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Based on the noncrossing approximation, we calculate both the linear and nonlinear conductance within the
two-lead two-channel single-impurity Anderson model where the conduction electron density of states vanishes
in a power-law fashion o | — pp|” with r = 1 near the Fermi energy, appropriate for a hexagonal system. For
given gate voltage, we address the universal crossover from a two-channel Kondo phase, argued to occur in doped
graphene, to an unscreened local moment phase. We extract universal scaling functions in conductance governing
charge transfer through the two-channel pseudogap Kondo impurity and discuss our results in the context of a
recent scanning tunneling spectroscopy experiment on Co-doped graphene.
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I. INTRODUCTION

The two-channel Kondo' (2CK) problem? is a fascinating
example of an exotic quantum many-body phenomenon
resulting in a metallic ground state with non-Fermi-liquid
behavior. It involves a single quantum impurity spin with
s = 1/2 that couples antiferromagnetically to two identical
conduction electron reservoirs. As a result, Kondo processes
involving both reservoirs lead to overscreening of the local
moment. Theoretically, the two-channel Kondo physics has
been studied extensively via Bethe ansatz,? conformal field
theory,* bosonization,’ and numerical renormalization group.®
Experimentally, however, up to date, only very few examples
of clear two-channel Kondo physics have been experimentally
realized, e.g., in semiconductor quantum dots,’ in magnetically
doped nanowires, and in metallic glasses.®?

Recently, the Kondo effect of magnetic adatoms in graphene
has attracted much attention, theoretically!®!'! as well as
experimentally,'” due to the possible realization of a two-
channel Kondo ground state. One interesting aspect of Kondo
physics in graphene is due to the Dirac (linear) spectrum
that gives rise to a pseudogap local density of states (DOS),
pe(w) o |o|” withr = 1, at the impurity site, making graphene
one of the few experimental realizations of the pseudogap
Kondo model,'>'* the simplest model to study critical Kondo
destruction.'>!® In the pseudogap Kondo (or more generally
Anderson) model, a quantum phase transition is expected
between the Kondo screened and the unscreened local moment
(LM) ground states for 0 < r < 1.'4!7 For r =1, corre-
sponding to graphene, Kondo screening does not occur in
the particle-hole symmetric case,'"!'*!® resulting in a LM
ground state. Nevertheless, Kondo screening can be induced
by changing the Fermi energy, e.g., by applying a gate voltage
(n #0).

That two independent screening channels can exist in
graphene is related to the existence of two inequivalent
Dirac points (K and K') in its band structure. However, the
two-channel Kondo physics due to the valleys in graphene
seems not likely to occur as there is always backscattering
between the valleys, mediated by the impurity. Yet, recent
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striking scanning tunneling microscopy (STM) measurements
done by the Stanford group'? on Co-doped graphene displayed
features in line with two-channel Kondo scaling if the adatom
is in the center of the honeycomb lattice. To date, no other
similar experiment has provided independent evidence of
two-channel Kondo physics in graphene. Whether or not the
above-mentioned STM results should be interpreted in terms of
two-channel Kondo physics is therefore still under debate and
remains controversial (see Sec. IV for details). The situation
thus seems reminiscent to that of the possible realization
of two-channel Kondo physics in ultrasmall metallic point-
contact experiments by Ralph et al. where the experimental
findings were in line with two-channel Kondo physics but
a firm theoretical basis for its occurrence is missing."”
Compelling evidence in favor of two-channel Kondo physics
in the point-contact experiment was recently presented in
Ref. 20 by reproducing characteristic conductance spikes in
a model realizing two-channel Kondo physics. Motivated by
this, we here investigate the nonlinear conductance of a generic
two-lead two-channel pseudogap Anderson model with r = 1
for putting additional constraints on possible explanations of
the experiment reported in Ref. 12.

The two-channel Kondo-LM quantum phase transition in
the two-channel pseudogap Kondo and Anderson model with
w=0and 0 <r <1 in and out of equilibrium has been
studied recently,'*!321:22 but the experimentally more relevant
situation of r =1 and w # 0 has not yet been properly
addressed. The possibility of realizing two-channel Kondo
physics was pointed out in Ref. 10. There is, however, a lack
of systematic investigations beyond the mean-field treatment.

In this paper we focus on the crossover phenomenon from
the LM to the two-channel Kondo regime in our model, and
work out the universal scaling functions of the conductance.
A comprehensive analysis of the nonequilibrium transport,
including STM line shapes in the various regimes, is presented.

We address this issue using the noncrossing approximation
(NCA),>*-2% which is known to give reliable results for
multichannel Kondo systems which are in line with conformal
field theory results.® It has been shown recently that the NCA
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is able to reproduce the correct qualitative features of the
two-channel pseudogap model for O < r < 1 in and out of
equilibrium in excellent agreement with exact results.?!>?

Here, we study the steady-state transport properties of
the experimentally most relevant pseudogap case, r = 1 as
a function of doping, temperature, and bias voltage.

II. MODEL HAMILTONIAN

Our starting point is the two-lead two-channel single-
impurity pseudogap Anderson model. Each lead is charac-
terized by a power-law density of states (DOS) [p.(w) ~ ||
O(D — |w|), where D is a high-energy cutoff that serves as
our unit of energy D = 1].

Within a pseudofermion representation, the Hamiltonian

reads2+2
H= )" (& — el e + €0y flfs
k,o,T,a o
+ Y [Ualfibect, ) +Hel, (1)
k,o,T,0

where 1, is the chemical potential of lead ¢, and « = L/R
labels the two conduction electron leads. The indices o and
T refer to spin and charge (related to K and K') channels
characterizing the conduction electrons. The second and third
term on the right-hand side of Eq. (1) represent the spin-1/2
and the hybridization strength U,, between the graphene elec-
trons and the impurity. In the pseudofermion representation the
local electron is decomposed as d;t = flb,. Equation (1) is
a faithful representation of the two-channel single-impurity
pseudogap Anderson model, provided the constraint Q =
S flfs + ., bib, = 1is fulfilled at all times. A finite bias
voltage is implemented by shifting the chemical potentials in
the leads such that u;, — g = eV is the applied bias voltage
across the two-channel Kondo system.

To study the properties of Eq. (1) we employ the NCA. Its
ability to correctly capture the properties of the pseudogap
two-channel Anderson model was established recently.?!??
Within the NCA, the retarded self-energy for pseudofermions,
G'(w)=[w—€; — X" (w)]"!, and slave bosons, D’ (w) =
[w _ Hr(a))]il, are21,22,24,25

2
T =2y f deTo(w — € — o) fle — & — ) D'(e),
@
2
OEED / deTale — @ — 1) f(€ —  — )G (€).

3)
The NCA expressions for the lesser self-energy of the
pseudofermion, G=(w) = ¥ =(w)|G"(w)|?, and slave boson,
D=(0) = I~ (0)| D" (w)|?, are
< 2 <
TN @)==) [ deTo(w — € — 1) f(@ — € — 1) D= (€),
T o
“)
< 2 <
M(@)==Y [ deTu(e — o — o) f (@ — € + )G~ (€).
7 o
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Here, I'y(w) = Ty pc.o(w) with Ty = 7|Uy|? with Pe.a(®) X
|w — pe| and f(w) = [1 + eP©]~! is the Fermi function.

The physical spectral function, p(w, V), is the convolution
of pseudofermion and slave-boson Green function

l r <
p(w,V) = 3027 /de[ImD €)G=(w+€)

— D<(6)ImG’ (w + €)]. )

The normalization factor Z = 7’r— f do[D=(w) — G=(w)] en-
forces the constraint (Q) = 1. The current is given by?’
2 2r r

1.1y =5 / do2 LR

h (@) + Tr(w)

X[flw+eV/2)— f(w—eV/2)]. @)

The nonlinear conductance G(V) = dI(V)/dV is computed

by numerical derivative of the current /(V'), whereas the linear-
response conductance is directly obtained from

28 2T (@) r(@) af ()
GO.1) = 7/d‘°m(w> n FR(w)<_ do )
x p(w,V = 0). (®)

p(w,V,T)

Equations (4) and (5) together with the Dyson equation for
G(w) and D(w) form a self-consistent set of integral equations.
These equations are iterated until a solution is found with
which Egs. (6)—(8) can be evaluated.

III. RESULTS

We now turn to a discussion of the self-consistent solution of
Egs. (2)—(5); the results are summarized in the phase diagram
Fig. 1. For simplicity, we focus on the particularly simple case
with parity (left-right) symmetry, U, = Ug, I, =T = %.

T
T *~ | tl 1/v
universal
crossover scaling
l," 2CK
LM | "
|
&
! ,
| y
7 _2CK
-y scaling
T t=(j=i" )i’

FIG. 1. (Color online) Schematic phase diagram for the crossover
between two-channel Kondo and local moment phase in our generic
model Eq. (1). The parameter j refers to either I" or . (in units of D =
1), and j* refers to the crossover scale for a fixed temperature T ~
5 x 1077 D. Tk and T* represent crossover energy scales associated
with the universal scaling for the two-channel Kondo (blue shaded)
and the high-temperature 2CK-LM crossover scaling (green shaded)
regime, respectively.
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FIG. 2. (Color online) The impurity spectral function p(w) vs
chemical potential i (in units of the bandwidth D). The Kondo
peak is pinned near p. The Dirac point is assigned w = 0. Inset:
Kondo temperature Tk (defined in text) as a function of u. The NCA
parameters are T = 5 X 107’D, T =0.2D,¢; = —0.2D.

For larger values of j =T',|u| (or j — j* > 0.1D) with
[ ~0.05D and pu* ~ —0.05D being crossover scales at a
fixed temperature Ty ~ 10~7 D, our results show clear two-
channel Kondo behaviors at low temperatures T < Tx where
Tk is the Kondo temperature defined as the temperature where
G(0,T) deviates from a ~ JT behavior,? in agreement with
its conventional definition: G(0,Tx) = G(0,0)/2.

However, for smaller values of j with j — j* < 0.1D, we
find universal power-law scaling of G(7',0) distinct from both
two-channel Kondo (i.e., ~ JT ) and one-channel Kondo (i.e.,
~ T?) (Ref. 28) behavior at temperatures T >> T* where T* is
the crossover energy scale, describing the two-channel Kondo-
LM crossover. Note that the NCA gives reliable results for
I(V,T) even in the single-channel Kondo case as long as T 2,
0.17k.

The crossover scale is finite for any nonvanishing gate
voltage (u # 0). We checked that the crossover scales I'*, | 1*|
vanish as T — 0 in a power-law fashion, consistent with the
general expectation that Kondo screening in graphene can be
induced by arbitrarily small doping (u # 0).

The local density of states p(w,V), given by Eq. (6), is
shown in Fig. 2. The Kondo peaks occur at the chemical
potential u, and the Kondo temperature Tx follows the
pseudogap Kondo behavior with » = 1: Tx ~ |u| x e{=4/14D
(inset in Fig. 2) where a has the unit of energy and is a function
of the bandwidth D and the Kondo coupling J.'* The |w| decay
in the vicinity of @ = 0 is a reflection of the Dirac point of
the conduction electrons with DOS p.(w) ~ |w|. Comparable
results have also been discussed in Refs. 11 and 29-32.

Figures 3(a) and 3(b) shows the linear-response conduc-
tance G(0,T) obtained via numerical derivative of Eqgs. (7)
and (8). As long as u # 0, we find clear two-channel Kondo
behavior at the low-temperature regime [Fig. 3(a)], with
G(0,T) displaying a T''/? behavior for each coupling I".>> The
Kondo temperature Tk behaves as Tx ~ De~"1<!/T [Fig. 3(a)
inset]. For higher temperatures [Fig. 3(b)], we find a universal
power-law behavior in 7/T* for T > T* near I'* ~ 0.05D:
G(0,T) &< (T/T*)* with o =~ 0.029, indicating the universal
crossover from two-channel Kondo to LM regime. The
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FIG. 3. (Color online) (a) [Gy — G(0,T)]/ Gy calculated from
Eq. (8) displays T''/? behavior for T < Tx. Gy = G(0,Ty)r—o225p is
the linear conductance at the lowest numerically accessible temper-
ature Ty ~ 5 x 1077D at I = 0.225D. Inset: Exponential behavior
for Tx ~ De "</ (b) An additional power-law behavior at high
temperature for small I =~ I'* & 0.05 D, where the crossover scale 7*
shows a power-law behavior T* ~ |I" — I'*|!'/ with v ~ 0.1 (inset).
Here, €, = —0.2D, u = —0.1D. (c¢)—(e) Nonlinear conductance at a
large I' = 0.2D, and fixed parameters Ty = 5 x 107'D, u = —0.1D,
€, = —0.2D.The G(V,T) curve shows two-channel Kondo behavior:
(c) InV dependence around V ~ Tk with Ty & 5 x 10°Dand T =
To. (d) V2 behavior for V < T. (e) T''/? two-channel Kondo behavior
for T < V < Tk. Here, the red lines are fits to the corresponding
power-law or logarithmic behaviors in different bias regime.

crossover energy scale 7* shows a power-law dependence,
T* ~ |T" — I'*|"/" [Fig. 3(b) inset], where v ~ 0.1.

G(V,T) at larger I" shows clear two-channel Kondo
behavior [see Figs. 3(c)-3(e) for I' = 0.2D]. Figure 3(c)
indicates the InV behavior predicted for Kondo scattering
processes. The V? behavior at V < T and V'/? behavior
at T <V < Tk in Figs. 3(d) and 3(e), respectively, are the
characteristics of two-channel Kondo physics.

To illustrate the crossover between the two-channel Kondo
and LM regimes, G(V,T) is shown in Figs. 4 and 5. Figure 4
demonstrates V/T scaling®® of G(V,T) for I' = 0.07D and
w = —0.08D. The resulting curves collapse onto a universal
function. For V/T > 10%, G(V,T) shows a power-law behav-
ior similar to the one shown in Fig. 3(b); for 1 < V/T < 10,
the behavior follows the two-channel Kondo V!/? behavior
as shown in the inset of Fig. 4; for V « T, it shows
V? Fermi-liquid behavior. Figure 5(a) is the two-channel
Kondo scaling plot for large I', where all curves follow
the scaling function® G(0,T) — G(V,T) = B);TI/ZH(A%).
Here, H(x) o x'/? is a universal function and By, and A are
nonuniversal constants.”> For V > V*, G(V,T) shows the
same universal two-channel Kondo-LM power-law crossover
behavior for small coupling I' ~ I'* as shown in the linear
conductance, G(0,7): G(0,T)— G(V,T) x (V/V*)* with
o ~ 0.029 [see Fig. 5(b)]. The crossover energy scale V*
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FIG. 4. (Color online) Temperature scaling of the nonlinear
conductance G(V,T) in the universal crossover region with I' =
0.07D and = —0.08D (¢, = —0.2D). All curves collapse onto a
universal scaling function. It displays V''/2 behaviorat T < V < 10T
(inset). For large V (in units of D), V/T > 10?>, G(V,T) shows a
power-law behavior similar to Fig. 3(d).

also displays a power-law behavior V* ~ |I' — I'*|'/¥, where
v ~ 0.1, in line with the equilibrium behavior.

IV. APPLICATIONS FOR CO-DOPED
GRAPHENE VIA STM

As mentioned above, due to the two inequivalent Dirac
points (K and K’) in graphene, it therefore was argued that
the effective low-energy model for magnetic impurities in
graphene depends on the location of the adatom:** if the
impurity is located at the center of the cell, the intervalley
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FIG. 5. (Color online) (a) Scaling of G(V,T) for large I
(parameters are the same as in Fig. 2). For V. < Tx, G(V,T) collapses
onto a single curve ~T'/2. (b) Power-law behavior of G(V,T) for
V > V*. Here, G(0,T,,I"y) refers to the linear conductance at a fixed
temperature Ty = 5 x 1077 D and a fixed coupling 'y = 0.2D. Inset:
Power-law behavior of the crossover energy scale V* ~ |I' — [™*|*
(see text). Here, ¢, = —0.2D, u = —0.1D.
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scattering does not couple the two screening channels and
an effective two-channel Kondo ensues.! This has been
explicitly demonstrated within a tight-binding description
where the hybridization between electronic states in graphene
and impurity states preserves the A-B sublattice symmetry.*
The situation is different if the adatom is located on a graphene
site and the sublattice symmetry is absent in the impurity-
graphene hybridization. The effective low-energy model is
in this case the more conventional one-channel pseudogap
Kondo model.**3 The difference between the various adatom
positions can be probed by scanning tunneling microscopy
(STM).3¢ This has been achieved recently with Co atoms as
magnetic adatoms where signatures of two-channel Kondo
physics are seen when the adatom is located at the zone center
of the honeycomb cell such that the intervalley scatterings
between K and K’ Dirac electrons are strongly suppressed.'?

However, the claim that the two valleys in graphene should
give rise to a two-channel Kondo effect when the adatom sits in
the center of the honeycomb cell is based on the tight-binding
analysis in the continuum,***> which might not be valid at
the lattice scale. In fact, by computing the spin exchange
interaction at the tight-binding level the authors in Refs. 37
and 38 show that the Kondo Hamiltonian corresponding to
magnetically doped graphene can be rotated into a new basis
where only one channel is coupled. Therefore, the two-channel
Kondo physics due to the valleys in graphene seems unlikely
at the lattice scale as there is always backscattering between
the valleys, which is mediated by the impurity.

Based on the above two different analyses leading to
two different conclusions, the issue of whether or not one
should expect two-channel Kondo physics in graphene at a
finite temperature or energy scale needs further studies and
clarification. Here we try to put a stringent constraint on
the possible two-channel Kondo physics in graphene based
on the NCA approach to the nonlinear out-of-equilibrium
transport in the two-lead two-channel pseudogap Anderson
model with r = 1. Our results may serve as references for
future experimental works on this topic. Below we apply
our general formalism on the model for the STM setup for
Co-doped graphene in Ref. 12. To make contact with Ref. 12,
it is necessary to generalize our setup to the case where one
of the leads is made up of a simple (i.e., one-channel) metal
with constant DOS py;p, near its Fermi energy. The ground state
in this case will be that of a Fermi liquid. If, however, the tip
is coupled only very weakly (I'gp,/D < 1) to the magnetic
adatom on graphene, the corresponding energy scale will be
vanishingly small. In this case it is permissible to replace the
normal-metal lead by a two-channel lead (with constant DOS
at the Fermi energy), as the RG equations for the one-channel
and two-channel Kondo problem coincide in lowest order. The
two-channel Kondo physics is expected to have relevance for
the transport at low temperatures and/or finite bias voltages.

A. Nonequilibrium NCA

The extension of the noncrossing approximation (NCA)
onto the Keldysh contour has been discussed in several
papers.*?3 It is customary to neglect the bias voltage de-
pendence of the conduction electron density of states (DOS)
p(€). This is justified provided p is well approximated by a
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constant in a region around the Fermi energy that is large
compared to the applied bias voltage. When the DOS vanishes
in a power-law fashion at or near the Fermi energy, this is
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no longer possible and the equations have to be generalized
appropriately. The full set of equations to be solved for the
two-channel pseudogap problem becomes

5 (w) = (=2i) f de G (e + O)|VLI f(—€ + ur)prle — pr — p) + |Vel* f(—€ + ur)pr(e — g — 10)]

oo

() =2i / de G7(e + o)|VLI* f(e — up)prle — pr — p) + |Vrl* f(€ — wr)pr(€ — pr — )]

for the pseudoboson and

zﬂmzm[

2ﬂm=m[

[ee]

o0
oo

o0

for the pseudofermion. The DOS (p,, and pg) of the two leads
does not have to be identical. The bias voltage applied across
the system is eV®® = y; — g, where p; and g are the
chemical potentials of the left and right leads.

B. Fano line shapes

An experiment reminiscent of the situation considered by
us has been performed recently, where magnetic adatoms on
graphene were investigated via scanning tunneling microscopy
(STM); see Ref. 12. Our analysis can be extended to include
the current-voltage characteristics measured by an STM (see
Fig. 6). In this case, one of the two fermionic leads represents
the STM tip and it is necessary to explicitly allow for the
different tunneling paths between the STM tip, the adatom, and
the substrate which will act as the second lead. An important
difference between the STM setup and our analysis so far is
that the STM tip is a good metal, e.g., a single-channel lead
with constant DOS at its Fermi energy. We here will model it
by a two-channel lead with constant DOS at its Fermi energy.
This is justified provided the coupling between the STM tip
and the system is small as the RG scaling equations for the
two- and one-channel case are identical up to fourth order in
the tunneling matrix element.

The theory of STM on magnetic adatoms on a metal
surfaces has been worked out by Schiller and Hershfield®

>

it

FIG. 6. The STM measurement of the magnetic adatom in
graphene. The § = 1/2 magnetic adatom is located at the center
of the honeycomb lattice of graphene.

de Gyle + VL f(—€ + up)pr(—€ + pr + ) + |Val* (=€ + ur)pr(—€ + g + 1)l

de Gy(e + W|VLI* f(e — ur)pr(—€ + pur + 1) + | Vel* fl€ — pr)pr(—€ + g + @)l

1.40

and by O. Ujsaghy ez al.*° The current is obtained from

(V) ~ / de[f(e — eV™) — f(O)puppeii(€),  (9)

where py;p is the density of states of the STM tip and peyr i an
effective density of states probed by the STM and depends on
two tunneling rates 7 and f. that parametrize the hybridization
strength of the STM tip with the magnetic adatom (7 ) and the
graphene leads (¢.). The effective density of states p.f can be
recast into

l - = - =
Pett = ;Im{zSGC(R,R,e) + [tq + 1V G (R, Ryq.€)]

X Gaa(©lta +1:V*Ge(Raa, RO}, (10)
where V is the hybridization strength between the graphene
electrons and the magnetic adatom G (¢) is the advanced local
%raphene elgcgron Green function at the locus of the STM tip
R and G.(R,R,4,€) is the advanced graphene electron Green
function connecting the locus of the tip with the position of
the adatom at ﬁad, and ¢, (¢7) is the tunneling matrix element
between the STM tip and the substrate (magnetic adatom).
G 44(€) is the advanced Green function of the magnetic adatom
that can be obtained from the pseudoparticle Green functions
of section A.

In the linear regime, the Fano line shape is given by
the differential conductance dI/dV|y—_o, which turns out
to be proportional to the effective density of states per(€):
dl/dV]y_o o pei(e = V).

dI/dV |y can be cast into the Fano line shape where the
Fano parameter ¢ is given by***

ReG‘C)(e —in)
ImGoe — in)’

an

and can be treated as approximately constant in the energy
range of interest.*!
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FIG. 7. (Color online) Nonlinear conductance for a large I' =
0.1D between impurity and graphene substrate and a much smaller
hopping I';; between tip and the impurity, I';, < I', corresponding
to the STM measurement reported in Ref. 12. The G(V,T) curves
agree well with the STM results of Ref. 12. (a) InV dependence
around V ~ Tx. (b) V? behavior for V < T. (c) T'/? two-channel
Kondo behavior for T < V < Tk. Here, T = 5 x 1077 D. The other
parameters are 4 = —0.1D, ¢; = —0.2D.

C. Results: Universal two-channel Kondo-LM
crossover for p < 0

The behavior of G(V,T) in this case is shown in Fig. 7, com-
patible with the results discussed above, see, e.g., Figs. 3(c)—
3(e). These results are in line with the experimental findings
reported in Ref. 12. Typical Fano line shapes in the linear
regime are shown in Fig. 8. The two-channel Kondo behavior
seen in the STM measurement'? for Co adatom at the center of
the honeycomb lattice is signaled by the Kondo peaksatw =
in Fano line shapes, which are compatible with a large fitting
parameter g (for example ¢ = 10) and a correspondingly small
t./t; and concomitantly small intervalley scattering.
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FIG. 8. (Color online) Fano line shapes with Fano parameter ¢ =
10 for various values of I' (in units of the half bandwidth D). Here,
we have sete;, = —0.2D, u = —0.1D.

FIG. 9. (Color online) Universal scaling in linear conductance
G(T) as a function of temperature 7 for at fixed positive chemical
potential © =0.1D and for various values of hybridization I.
(a) T'? two-channel Kondo behavior for T < Ty for large values
of I'. Inset: Tx/I" vs 1/T". (b) Universal scaling of G(T') for smaller
values of I'. Inset: The crossover energy scale 7* as a power-law
function of I' — I'*. Here, €; = —0.2D, G|, is the linear conductance
forT'=0.62D at T =5 x 107D, and T'* & 0.06D.

D. Results: Universal two-channel Kondo-LM
crossover for p > 0

In the previous sections, we focus on the universal two-
channel Kondo-LM crossover for negative chemical potential,
n < 0. A similar scaling behavior can also be found in
conductance for positive p. As shown in Fig. 9, for a
fixed positive u = 0.1D, the linear conductance G(T) vs
hybridization I follows a single universal scaling form of
T/T*. The single scaling form of G(T") we observe here for
@ > 0 is somewhat surprising as for u < O the conductance
shows two distinct scaling regimes: 7 < Tx and T > T*. We
believe that this difference maybe due to the particle-hole
asymmetry in our model as the Kondo peak, located at = p,
is affected more by the charge peak at ¢; < 0 for u < 0 than
that for © > 0.

Similar to the case for u < 0, the linear conductance for
n > 0 shows a typical two-channel Kondo VT behavior for
T < Tk, and a universal power-law behavior at high tempera-
tures for ' — I': G(T) o« (T /T*)* with « =~ 0.00009 ~ 0.
The Kondo temperature Tx and the crossover scale T* for
@ > 0 behave in a similar way to their u < 0 counterparts:
Ty « T x e VT, T* o (T — T*)!Y with I'* =~ 0.06D and
v ~ 0.05. We believe that our results for both positive and
negative values of u could be used as theoretical guidance in
future experiments to clarify the issue on two-channel Kondo
physics in graphene.

V. CONCLUSIONS

Universal out-of-equilibrium scaling is currently pursed
in a wide range of condensed-matter systems. As demon-
strated, magnetic adatoms on graphene offer the possibility to
study steady-state properties in a universal crossover regime
of a two-channel Kondo/Anderson model. Whether or not

085431-6



UNIVERSAL SCALING OF NONLINEAR CONDUCTANCEIN ...

two-channel Kondo physics is relevant for the magnetic
adatoms on graphene needs further investigations. Here, we
have addressed the universal crossover regime that separates
the local moment regime from the two-channel Kondo regime
in a generic two-lead two-channel pseudogap Anderson
model with » = 1. In particular, we calculated the differential
conductance both in the linear and nonlinear regime. For suffi-
ciently large hybridization, we found clear two-channel Kondo
signatures. As the hybridization is reduced, the crossover
region separating two-channel Kondo and local moment
ground states is entered and the crossover is monitored by the
narrowing of the Kondo resonances. In the crossover regime,
the conductance shows universal power-law behavior. Our

PHYSICAL REVIEW B 88, 085431 (2013)

results seem to be consistent with a recent scanning tunneling
spectroscopy experiment. We also provide a comprehensive
theoretical analysis of the transport properties of two-channel
Kondo impurities in graphene.
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