) − ρl]
2d3x. (16)
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This form of F B
ps aims to sink the liquid state of fluid B inside

particles. The dynamic evolution of ρA and ρB is proposed
to follow the advection-diffusion equations with stochastic
fluctuations:

∂ρA

∂t
= −∇ · (

JA + JA
R

) − ∇ · (ρAv), (17)

∂ρB

∂t
= −∇ · (

JB + JB
R

) − ∇ · (ρBv). (18)

Here g is the total momentum density of the fluid mix-
ture and v = g/ρ is its velocity field; JA and JB are the
diffusive mass fluxes and JA

R and JB
R are the correspond-

ing random mass fluxes due to thermal fluctuations. The
diffusive mass fluxes are given by JA = −λ∇(∂F A/∂ρA)
and JB = −λ∇(∂F B/∂ρB). The diffusion coefficients of both
fluid components have the same value of λ. The fluctu-
ating fluxes of mass diffusion are modeled as Gaussian
white noise with zero mean and covariance determined by
the fluctuation-dissipation theorem: 〈J A

R
i
(x,t)J A

R
j
(x′,t ′)〉 =

〈J B
R

i
(x,t)J B

R
j
(x′,t ′)〉 = 2λkBT δij δ(x − x′)δ(t − t ′).

Via Eqs. (17) and (18), the fast dynamics of forming
fluid-phase boundaries can be controlled by the diffusion and
fluctuation fluxes with λ. Provided λ is sufficiently high, liquid
B would tightly follow the moving particles while liquid A

stays primarily in the bulk, hence realizing the excluded
volumes of particles without encountering negative values of
ρ. Simulation results indicate that this phenomenology can
be achieved by adequately small λ values that are free from
causing numerical instabilities in dynamic simulations.

With the dynamics of phase separation decoupled and the
vapor phase effectively represented by the space filling of
ρB, the forces caused by free-energy densities would make
the solvent density of ρ = ρA + ρB fluctuating around the
liquid-state value of ρl. Therefore, the reversible stress tensor
in the FHD equations can be modeled as R = c2

T∇ρ, where
cT is the sound velocity at temperature T derived from F0 in
Eq. (2). This separation of fast dynamics remedies the issue of
forming unphysical spurious currents in and out of particles. It
is also important to point out that the two fluid components do
not interact with each other directly; they are coupled through
the interior space of particles.

D. Governing equations of the hybrid
FHD and MD methodology

The field variables of the solvent fluid follow the FHD
equations that describe the temporal evolution of mass density
ρ and momentum density g [12–16]:

∂ρ

∂t
= −∇ · g, (19)

∂g
∂t

= −∇ · (gv) − ∇ · (R + D + S) + ff . (20)

As stated earlier, the fluid velocity is related to the momentum
density as g = ρv. Here R, D, and S are the reversible, viscous,
and fluctuating stress tensors, respectively, and ff is the force
density that the particle exerts on the fluid.

For the dissipative stress tensor D, we focus on the
Newtonian constitutive relation in this work:

D = ηS(∇v + ∇vT) + (
ηB − 2

3ηS
)∇ · v. (21)

The symbols ηS and ηB are the shear and bulk viscosity,
respectively. The conjugate fluctuating stress tensor S has
a Gaussian distribution with respect to ρ whose covariance
relates to the dissipation parameters as

〈Sij (x,t)Skl(x′,t ′)〉 = 2kBT [ηS(δilδjk + δikδjl)

+ (
ηB − 2

3ηS
)
δij δkl]δ(x − x′)δ(t − t ′).

(22)

The superscripts of the matrix components of S such as Sij

enumerate through all three axes of the Cartesian coordinate,
i.e., i,j,k,l = x, y, or z.

For particulate degrees of freedom in the hybrid model, the
dynamics follow Newton’s second law

MV̇ = Fpc + Fps, ṙ = V. (23)

For the focused particle with mass M , its velocity and position
are V and r, respectively. The force exerted on the particle by
the surrounding solvent fields Fps is determined from the local
force density as

Fps =
∫

fp(X)d3X. (24)

Equation (12) is employed to approximate this integral. To
comply with the constraint of momentum conservation, our
hybrid FHD and MD scheme uses Eq. (10) to adopt

ff(X) = −fp(X). (25)

The conservative force on the particle from interactions with
other particulate degrees of freedom is Fpc. Equation (9) is
used to represent fp with three parts

fp(X) = −∇Fps(X) − γ [V − v(X)] + s(X). (26)

In summary, the equations of motions of our hybrid FHD
and MD methodology are Eqs. (20) and (23) coupled with
Eqs. (17) and (18). The free-energy densities of Eqs. (1)–(4)
are employed with the variation of Eq. (16) for the auxiliary
fluid component B. The stress tensors D and S are given by
Eqs. (21) and (22), respectively. The reversible stress tensor
is c2

T∇ρ. The force density of particle-solvent interactions is
based on Eqs. (26) and (11) together with Eq. (25).

III. SIMULATION DETAILS

The aforementioned equations are solved by finite differ-
ences using cubic Eulerian cells for spatial discretization. In
particular, a staggered scheme is employed [12]. This finite
difference posits mass densities at cell centers, momentum
densities at cell surfaces, and the diagonal and off-diagonal
elements of stress tensors at cell centers and corners, respec-
tively. The staggered discretization scheme was shown to allow
stable propagation of FHD equations with the sides of each grid
cell being as small as 5 Å [12–16].

In this work, water is considered as the default solvent,
although the modeling strategy presented above can be applied
with different equations of state. The mass density of liquid
water is ρl = 0.6027 amu/Å3 and the mass density of vapor
is set to zero as a practical equivalence. The value of ρv

comes in the hybrid simulation through Eqs. (14) and (15)
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to affect the mass fluxes of the two fluids. The values of sound
velocity, shear, and bulk viscosity for the liquid water are set
to cT = 14 Å/ps, ηS = 19.5 amu/Å ps, and ηB = 53 amu/Å
ps, respectively. The mass of the solvated particle is M =
ρl4π/3R3.

The simulations were performed in a cubic box with the
side length a = 210 Å and at a temperature of 300 K. The
simulation box is discretized into M = 42 Eulerian cells
for each side (d = a/M) and Vc = d3. Both the FHD and
MD equations are integrated by a second-order Runge-Kutta
scheme [34] with the periodic boundary conditions. A time
step of 5 fs was found sufficient to provide accurate and stable
numerical integration.

In the starting heating period of each simulation, the
position of the solute is set randomly at t = 0 and the
beginning values of the particle and the momentum densities
in Eulerian cells are both set to zero. The initial mass densities
of the auxiliary fluids are ρA(xi) = ρl[1 − Vocc(xi)/Vc] and
ρB(xi) = ρlVocc(xi)/Vc. The volume Vocc(xi) of the ith Eule-
rian grid occupied by the solute is computed by Eq. (5). After
a heating period of 200 ps, the statistical averages are collected
every 0.5 ps.

IV. RESULTS AND DISCUSSION

Although the proposed ansatz of hybridizing FHD and
MD avoids the unphysical issues of spurious currents and
negative densities from occurring in the simulations, the
applicability to model nanoscale systems needs to be evaluated
by examining if the objectives of capturing the essential
equilibrium and nonequilibrium phenomena—solvation free-
energy and hydrophobicity, hydrodynamic responses, and ther-
mal equilibrium—could be fulfilled by the hybrid dynamics.
In this section, we present the results of applying the hybrid
FHD and MD method we developed to an array of case studies
to illustrate its general capabilities of achieving these aims.

A. Solvation free energy

The solvation free energy calculated with the FHD and
MD method is compared with the all-atom MD result using
the extended simple point charge (SPC/E) water model [35].
The solvation free energy of a volume exclusion sphere
is proportional to the volume for small sizes and to the
surface area for larger ones [31,36,37]. The length scale of
transition is 10 Å. As a 5-Å grid is used for both Eulerian
and Lagrangian grid cells, the hybrid model can capture this
unique behavior of hydrophobicity qualitatively. However, the
hybrid model is coarse grained in nature and has limited
capability of capturing all of the small-scale behaviors due to
a lack of molecular details. Indeed, optimizing the interaction
strength k in Eq. (3) to reproduce the all-atom solvation free
energies of all solute sizes indicates that the empirical function
k(R) = 2C[exp(−0.4R) + 0.1] fits the data quantitatively.
Therefore, as regards the solvation free energy, the effects of
missing molecular details can be lumped into this interaction
parameter.

The results presented in this section are an average over 100
independent simulations. Each simulation was continued for
1 ns in which the solute was kept fixed at a random position.
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FIG. 2. (Color online) Solvent mass density as a function of the
distance from the center of a solute particle for three different sizes
R = 6, 10, and 20 Å. The inset shows the solvation free energy
per kBT and surface area as a function of the solute size. Squares
correspond to the results of hybrid FHD and MD simulations and
circles are those from explicit water simulations using the SPC/E
model [35]. The dashed line in the inset represents the surface tension
energy in the limit of very large solutes.

The profile of fluid mass density around the particle for solutes
of three sizes R = 6, 10, and 20 Å is shown in Fig. 2. It can
be seen that the method of hybridizing particles and fields
can resolve the density profile at the solute-solvent interfaces
for different particle sizes as the Lum-Chandler-Weeks theory
prescribes.

B. Particle dynamics in hybrid FHD and MD simulations

The statistics of translational motions of a solvated par-
ticle is examined to illustrate that the thermodynamics and
stochastic dynamics due to a fluctuating solvent environment
can be captured by the hybrid FHD and MD methodology.
The velocity distributions of the solvent and a particle of
R = 20 Å are shown in Figs. 3(a) and 3(b), respectively.
Fitting these profiles to a Maxwell-Boltzmann form gives
a very close reproduction of the set temperature of 300 K,
T = 300.2 K (±0.5 K) for the solvent and T = 296 K (±3 K)
for the particle. Similar accuracy in the statistics of velocity
fields was also observed for particles with different sizes in
the corresponding FHD and MD simulation. Furthermore, the
spatial distribution function of the particle in a Eulerian grid
cell is free of bias and local features as shown in Fig. 3(c),
indicating that the artifact of finite-size discretization has been
eliminated via the scheme described earlier.

For particle diffusion as a result of the white noise in
the environment, the Einstein relation defines the diffusion
coefficient D as

D = kBT

γeff
, (27)

where γeff is the effective dissipation of the solvent. In general,
γeff is lower than the bare friction γ in Eq. (26) due to the
hydrodynamic coupling with the flow profile surrounding the
particle that tends to increase the particle mobility. It has
been shown that a general expression 1/γeff = 1/γ + 1/αηR,
where α is a constant that depends only the lattice geometry
and the discretization procedure, can be used to relate γeff
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FIG. 3. (Color online) Statistics of particle dynamics in hybrid
FHD and MD simulations. The velocity distribution profiles for
(a) the solvent and (b) the solute at T = 300 K. The solid lines are
the best-fit Maxwell-Boltzmann distribution. (c) Spatial distribution
of the center of the solute in one of the Eulerian cells of size d . All
three distributions are for one of the three Cartesian directions.

and γ [17]. Once α is determined for a particular simulation
model, one can adjust γ to reproduce the Stokes law, i.e.,
γeff = 6πηSR [17]. This relation between γeff and γ was also
observed in the results of hybrid FHD and MD simulations and
was used to determine γeff to reproduce stochastic dynamics
of solutes in water.

The diffusion coefficient can be calculated from the velocity
autocorrelation function (VACF) or the mean square displace-
ment (MSD) as a function of time. Both approaches can be
applied with the results of hybrid FHD and MD simulations.
The VACF defined as C(t) = 〈V(t) · V(0)〉 drops exponentially
at short times, i.e., C(t) ∼ exp(−γeff t/M), and follows a
slower power-law relaxation at long times, i.e., C(t) ∼ t−3/2

due to hydrodynamic coupling with the surrounding flow
profile [7]. The diffusion coefficient can be calculated from
the VACF by the Green-Kubo relation

D = 1

3

∫ ∞

0
C(t)dt. (28)

Alternatively, D can be determined from the slope of MSD
with respect to time, 〈r2(t)〉 = 〈[r(t) − r(0)]2〉, in the diffusive
regime, i.e.,

D = lim
t→∞

〈r2(t)〉
6t

. (29)

In Figs. 4(a) and 4(b) the time dependences of the VACF and
MSD, respectively, of a particle of size R = 20 Å in a hybrid
FHD and MD simulation are presented. It is clear that both
functions follow the aforementioned behaviors dictated by the
theory, confirming the ability of the hybrid FHD and MD
methodology in capturing the hydrodynamic fluctuations in
following particle motions at the nanoscale. Similar behaviors
were also observed in the simulations of different particle sizes
(the results are not shown herein). In Fig. 4(c), the diffusion
coefficients computed from Eqs. (28) and (29) for different
particle sizes are shown to illustrate the very good reproduction
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FIG. 4. (Color online) Stokes-Einstein diffusion of a particle
simulated via the hybrid FHD and MD methodology. (a) Time
dependence of the mean square displacement for a solute of size
R = 20 Å and at temperature T = 300 K. (b) The log-log plot of
the normalized velocity autocorrelation function as a function of time
for the same solute. The solid line represents the results obtained
by the hybrid FHD and MD method. The dotted and dashed lines
represent, respectively, the exponential decay at short times and the
algebraic relaxation law at long times. (c) The log-log plot of the diffu-
sivity as a function of the solute size. Squares and circles correspond to
results obtained from the MSD and VACF, respectively, in comparison
with the Stokes-Einstein relation of D = kBT/6πηSR (dashed line).

of the Stokes-Einstein relationship of D = kBT/6πηSR via the
hybrid FHD and MD simulation method.

C. Collapse of two hydrophobic particles

Hydrophobicity is an important driving force for nanopar-
ticle assembly and dimer aggregation is a classical example
to characterize this effect [6,28,38,39]. The ability of incor-
porating the essential physics: vapor-liquid equilibrium of the
solvent, surface tension of the particle-fluid interface, and the
Gaussian statistics of density fluctuations in the hybrid FHD
and MD method provides an ideal framework to simulate such
systems. To illustrate this capability, the collapse of two solutes

FIG. 5. (Color online) Interpartricle distance of two WCA
spheres of R = 20 Å as a function of time. The colored density plots
represent the mass density of the solvent at three different times.
Blue indicates low-mass density and red indicates the value of the
liquid-state density.
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FIG. 6. (Color online) Potential mean force as a function of the
distance between two WCA spheres. Solid line corresponds to spheres
of R = 20 Å and dashed line to spheres of R = 25 Å.

interacting via a soft Weeks-Chandler-Andersen (WCA)
potential [40]

U (r) =
{

4ε[(σ/r)12 − (σ/r)6] + ε, r < 21/6σ

0, r > 21/6σ
(30)

is simulated with the hybrid FHD and MD method. In Eq. (30),
σ = 2R and ε = 1.5kBT . To allow the system to relax at any
interparticle distance, we extend the simulation box virtually
by 10 Å in each direction. At each time step the additional cells
are given random mass and momentum densities that satisfy
the equilibrium distributions. This way the system is allowed
to adjust the excess mass density during the dewetting process.

Figure 5 shows a typical collapsing trajectory via the
interparticle distance of two R = 20 Å solutes as a function
of time. The initial distance between the two particles was
60 Å. In this trajectory, particle aggregation began at 400 ps.
After collapse, the two solutes remain bound in the rest of
the simulation that was continued for 50 ns. It is clear that
the hybrid FHD and MD method can capture the dewetting
process encountered during particle aggregation as illustrated
in the snapshots of fluid density shown in Fig. 5.

The potential mean force (PMF) for the interparticle
separation was also computed to quantify the driving force
of hydrophobicity. The force between the two particles is
recorded through a stiff harmonic spring of strength c connect-
ing the two particles [41,42]. The equilibrium length L0 of the
spring was set at equally spaced values between 2R − 5 and
2R + 30 Å. For each L0, 100 independent simulations of 2 ns
were performed to compute the mean force F = c(L0 − 〈r〉).

Shown in Fig. 6 is the PMF for two solutes of size R = 20
and 25 Å. As expected, from the result of Fig. 5 we note that
the effective free energy has the structure of a strong attractive
potential. Note that the minimum of the potential is shifted
according to the size of collapsing particles. The depth of the
Ueff is 10 kBT for the solute of R = 20 Å and 16kBT for
R = 25 Å.

V. CONCLUSION

Combining mesoscopic solvent modeling with the molec-
ular dynamics of moving particles is an aspired objective
of computer simulation. The success of this multiphysics
approach in advancing the knowledge of nanoscale self-
assembly and dynamics-structure-function relationships of
biomolecules, though, relies on the capability of representing
the essential forces mediated by the solvent. In this work,
we developed an alternative hybrid FHD and MD simulation
methodology that can resolve the boundaries between moving
particles and solvent fields in Eulerian grid cells. Local
free-energy densities of solvent-solute interactions were also
devised to realize the excluded volumes of particles. With
these functionalities, we showed that both hydrophobicity
and hydrodynamics are ubiquitous forces in nature and can
be put together in a mesoscopic simulation to capture the
phenomena emergent from their coupling. The framework
of fluctuating hydrodynamics is chosen for a coarse-grained
representation of the solvent and the challenge of mixing
Eulerian and Lagrangian variables is thus inevitable in the
hybrid FHD and MD methodology. The strategies we devised
to overcome the issues of spurious currents, negative densities,
and spatially dependent force imbalances—using a pair of
auxiliary fluids to realize the excluded volumes of particles
and collocating gridding systems to solutes—may also be
helpful for similar attempts in other disciplines. The current
framework of hybrid FHD and MD simulation also sets the
foundation for integrating other important effects mediated by
the solvent, such as electrostatics and mass transfer of species
concentrations.
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