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Recurrence relations of higher spin BPST vertex operators
for open strings
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We calculate higher-spin Brower—Polchinski—Strassler—Tan (BPST) vertex operators for an open
bosonic string and express these operators in terms of a Kummer function of the second kind. We derive
an infinite number of recurrence relations among BPST vertex operators of different string states. These
recurrence relations among BPST vertex operators lead to the recurrence relations among Regge string

scattering amplitudes discovered recently.
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L. INTRODUCTION

Recently, there has been interest to study Regge regime
(RR) string scattering amplitudes [1-6] for higher-spin
string states [1,7-10]. One of the motivations was to under-
stand their intimate link with the scattering amplitudes in
the fixed-angle or Gross regime (GR) [11-15]. In the GR, a
saddle-point method was used to calculate string-tree am-
plitudes [16-19], and the ratios of scattering amplitudes
among different string states at each fixed mass level can
be extracted and were found to be independent of the
scattering energy and scattering angle. Alternatively, these
ratios can be rederived algebraically by solving linear
relations or GR stringy Ward identities from decoupling
of zero-norm states (ZNS) [20-22]. More interestingly, the
infinite number of these ratios for the GR can be extracted
from RR string scattering amplitudes based on summation
algorithms for Stirling number identities [23,24].

In contrast to the GR, an infinite number of recurrence
relations among higher-spin RR string scattering ampli-
tudes was discovered more recently [1]. Instead of RR
stringy Ward identities derived from decoupling of ZNS,
the calculation was based on recurrence relations of
Kummer functions of the second kind [25]. These recur-
rence relations among RR amplitudes were considered to
be dual to the linear relations among the GR amplitudes
discussed above.

In this paper, we study higher-spin Regge string
scattering amplitudes from a Brower—Polchinski—
Strassler—Tan (BPST) vertex operator approach. Note that
in the original BPST paper [2], the authors calculated the
case of closed-string and thus Pomeron vertex operators.
Here, for simplicity, we will calculate higher-spin BPST
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vertex operators at arbitrary mass levels of an open
bosonic string.' The calculation can be easily generalized
to the closedstring case. We find that all BPST vertex
operators can be expressed in terms of Kummer functions
of the second kind. We can then derive an infinite number
of recurrence relations among BPST vertex operators
of different string states. These recurrence relations
among BPST vertex operators lead to the recurrence rela-
tions among Regge string scattering amplitudes discovered
recently [1].

II. FOUR-TACHYON SCATTERING

We will calculate high-energy open-string scatterings in
the Regge regime,

s—oo,  J-t=fixed (buty/~r# c0), (2.1

where

S = _(kl + k2)2 and = _(k2 + k3)2. (22)

Note that the convention for s and ¢ adopted here is differ-
ent from the original BPST paper in Ref. [2].

We first review the calculation of tachyon BPST vertex
operator [2]. The s — ¢ channel of an open-string four-
tachyon amplitude can be written as

'Taking advantage of Regge factorization, a Pomeron vertex
operator VP was introduced in Ref. [2], which allows one to
calculate the coupling between the leading closed-string Regge
trajectory with any n-particle external state | W). In this paper,
we only consider 4-point scattering for open strings. As such, we
only need to treat the coupling of the leading open-string
Reggeon to two-particle states. For brevity, we use here the
term ‘‘higher-spin BPST vertex operators” collectively for the
product of the vertex operator for the leading open-string
Reggeon with external two-particle states, one of which has a
high spin.
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A= f‘ do - wh k(1 — w)k
0

1 . ,
= / do - w2731 — w) %1 (2.3)
0

Since s — oo, the integral is dominated around w = 1.
Making the variable transformation w = 1 — x, the inte-
gral is dominated around x = 0, and we obtain

1 5 t t s
A= [ dx-(1—x)2ix 21 /dx s xT2Tae
0

S

2.4

eikzX(m)eik3X(1) — (1 _ w)kz-k3eikX(l)*ik2(l7m)3X(l)+higherpowerof(l7w)’

In evaluating Eq. (2.5), one can instead carry out the w
integration first in Eq. (2.6) at the operator level to obtain
the BPST vertex operator [2],

VepsT = /dweikzX(w)eik3x(1)
~ [dw(l — w)kz'k3€ikX(l)fik2(1,w)ax(l)

_ [dxxk2~k3eikX(l)—ikzan(l)

t ¢
= F(—l — E)[ik2ax(l)]“aet'df(“, 2.7
which leads to the same amplitude as in Eq. (2.4):
A= <eik1X(O) VBPSTeik4X(oo)>
— F<_1 _ £)<eik1X(0)[ikzax(1)]l+éeikX(l)eik4X(oo)>
2
t . t s\1+5
=T(—-1—=2)(kk '+§~F<—1——)(——) . 2.8
(~1-3)kk )" es

III. HIGHER-SPIN BPST VERTEX

A. A spin-2 state

It was shown [1,7,8] that for the 26-dimensional
open bosonic string states of the leading order in energy
in the Regge limit at mass level, M3 =2(N — 1), N =
> mi=0np, + mq,, + lr; are of the form (we choose the
second state of the four-point function to be the higher-spin
string state)

1Pw @ 1) = [J(@Z)7 [T (@) [T (e )10, ),

n>0 m>0 >0

3.1

where the polarizations of the second particle with mo-

mentum k, on the scattering plane were defined to be

ef = M%(EZ’ k,, 0) = 11k4_22 as the momentum polarization,
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Alternatively, the integral in A can be expressed as

A= f deo(e X0 gikX(@) ik X(1) gikiX(:0)y 2.5)

One can calculate the operator product expansion (OPE) in
the Regge limit:

eikZX(w')eikg)((z) ~ |W — Zlkz'k3ei(kz+k3)X(Z)+ik2(W*Z)9X(Z)+""
This means

k=ky + ks. (2.6)

L —

e M%(kb E,, 0) as the longitudinal polarization, and

e’ = (0,0, 1) as the transverse polarization, which lies on
the scattering plane. 9, = diag(—1, 1, 1). The three vec-
tors e”, b, and e’ satisfy the completeness relation 7, =
Za,ﬁeﬁefnaﬁ, where u, v=0,1,2and o, B=P, L, T
and o) =3 el a”, a’jab) =3 eleba a”, etc.

In this section, we first consider a simple case of a
spin-2 state a® a”,|0) corresponding to the vertex
(0XP)?e'*>X(w). The four-point amplitude of the spin-2
state with three tachyons can be calculated by using the
conventional method:

A(q1=2) — fdw(eiklx(o)(GXP)zeikZX(a))eik3X(1)eik4X(°°)>

= fdwwk,~k2(1 _ w)kz.k{iep -k N ief - k3:|2
—w l-w

(=)

t

2" k)" k3)r(—2 - 5)(— f)%

— (P k3)2F<—3 N §)<_§)éﬂ-

The momenta of the four particles on the scattering plane

(3.2)

are
k, = (+'\/p2 + M2, —p,0), (3.3)
k, = (+,/p2 + M3, +p,0), (3.4)

ks = (—\/qz + M3, —qcos ¢, —qsin d’), 3.3)
ky = (-qu + M3, +qcos ¢, +¢sin ¢>, (3-6)
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where p = |pl, ¢ = |ql, and k¥ = —M?. The relevant kine-
matics in the Regge limit are [1,7,8]

P . k s ,
! 2M,
. 7
e ; __t—M%—Mg. (3.7
3T oM, oM,
L o S
Y
- 3.8
Lo 7 t+ M3} — M3 (58
oLk~ — _
3T 2M, 2M,
and
eT-kl =0, eT-k3= —/—t, 3.9

where 7 and 7' are related to ¢ by finite mass square terms

f=t—-M:—M3  P=t+M:-M%L (3.10)

V](;{DISTZ) = fdw(axp)zeikzx(w)eik3x(1) ~ fdw(l — w)kz'k3|:8X(1)P -
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By using Eq. (3.7), one can easily see that the three terms in
Eq. (3.2) share the same order of energy in the Regge limit.
We stress that this key observation on the polarizations for
higher-spin states was not discussed in Refs. [2,3].

One can calculate the OPE in the Regge limit:

aXPIXP e X (1) e X (7)
~lw— zl"f’%[ax(z)” pie ks k3]ze"k“@“kz(w—z)ax(ﬂ.
w—z
This means
aXPIXPeX (w)e*X (1)

. P ~k 2
~(1 - w)kz'k3[aX(1)P - ze—3]
l-—w

X kX () =ik (1=w)aX(1)

k=k, + ks (3.11)

One can carry out the w integration in Eq. (3.11) at the
operator level to obtain the BPST vertex operator:

. P .
ie” - ks ]zeikX(l)—ikz(l—w)aX(l)
l—w

=9Xx(HFPax(1)P fdxka'k3eikx(l)_ikzxax(l) —2ieP - k;0X(1)P

% [dxxk2~k3—1eikx(1)—ik2xax(1) — (eP - k3)2fdxxkz-k3—2€ikx(1)—ik2xax(1)

- r(—1 - %)[ikzax(l YETaX(1)PaX(1)PeXD) — 27eP - k3F(—

1 / .
— 5)[ik28X(1)]iaX(l)Pe’kX“)

— (e? - k3)2F(— )[lkzax(l)]‘“ ikX(1) (3.12)
We can use this BPST vertex operator to rederive the amplitude
AD=2) = (pi XO (122 ikiX(e0))
t . ¢ . .
= F(— - §><e’klx(0)[ik26X(l)]T1aX(1)PaX(l)Pe‘kX(l)e’k4X(°°)>
t . { . .
—2ieP - k3F(— - —)(e’klx(o)[ikzaX(1)]78X(1)Pe”‘X(l)e’k4X(°°))
P k3)2F< 3 — ;)<ezk X(O)[lkzaX(])]2+l lkX(l)ezk4X(oo)>
t t s\z
- ( §) 1 1‘5)( ) o hoeior(-25)(3)
eP - 12 ! rtl
k) T( =3 =5 (3.13)

which is the same as the amplitude in Eq. (3.2). Note that the three terms in Eq. (3.12) lead to the three terms, respectively,
in Eq. (3.13) with the same order of energy in the Regge limit.
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B. Higher-spin states

We now consider the higher-spin state
1P @m) = [ ) [T (®,)10), (3.14)
n=1 m=1

which corresponds to the vertex

Va() = [ [T 3w [T @x" e Je¥ (@) (3.15)
n=1 m=1
The four-point amplitude of the above state with three tachyons was calculated to be (from now on, we set M, = M) [1,7,8]
APnan) — f deo(eMXOV, () kX (D) gikiX(@)y

- (— %)ql U(—ql,% +2-q, ;)B(—l e é) : ﬂ[ﬁ(n ~ D1

X ﬂz[f(m - 1)!(— ﬁ)]q (3.16)

1\a t f t s\1+3
~ —_— — __I_ — — p— I — .
< M) U( 5t 2 ‘“’2)F< ! 2)( 2) G.17)

=i = o1 [n = 0(= 53] (3.18)

m=2 M

where U is the Kummer function of the second kind and is defined to be

Ula, e, x) = T [ M(a, c, x) X Ma@+1-¢2—c x)]’

@—o0lc=D @-Dl-o (c#234...). (3.19)

sin ¢

In Eq. (3.19), M(a, ¢, x) = fzo%% is the Kummer function of the first kind. Here, (a); = a(a + 1)(a +2)...(a +
i

Jj — 1) is the Pochhammer symbol. It is important to note that in Eq. (3.17), ¢ = ¢(#) and is not a constant as in the usual

definition, so U in the Regge string scattering amplitudes is not a solution of the Kummer equation.

One can calculate the OPE in the Regge limit,

Vz(a))e“‘3x(1) — [n(anXT)p,, l_[ (amXP)qm]eikZX(w)eik3X(1)

n=1 m=1
(n— 1)ks - eT]Pn [(m — Dks - eP]qm [ iks - eP:Iql N
~ ~ 0 R S 1ax() - P _ 1 — ky ks LikX(1)—iky(1—w)dX(1)
l][ oy ) U "aop (1) el = | (- @)he
(3.20)
—\a - 1\
Y “1(n — 1)1 Y-
(5:1) [v=itn = 1 ,!1[[('" "(=3)]
q1 H . P\
) Z(q_l ><Z’M23Xi(1) ¢ )’(1 — w)krks N GkX() iky(1=w)aX(1) 3.21)
j=o\ J

where N =Y, (np, + mgq,,) is the mass level of the higher-spin vertex operator V,(w). As in the previous calculation,
we can carry out the w integration first in Eq. (3.21) to obtain the BPST vertex operator

046004-4



RECURRENCE RELATIONS OF HIGHER SPIN BPST ...

](3’;”5%”’) = [dez(a))e’k3X(1)
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- (Z__M)q],[[l[ﬁ(n — 1)1]s n[f(m N 1),< 211‘/1)]% . Zl<qjl )(M)’

m=2

Jj=0

% fdw(l @)k N X =ik (1= w)aX(D)

= (53¢)" TI/tn = 0 [T on = (5

m=2

X fdxxkz-k3—N+jeikX(1)—ik2x8X(1)

>]qm ‘“0< ><2iMaX;(1)-eP)j

j=

- (Z;A;)qlﬂ[ﬂ(n = 0 [ fn - 1)!(— ﬁ)]g . Z( q]} )(ZiMa)ff(l) : eP)f

m=2

X F(—l - % + j)[ikz < aX(1)] i kXM

One notes that, in Eq. (3.22), MoX(1) - e”
operator can be further reduced to

j=0

(3.22)

= k, - 9X(1), and the summation over j can be simplified. The BPST vertex

ViRt = (2M2)q’ [v=in = 1 n[;(m - 1)1(—5)]%

n=1

$a0)(-9:

m=2

_ é)[ikz - 9X(1)]! HeikX(D)

_ (%)qlg[\/—_t(n - 1)z]pnﬂ[[2[z(m = 1)v( 2;4)]"'"

t r
‘ U<_q1’§ + 2 — qi1, E)F(—l

where we have used

S(E) (-9 -0 e(-1pe2-1))

(3.24)

One notes that the exponent of [ik, - dX(1)]'*? in
Eq. (3.23) is mass level N independent. This is related to
the fact that the well-known ~s**) power-law behavior of
the four-tachyon string scattering amplitude in the RR can
be extended to arbitrary higher-string states and is mass
level independent as can be seen from Eq. (3.17). This
interesting result was first pointed out in Ref. [7] and will
be crucial to derive intermass level recurrence relations
among BPST vertex operators to be discussed later.

The BPST vertex operator in Eq. (3.23) leads to exactly
the same amplitude as in Eq. (3.18).

IV. RECURRENCE RELATIONS

For any confluent hypergeometric function Ul(a, ¢, x)
with parameters (a, c), the four functions with parameters
(a—1,¢),(a+1,c¢),(a,c—1),and (a, c + 1) are called
the contiguous functions. A recurrence relation exists

= %)[ikz - 9X(1)]' Frekx ) (3.23)

[

between any such function and any two of its contiguous
functions. There are six recurrence relations [25]:

Ua—1¢x)— 2a—c+x)U(a,c x)
+a(l+a—c)U(a+1,¢,x)=0 4.1)
(c—a—NDU(@,c—1,x)—(x+c—1)U(a,c, x)
+ xU(a,c +1,x) =0, 4.2)
U(a,c,x) —aU(a+ 1,¢,x) —U(a,c — 1,x) =0, (4.3)

(c—a)U(a,c,x) +U(a—1,¢,x) —xU(a,c+ 1,x) = 0,

“4.4)
(a+x)U(a,c,x) —xU(a,c + 1,x)
+alc—a—1DUa+1,¢,x)=0 4.5)
(a+x—1U(a,c,x) —Ula—1,c x)
+(1+a—c)lU(agc—1,x)=0. (4.6)
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From any two of these six relations, the remaining four
recurrence relations can be deduced.

The confluent hypergeometric function Ul(a, ¢, x) with
parameters (@ £ m, ¢ = n) form,n =0,1,2... are called
associated functions. Again, it can be shown that there
exist relations between any three associated functions, so
that any confluent hypergeometric function can be ex-
pressed in terms of any two of its associated functions.

Recently, it was shown [1] that recurrence relations exist
among higher-spin Regge string scattering amplitudes of
different string states. The key to derive these relations was
to use recurrence relations and the addition theorem of
Kummer functions. In view of the form of higher-spin
BPST vertex operators in Eq. (3.23), one can easily calcu-
late recurrence relations among higher-spin BPST vertex
operators. By using the recurrence relation of Kummer
functions [1], for example,

ot t tt
U( 2’2’2) <2 1>U( 1’2’2)

—5U<—1,5+ 1,5) —0, 4.7)

2 2 2

one can obtain the following recurrence relation among
BPST vertex operators at mass level M? = 2:

= t =1,q,=
M=V — vl = o, (4.8)

2

Rather than constant coefficients in the RR stringy Ward
identities derived in Ref. [1], the coefficients of this recur-
rence relation Eq. (4.8) among BPST vertex operators are
kinematic variable dependent, similar to BCJ relations
among field theory amplitudes [26-30]. The recurrence
relation among BPST vertex operators in Eq. (4.8) leads
to the recurrence relation among Regge string scattering
amplitudes [1]:

M~ —tA@1=2) — %A([’lzl:‘hzl) = (. 4.9)

V. MORE GENERAL RECURRENCE RELATIONS

To derive more general recurrence relations, we need to
calculate the BPST vertex operators corresponding to the
general higher-spin states in Eq. (3.1). We first calculate the
BPST vertex operator corresponding to the state

lpu riy = [T(@Z)P [T (ak)10). (5.1)
n=1

m=1

The calculation is very similar to that of Eq. (3.14) up to
some modification. One can easily get that Eq. (3.22) is
now replaced by

PHYSICAL REVIEW D 88, 046004 (2013)

o “F r
Vé’;"s’f)=( ) [Tv/=tn — )1y
n=1

M
X E[f’(l - 1)!(—%)]”
_ ;(? )(21‘1\43);(1) . eL>j

X F(—l - % + j)[ik2 C9X(1)]HHr et XM (5.2)

One notes that, in Eq. (5.2), MaX(1) - e # k, - 9X(1),
and, in contrast to Eq. (3.22), the two factors with expo-
nents j and —j do not cancel out. The BPST vertex
operator for this case thus reduces to

Vit = (57) TIv=in = o
X l]j![?(z - 1)!(—%)]”

7 el aX(l))

t
U(=r, L4y, L 0
( n " el ax(1)

2
X F(—l — %)[ikz S 0X(1)] XM (5.3)

The BPST vertex operator in Eq. (5.3) leads to the
amplitude

1\n t f
A(P/,,r[)=<_M) U<—r1,§+2—r1,§)
t s\1+5
XI'N-1—-=)—-=
(-1-3(3)

: nlj_l[\/_—t(n - l)g]Pnn[f’(l - 1)!(—%)]”,

1=2
(5.4)

which is consistent with the one calculated in Refs. [1,7,8].

. . eP-9X(1)
Note that the contribution of T-ax(D)

function reduces to 1 in the Regge limit by using the first
equations of Eqgs. (3.7) and (3.8). One sees that Eq. (5.4)
can be obtained from Eq. (3.18) by doing the replacement
i—7.

We are now ready to calculate the BPST vertex operator
corresponding to the most general Regge state in Eq. (3.1).
Similar to the RR amplitude calculated in Ref. [1], the
BPST vertex operator can be expressed in two equivalent
forms:

in the correlation
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ViPridmn) — g[(n SN2 ) [ —(m— 1)!%]4’” : E[(l - 1)!%]” : (%)rll“(—l ~ é)

m=1

q1 i 7 P .
X [iky - 9X(1)] 5 XM . Z(q,l )(%) (—%— 1) U(—rl,%+2 —i- rl,%i; gig;) (5.5)
; . :

i=0 !

=t - o= [~ - 1)!%]% NIE 1)1%]"

m=2 =1
1\a: £\, . . L \/2 ef - aX(1)\
N rf-1-2= - 9X(1 1+5 JikX(1) | <~ 7)
( M) ( 2)[lk2 OX(D]e ;( j ) 7 e ax(1)
t t , f
J

In the first form, Eq. (5.5), the summation z]r.‘:o has been carried out to produce the Kummer function while, in the second
form, Eq. (5.6), the summation Z?;O has been carried out instead to produce the Kummer function. Either form, Eq. (5.5) or
(5.6), of the above BPST vertex operator leads consistently to the amplitude calculated previously [1]:

Lo 1 SRS o (R RO P OB GO

m=1 =2

Lqi \(2\if ¢t t , 7
'IZO< ; ><?) (—E—l)lU(—rl,Eﬁ-Z—l—rl,E) (58)

- ,!:[1[(” — )= - l—[[_(m _ l)!%]qm . lljl[(l B 1)!%}1

m=2

1\ t sS\1+5 & 71 \/2\if ¢t t ) f
(-= -1-=)(-=) - -=- —qu=+2—j—q.=) .
R GRS G (U O SO E CUEREITRNTE) )
Jj=0 J
Note that, for r; = 0, Eq. (5.9) reduces to Eq. (3.18) as expected. One can now derive more general recurrence relations

among BPST vertex operators. As an example, the three BPST vertex operators Viber, VEL V" ™2, and VL2~ can be
calculated by using Eq. (5.6) to be

( 1:3) — 1 & 14 . Lo t t
Vst = (_M) F(_l - E)[lkz ~0X(1)]'"2e kX(l)U(‘-’LE - 1,5— 1), (5.10)
(P1=149:=2) _ 1 2\/—I‘ \r: 1+ ikx(1) r 1
VBPST = _M -t —1— 5 [lk2 : aX(l)] 2e U _2,5,5 -1 s (511)
—on=1) _ I T6( 1)\2 t\r. iy
Vi) =R (=5 (1 = D)k - axcap e
tt 2 t t t el - 0x(1)
XUl -2,z,z—1)+——=—-1)U[-2z—1,z—1)]———| 5.12
[ < 2°2 ) t+6< 2 ) ( 2 2 )eP-aX(l)] ( )
The recurrence relation among Kummer functions derived from Eq. (4.4) [1],
t t t t t t tt
-3,=-—1,=-—1)+(=+1 —2,-=—1,=-—-1)—(=z—-1 —2,—,——1]=0, 1
() G2 - G)e(eas )0 em

leads to the following recurrence relation among BPST vertex operators at mass level M> = 4:
= —) = t t —lg =
M~/=tel - aX(1)Viher + My/—1e? - aX(1)\Vier" ™' — [(5 + 3)e” -aX(1) — (5 - l)eL - 6X(1)]V§1‘>srl’q‘ P=0.

(5.14)
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In addition to the ¢ dependence, the coefficients of the
recurrence relation in Eq. (5.14) are operator dependent.
The recurrence relation among BPST vertex operators in
Eq. (5.14) leads to the recurrence relation among Regge
string scattering amplitudes [1]:

Mﬂ/—tA(fh:3) — 4A(P|:1vfi1:2) + Mq/—tA((/l:Zrl:I) = (.
(5.15)

For the next example, we construct an intermass level
recurrence relation for BPST vertex operators at mass level
M? =2, 4. We begin with the addition theorem of the
Kummer function [25],

[o )

1
Ula,c,x +y) = Z P(a)k(—l)kka(a +kc+kx),

(5.16)

which terminates to a finite sum for a nonpositive integer a.
By taking, for example,a = —1,c =1+ 1,x =5 — l and
y = 1, the theorem gives [1]

t t t t
“L-+1z)-Ul-1,z+1,--
U( L3 1,2) U( Lyt 13 1)

—U<0,1+2,£— 1)=0. (5.17)

2 2

Equation (5.17) leads to an intermass level recurrence
relation among BPST vertex operators,

M)t + VIS ™D — 2pg(a)2 =i

+2M@)\VEGY =0, (5.18)

where masses M(2) =42, M@4)=+4=2, and
VAL ™! are BPST vertex operators at mass level M2 =
2, and Vi ™", VB are BPST vertex operators at
mass levels M?> = 4. In deriving Eq. (5.18), it is important
to use the fact that the exponent of [ik, - 9X(1)]'*% in the
BPST vertex operator in Eq. (5.6) is mass level N inde-
pendent as mentioned in the paragraph after Eq. (3.24). The
recurrence relation among BPST vertex operators in
Eq. (5.18) leads to the recurrence relation among Regge
string scattering amplitudes [1]:

MQ)(r + 6)AP1=bai=D) — 2p1(4)2 /=A@ =1=D

+ 2M(4)APr1=1r=D =, (5.19)

In Ref. [1], it was shown that, at each fixed mass level,
each Kummer function in the summation of Eq. (5.9) can
be expressed in terms of Regge string scattering amplitudes
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APwanir) at the same mass level. For general values of a,
any Kummer function U(q, c, x) can be expressed in terms
of two of its associated functions, while for nonpositive
integer values of a in the RR string amplitude case, one can
further fixes U(a, ¢, x) up to an overall factor by using
Kummer function recurrence relations [1]. As a result, all
Regge string scattering amplitudes can be algebraically
solved by Kummer function recurrence relations up to
multiplicative factors. An important application of the
above properties is the construction of an infinite number
of recurrence relations among Regge string scattering am-
plitudes. One can use the recurrence relations of Kummer
functions Egs. (4.1) to (4.6) to systematically construct
recurrence relations among Regge string scattering
amplitudes.

In view of the form of BPST vertex operators calculated
in Eq. (5.6), one can similarly solve [1] all Kummer
functions U(a, ¢, x) in Eq. (5.6) in terms of BPST vertex
operators and use the recurrence relations of Kummer
functions Egs. (4.1) to (4.6) to systematically construct
an infinite number of recurrence relations among BPST
vertex operators. Moreover, the forms of all BPST vertex
operators can be fixed by these recurrence relations up to
multiplicative factors. These recurrence relations among
BPST vertex operators are dual to linear relations or sym-
metries among high-energy fixed-angle string scattering
amplitudes discovered previously [16—19].

We illustrate the prescription here to construct other
examples of recurrence relations among BPST vertex op-
erators at mass level M?> = 4. Generalization to arbitrary
mass levels will be given in the next section. There are 22
BPST vertex operators for the mass level M? = 4. We first
consider the group of BPST vertex operators with g; = 0,
(VL VELL, VEEL, VEEE) [1]. The corresponding r
for each BPST vertex operator is (0, 1, 2, 3). Here, we
use a new notation for the BPST vertex operator, for

LLT — ypi=1r=2) LT _ ylpi=Ln=1)
example, YBPSI =Vepst ' > Veest = Vepsr T
VIL =V n=Y ete. By using Eq. (5.6), one can easily

calculate that

— I\r. L
VggsTT =( —t)3F(—1 - 5)[,1(2 . 8X(1)]1+§e'kx(1)

t t
X U(O, —+2,-— 1), (5.20)

2 2

t+6 ~ -
Vipst = W(V—tﬁ(—l —~ E)Dk2 - 9X(1)]! Heikx ()
t t 2 P
—+2——1)+—(—=-1
[U(O 2 2 ) t+ 6( ) )
t t el - ax(1)

XU(0 5+ 10— 1) 5—— 21
U(O’ 272 )eP ax(l)]’ (5:21)
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v]élésTT—(”ﬁ) =or(-1 )[zkz ox(a e -[u(0+25-1)
-1

O £ S (AT e

(— %)[zkz aX(l)]Hze’kX(')-l: (0 +2; 1)+%(—%—1)U(0,%+1,%—1)—Z,L):Z§8;
L
(e (5 )(3) 055 1)[*p i’éiii]

I A M T

From the above equations, one can easily see that U (O + 2,4 — 1) can be expressed in terms of VEIL, U(0, 4+ 1,5 — 1)
can be expressed in terms of (VELL,, VAL, U(0,4,£— 1) can be expressed in terms of (V1L VEIL V]%}ESTT) and finally
U(0,%£— 1,5 — 1) can be expressed in terms of (V];ZSTT, VELL., VEEL., VEEE). So all Kummer functions can be solved and
expressed 1n terms of BPST vertex operators. We have
t t
U(O, E + 2, E - 1) = 1('\/ 3V§IZ;STT, (524)
t t t+6[e’ - 0X(1) 2M
UO,—+ __1 — 71 —t -3 |: ].I:VTTT _ = —IVLTT :I’
( 5T by )= (V=1) i+ 2Lek - ax(1) BPST — ¢ BPST (5.25)
tt (t+6)2re’ - 9x(1)72 2M 2M
0,-.-—1)=0Q (=03 [ ] [ TTT _ 9 [—7VLIT ( /—) VLLT]
U( 2’2 ) V0 L ax ) LY T 2y Ve (5 Best
t t (r+6)7° e’ - ax()7PP
ulo--1--1)=07'(/-1? [ ] -[VTTT - \/ tVEES,
( D) D) ) ( ) t(t2 — ) L. aX(l) BPST BPST
2M 2M
w3 2= v - (2 vE) vﬁssLT] 527

where Q = T'(—1 — {)[ik, - aX(1)]' 2 To derive an example of the recurrence relation, one notes that Eq. (4.2)
gives

tt t ot t tot
— —(r— —+1L=—1)+(=— —+2-—1)= :
U(O 57 ) (t l)U(O,2 1,2 1) <2 I)U(O,2 2,2 1) 0, (5.28)

which leads to the recurrence relation among BPST vertex operators:

[(t ~ 1) _ =1+ 6) e ax(1) (1 +6) [eP : aX(l)] ]Vm

2 t+2 el-ax(1) 2+ 2)Lef - ax(1) BPST

+[(z— 1) eP-aX(l)_(t+6)[e”'<9X(1)] ](2M\/_)VégSTT [ ! [ep'ax(l)] ](2M\/_)2 Vibsr =

t+2 el-ax(1) (t+2)Lel - ax(1) 2(t+2)Lel - 9X(1)
(5.29)
Again, one can use Eq. (5.29) to deduce the recurrence relation among Regge string scattering amplitudes:
(t +22)AP =) — 14M/=tAP=21=D + 202 (/=12 AP =1n=2) =, (5.30)

Other recurrence relations of Kummer functions can be used to derive more recurrence relations among BPST
vertex operators. For example, Eq. (4.2) gives a recurrence relation of U(0,7 + 1,1 — 1) and its associated functions
U@0f—L5=1)and U0, +2,1—1)

t t t t t t
——1,-—-1)-@t— —+1,=—1)+2(r— —+2,-—1)= :
tU<O,2 L 1) (3¢ 4)U<0,2 L3 1) 2(t 2)U<0,2 25 1) 0, (5.31)

which leads to the recurrence relation among BPST vertex operators:

046004-9



CHIH-HAO FU et al.

PHYSICAL REVIEW D 88, 046004 (2013)

(Bt —4)(t+6) e’ - 0X(1) (t+6)3
[2” AT T doax) T @—aldax
(t + 62T e - aX(1)
a 3(z2 —4) [eL . ax(l)] ] (M=) Vg + (? —4)

- [(t2 1_ 4) I:Zi

ax(1)

e ] Jem=orviss =

BPST

[eP : aX(l)] ]VTTT N [(31‘—4) el - 9X(1)

t+2 el-9Xx(1)

[3(t +6) [eP : ax(l)]3](2MJ—_t)2Vé§sTT

el - 9X(1)

(5.32)

One can use Eq. (5.32) to deduce the recurrence relation among Regge string scattering amplitudes:

(322 + 761 + 92)AP1=Y — 2(231 + 50)M~/—tAP1 =21~ + 6M(1 + 6)(V—1)2AP1 =12 — 4pB(/=1)PA =Y = (.,

Similarly, we can consider groups of BPST vertex opera-
tors (Vigsr, Vigsr): (Visgst Vispsr): and (Vigsr, Vigsr)
with g; =0; a group of BPST vertex operators
(VELL, VEEL, VELL) with ¢, = 1; and group of BPST
vertex operators (V55D VEEL) with g, = 2. All the re-
maining 7 BPST vertex operators are with r; = 0, and each
BPST vertex operator contains only one Kummer function.
Thus, all Kummer functions involved at mass level M? = 4
can be algebraically solved and expressed in terms of
BPST vertex operators. One can then use recurrence rela-
tions of Kummer functions to derive more recurrence
relations among the BPST vertex operators.

(VT)N*m*rl(VP)m(VL)r] = V}%;ﬁvrl,ql»rl) — F(— _ 1)[1/{2 aX(l)]l+2€sz(l)( /—t)N*lIFrl(_

(5.33)

VI. ARBITRARY MASS LEVELS

In this section, we solve the Kummer functions in terms
of the highest-spin string states scattering amplitudes for
arbitrary mass levels. The highest-spin string states at the
mass level M2 = 2(N — 1) are defined as

— L q1, V1> = (azl)N*’h*rl(alil)lh

X (ak )10, k),

IN — ¢,
(6.1)

where only the a_; operator appears. The highest-spin
string states BPST vertex operators can be easily obtained
from Eq. (5.6) as

1 )‘h( 7 )Vl
M 2M

t

2
R ZeL axX(V( t N
§< )f’ P axm)( 2 l)jU< quy T2 ql,i). (6.2)

In view of the form of Eq. (5.27), we can solve the Kummer function from Eq. (6.2) and express it in terms of the highest-

spin BPST vertex operators as

t N\ T'(=£-1
U(_%,E"‘ 2-q— rl’i) = —(_12_ D
2 8

X[eP-aX(l)

el - aXx(1)

T _
[iks - OX(1)]1 X0 . (—MVP)‘h(—V )N !
J=1

(\/—_tMVL — ﬂ)]

T3 (6.3)

Putting the Kummer functions (6.3) into the recurrence relations (4.1), (4.2), (4.3), (4.4), (4.5), and (4.6), we can then obtain

recurrence relations among BPST vertex operators.
Let us consider, for example, the recurrence relation

(c—a—-1DU(a,c—1,x)

With

a= —dqy,

the above recurrence relation becomes

c==+1—gq; —

—(x+c—1))U(a, c,x) +xU(a,c+1,x) =0. (6.4)
T t-M*+2 6.5)
Ty 2 :
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t t ‘

<§_"1)U<_(]1:§_(]1 - ”15)
_<£+£_QI - rl)U(_QI,E"' 1 —q - rl,i)
22 2 2

f t f
+—U(—q1,—+2—q1 —rl,—)=0.

5 7 5 (6.6)

Plugging the Kummer functions (6.3) into the above re-
currence relation, we obtain the recurrence relation among
BPST vertex operators at general mass level N,

Ve - [x+ (545 = g - n)x

I(t
where we have defined
el - 9X(1) vt ¢
X=—"—\V-tM———
el - aX(l)( 14 2)
el - 9X(1) VL t+ M2 +2
= I ax(D) ax(1) (x/ tMW — ) (6.8)

As an example, at the mass level M? =4 with ¢, =
ri =0, we get

2
(VT)3|:X2 +(—- DX+ (tz - 1)] =0, (6.9)
where
e aX()( — VP 146
= ToxM) aX(l)(\/_zMW T) (6.10)

A simple calculation shows that Eq. (6.9) is exactly the
same as Eq. ((5.29)), and the same recurrence relation
among Regge string scattering amplitudes ((5.30)) follows.

VII. DISCUSSION

Although we focus here on the spin dependence of the
four-point open-string amplitudes, it is useful to briefly
recall the generality of the BPST vertex operator, which
emphasizes Regge factorization and can be applied to
arbitrary n-point amplitudes, n = 4. A Regge limit is
defined by singling out a longitudinal direction, e.g., the
Z axis, along which all momenta are large while keeping
transverse components, p |, fixed. We separate particles
into two groups, the right-moving and left-moving, with
large p, and p_ large, respectively. Each can have np and
n; states, with ng + n; = n and ng, n; = 2. Within each
group, relative momenta remain finite in the Regge limit.
Any n-point open-string amplitude can formally be ex-
pressed in a factorable form A; z = [dw(Wgrwlo2W,),
where Wy and W, are products of respective right-moving
and left-moving vertex operators, with all world sheet
integrations done except one, i.e., w. The last remaining
integration is such that the factor wlo corresponds to over-
all rescaling in the world sheet coordinates in W, . (For

PHYSICAL REVIEW D 88, 046004 (2013)

more details, see Ref. [2].) In the Regge limit, the ampli-
tude A, y takes on a simply factorized form, and it can be
expressed in terms of the BPST vertex operator,

Ap g = (WrVIHILeXVIW,)

= (WroV AIL(N)s®OKVFIW, o), (7.1)

where «a(7) is the leading Regge trajectory, with o’ = 1/2,
and TI(r) is a Regge propagator, given by a Gamma func-
tion. Here, V= are BPST vertex operators, which are “on
shell” along the leading trajectory. This is the most general
form of Regge factorization for any number of external
particles. The factors (Wg oV ™) and (V" W/ ) are general-
ized (ngr + 1)- and (n; + 1)-point on-shell amplitudes,
evaluated in the respective rest frame, with one external
line being on the leading Regge trajectory. Each, due to
Mobius invariance, involves np — 2 and n; — 2 world
sheet integrations.

We have studied in this paper the Regge behavior of
four-point open-string scattering amplitudes, with one par-
ticle having arbitrary high spin and three others being
tachyons, using the technique of the BPST vertex operator.
Since we only work with four-point amplitudes in this
paper, np = n; = 2, there is no integration involved for
(WgoV™) and (VT W, ), due to Mobius invariance. In
particular, W; involves two tachyons. Since one can
show that (V™ W, ) is simply a constant, therefore, what
we have calculated is simply (Wg V™), with W a product
of two vertex operators, one for a tachyon and another for a
string state with arbitrary spin. For brevity, we have col-
lectively referred to Wy oV~ as BPST vertex operators. The
generalization of our analysis to amplitudes forn = 5,6. ..
will be treated elsewhere.

We have derived in this paper an infinite number of
recurrence relations among these matrix elements of the
BPST vertex operator between different string states with
different spins, which can be expressed in terms of a
Kummer function of the second kind. These recurrence
relations lead to the same recurrence relations among
Regge string scattering amplitudes recently discovered in
Ref. [1] by a more traditional method. We show that all
Kummer functions involved at each fixed mass level can be
algebraically solved and expressed in terms of BPST ver-
tex operators. We give a prescription to construct recur-
rence relations among BPST vertex operators. For
illustration, we calculate some examples of recurrence
relations among BPST vertex operators of different string
states based on recurrence relations of Kummer functions
together with the addition theorem of Kummer function.
We stress that, although the higher-spin BPST vertex op-
erators were considered in Refs. [2,3], the key observation
on the energy orders in the Regge limit from polarizations
of higher-spin states was not discussed in Refs. [2,3]. One
cannot obtain recurrence relations among higher-spin
BPST vertex operators in the Regge limit without includ-
ing the energy orders from these higher-spin polarizations.
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The recurrence relations among BPST vertex operators
lead to the recurrence relations among Regge string scat-
tering amplitudes. They are thus both closely related to
Regge stringy Ward identities [1] derived from the decou-
pling of Regge ZNS in the string spectrum. These recur-
rence relations are dual to linear relations derived from
ZNS or symmetries among high-energy fixed-angle string
scattering amplitudes [16—19].
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