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A sandwiched light-trapping electrode structure, which consists of a capping aluminum-doped ZnO
(AZO) layer, dispersed plasmonic Au-nanoparticles (Au-NPs), and a micro-structured transparent
conductive substrate, is employed to stabilize and boost the conversion-efficiency of hydrogenated
amorphous silicon (a-Si:H) solar cells. The conformal AZO ultrathin layer (5 nm) smoothened the Au-
NP-dispersed electrode surface, thereby reducing defects across the AZO/a-Si:H interface and resulting
in a high resistance to photo-degradation in the ultraviolet-blue photoresponse band. With the
plasmonic light-trapping structure, the cell has a high conversion-efficiency of 10.1% and the photo-
degradation is as small as 7%. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818621]

Hydrogenated amorphous silicon (a-Si:H) thin film solar
cells have attracted a wide attention because of their low-
cost and low-thermal budget characteristics. To maximize
the photoconversion efficiency of a solar cell, one needs to
improve photo-absorption, photocurrent generation, and
carrier-collection for the cell; these can be realized by opti-
mization of the cell structure, including band-gap-engineered
active layers of low defect, highly transparent conductive
metal-oxide (TCO) layers with a micro-structured texture or
multi-scale-structure,'* and the introduction of plasmonic
nanoparticles (NPs).> However, textured transparent electro-
des barely provide multi-functionalities and efficient carrier
collection for broadband light-trapping structures. Moreover,
they are not suitable substrates for stacking multi-layered
photovoltaic devices of high quality. A front-side ZnO elec-
trode with a three-dimensional hexagonal micro-hole array,
which was patterned by electron beam lithography, has been
demonstrated to enhance the conversion efficiency of micro-
morph Si-based thin-film solar cells. The optical modeling
shows that a-Si:H/uc-Si:H micromorph cells with the micro-
hole array electrode can achieve a conversion efficiency of
15%. However, experimental result yields a conversion effi-
ciency of only 10.3%.* Boccard et al., recently reported a
new broadband light-trapping architecture that produced a
conversion efficiency of 14.1% for micromorph solar cells.'?
The front-side electrode of the trapping structure had a ho-
mogeneous multi-scale ZnO layer prepared by the combina-
tion of nano-imprint technique and low pressure chemical
vapor deposition (CVD). In addition, when metal nano-struc-
tures>® or metal NPS,3 such Ag and Au, are combined with a
thick ZnO layer for the use as the back-reflector, back light-

YE-mail: jmshieh@ndl.narl.org.tw (or jmshieh@faculty.nctu.edu.tw). Tel.:
886-3-5726100-7617. Fax: 886-3-5722715

PE-mail: fmpan@faculty.nctu.edu.tw. Tel.: 886-3-5712121-31322. Fax:
886-3-5724727

0003-6951/2013/103(7)/073107/5/$30.00

103, 073107-1

scattering is strongly enhanced. Such nanostructures can
avoid the generation of extra interface and bulk defects in a-
Si:H multilayers. However, substrate-type (n-i-p) single
junction solar cells fabricated with these light-trapping
schemes exhibit a low conversion efficiency (<8.5%). In our
previous study, highly UV-transparent dielectric particles
can scatter the sunlight into the a-Si:H layer mainly via the
waveguide mode,”® enhancing light absorption in the
ultraviolet-visible wavelengths regime and, thus, raising the
conversion efficiency to 8.5%.° For superstrate-type (p-i-n)
solar cells, the incorporation of metal nano-structures or
metal NPs is rarely used in the front-side light-trapping
scheme for the fabrication of stable Si thin-film solar cells
with high conversion efficiencies. This is because the plas-
monic enhancement in the quantum efficiency (QE) occurs
only in a narrow bandwidth and the formation of interface
structural defects between a-Si:H absorptive layer and TCO
is inevitable."”' In this letter, we propose a sandwiched
light-trapping structure, which consists of a capping
aluminum-doped ZnO (AZO) thin film, dispersed plasmonic
Au nanoparticles (Au-NPs), and a micro-structured transpar-
ent conductive electrode (Asahi SnO,:F, FTO). Such the
sandwiched structure provides the immunity to metal diffu-
sion and a low-defect AZO/a-Si:H interface, where the AZO
acted as a protective layer eliminating H™ ion bombardment
on the electrode substrate.'* The low plasma power density
for the a-Si:H deposition can also minimize the ion bombard-
ment on the substrate.' Moreover, the nano-scale smooth
surface of the TCO electrode by smoothening the protrusion
and sharp valley of FTO/Au-NPs is beneficial to the growth
of the dense a-Si:H film of low-defect density.'® The Au-
NPs/AZO layer enhances the absorption of the green-red so-
lar energy via the plasmonic effect, and the micro-structured
FTO functions like a short-wavelength scatter, which
increases the ultraviolet-blue solar-energy utilizaiton.'
Because of these merits, the sandwich structure enhances

© 2013 AIP Publishing LLC
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broadband light-harvesting and reduce the defect density
across the AZO/a-Si:H interface for the a-Si:H thin film solar
cell that demands a high conversion efficient and high resist-
ance to photo-degradation. The solar cell integrated the sand-
wich scheme with the low-defect a-Si:H stacked layer'®
exhibits a short circuit current density (J,.) of 16.6 mA/cm?,
filling factor (FF) of 72.4%, conversion efficiency (1) of
10.1%, and high resistance to photo-degradation (<7%).

The fabrication of the a-Si:H solar cell begins with the
preparation of the multi-functional front-side electrode. First
Au-NPs were self-assembled on the micro-structured Asahi-
type substrate (SnO,:F, FTO), followed by the deposition of
an ultra-thin AZO capping layer. The a-Si:H p-i-n multilayer
(12-nm p-layer/400-nm i-layer/20-nm n-layer) was then de-
posited on the light-trapping electrode by high-density
inductively coupled plasma CVD (ICP-CVD),"” which can
produce a-Si:H thin-films of low defect at the substrate tem-
perature of 140°C. A 80-nm-thick indium tin oxide (ITO)
and a 500-nm-thick Al metal were then deposited on the ICP
a-Si:H p-i-n multilayer as the back-electrode. The mono-
dispersed Au-NPs of 15nm in size in water solution were
synthesized by the citrate chemical reduction method at low
temperatures.'’ To form the self-assembled Au-NPs mono-
layer on the micro-textured FTO substrate, we sequentially
immersed the bare FTO-covered glass substrate in the 3-
aminopropyltrimethoxysilane (APTMS)/ethanol solution and
the solution containing dispersed Au-NPs. The APTMS
forms strong chemical bonds with FTO and can selectively
attach to Au-NPs via the terminal ligand (-C-NH3). The dep-
osition of the conformal AZO capping layer (5nm) on the
self-assembled Au-NPs monolayer was carried out using
scanning-mode DC-sputtering deposition, which was oper-
ated at a low power density (0.75W/cm?), a low pressure
(2.4 mTorr), and a low scanning speed (6 mm/s) to reduce
the deposition rate (2 A/s). The FTO substrate without Au-
NPs was used as the control sample. The photovoltaic per-
formance was characterized by an AM1.5G Global sun simu-
lator (Oriel Sol3A) with the white light of 1000 W/m?
irradiance. The light-soaking measurement was performed
under the white-light irradiance of 6000 W/m? (6-Sun). The
device reached accordingly a steady-state temperature at
60°C due to the irradiation, thereby accelerating photo-
degradation of the device.'” The defect density of the intrin-
sic a-Si:H layer on different electrodes was determined by
the drive-level capacitance profiling (DLCP).'®!'?

nano-structured Au-NPs/AZO

micro-structured Sn0O,:F

Hybrid plasmonic structure

FIG. 1. (a) The schematic diagram of
p-i-n-type a-Si:H thin film solar cell
for micro-structured electrode of FTO
(MS), plasmonic-structured electrode
of FTO/Au-NPs (PS) and FTO/Au-
NPs/AZO hybrid electrode (HPS); (b)
15nm Au-NPs self-assembled on FTO
electrode; (c) the cross-sectional TEM
image of p-i-n-type a-Si:H thin film so-
lar cells on HPS electrode; (d) the
HRTEM image across FTO, Au-NPs,
AZO, and a-Si:H p-layer.

Figure 1(a) schematically shows three structures of the
p-i-n a-Si:H thin film solar cell; one is with the micro-
structured FTO electrode (MS), one with the FTO/Au-NPs
plasmonic electrode (PS), and one with the FTO/Au-NPs/
AZO hybrid electrode (HPS). The SEM image of Fig. 1(b)
shows that Au-NPs of 15 nm in size are well dispersed on the
FTO substrate with the NPs density of ~2 x 10"%cm 2.
Excessive Au-NPs can reduce light absorption of the active
layers and may result in a non-conformal AZO capping,
which may induce microstructure defects, such as cracks or
voids, across the AZO/a-Si:H interface. Figures 1(c) and
1(d) show the cross-sectional transmission electron micros-
copy (TEM) images of the p-i-n a-Si:H thin film solar cell
with the FTO/Au-NPs/AZO structure. The conformal AZO
layer tends to smoothen the Au-NPs dispersed FTO elec-
trode, and microstructural defects are absent across the AZO
layer, the p-layer and the intrinsic a-Si:H layer.

The current-voltage (I-V) characteristics of the a-Si:H
thin film solar cells integrated with different front-side light-
trapping electrodes are shown in Fig. 2. Table I lists the pho-
tovoltaic characteristics of the three light-trapping-structured
solar cells. According to our previous study, the ICP intrinsic
a-Si:H layer has a low-defect density of 3 x 10" cm—>.'>1?
The MS-PV shows a high Ji. of 16.3 mA/cm? with the con-
version efficiency as high as 9.6%. In addition, the device
has a low dark saturation current of 1.2 x 10~ A/cm?” and a
high FF of 70.4%. When plasmonic Au-NPs are deposited
on the micro-structured FTO electrode (PS-PV), the solar
cell shows a degraded photovoltaic performance with
J.=15.5 mA/cm?, FF = 67.8%, and n = 8.85%. On the other
hand, the insertion of the AZO layer between the p-layer and
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FIG. 2. The I-V characteristics of MS-, PS-, and HPS-PV devices before
(initial state) and after (stabilized state) light-soaking.
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TABLE I. The cell-performances comparison for the MS-, PS-, and HPS-
PVs before (initial state) and after (stabilized state) light-soaking test. The
cell area is 1 cm”.

Cell type Voe VOlt)  FF (%)  Jo(mAfem®) (%)
MS-PV (initial state) 0.84 70.4 16.3 9.6
MS-PV (stabilized state) 0.83 62.6 15.9 8.4
PS-PV (initial state) 0.84 67.8 15.5 8.85
PS-PV (stabilized state) 0.82 62.0 15 7.65
HPS-PV (initial state) 0.84 72.4 16.6 10.1
HPS-PV (stabilized state) 0.84 68.3 16.3 9.4

the Au-NPs dispersed FTO electrode leads to an increase in
the FF (72.4%) and J. (16.6mA/cm?), thereby greatly
enhancing the conversion efficiency of the HPS-PV cell to
10.1%. The improved FF of the HPS-PV cell may be attrib-
uted to the more stable AZO/a-Si:H interface in comparison
with the PS-PV cell. Because of the stable interface, the
HPS-PV cell is less vulnerable to photo-degradation and,
therefore, exhibits a higher conversion efficiency after light-
soaking (stabilized state) as to be discussed later.

Figure 3(a) shows the initial QE spectra of the three PV
cells before light-soaking. The QE of the PS-PV cell is lower
in the range of 350-500nm than that of the MS-PV cell.
However, with the conformal AZO capping layer on Au-
NPs, the QE of the HPS-PV cell is comparable to that of the
MS-PV cell in the ultraviolet-blue band. The lower QE of
the PS-PV cell in the ultraviolet-blue band is likely due to
the optical loss and microstructural defects induced by Au-
NPs. However, the presence of the AZO capping layer
reduces the microstructural defects at the AZO/a-Si:H inter-
face and compensates the photocurrent loss via the stable
interface. Moreover, by properly adjusting the size and den-
sity of Au-NPs, and the dielectric constant of the surrounding
media, one can match the localized surface plasmon
resonance (LSPR) wavelength of metal-NPs in a hybrid

Appl. Phys. Lett. 103, 073107 (2013)

plasmonic light-trapping structure with the specific photores-
ponse band of an a-Si:H PV device.”**! In this study, we
carefully optimized the fabrication conditions of the HPS
electrode, including the size and density of Au-NPs and the
thickness of the AZO layer, to enhance the plasmonic effect
in the green-red band. The photocurrent loss in the short
wavelength range can be effectively compensated by the
gain of the enhanced electromagnetic field due to the Au-
NPs/AZO induced plasmonic effect. Therefore, more hole
carriers are photogenerated in the active layer by the
enhanced field and are extracted from the p-layer to the AZO
layer, leading to a higher photocurrent in the green-red
band."' As a result, the HPS-PV cell has a better quantum ef-
ficiency in the range of 550-650 nm than the MS-PV cell.

The reverse-bias QE method is usually employed to study
the photovoltaic behavior of photogenerated carriers trapped
by interface and bulk defects because the applied reverse-bias
can increase the electric field across the p-i-n multilayer and,
thus, enhance the extraction of photogenerated carriers.
Figures 3(b)-3(d) show the QE spectra under the zero-bias
(0V) and the reverse-bias (—1 V) for the three PV devices. In
a reverse-bias QE spectrum, a higher QE indicates that more
photogenerated holes and electrons are trapped by defects near
the p-/i-layer and the i-/n-layer interfaces, respectively.”>>
The reverse-bias QE of the HPS-PV cell is lower in the
ultraviolet-blue wavelengths regime than that of the MS-PV
and PS-PV cells, suggesting a lower defect density across the
interfaces. This is likely because the conformal AZO layer
encourages the formation of the interface of low defect density
with the intrinsic a-Si:H layer. As a result, the photocurrent
loss can be compensated by a better carrier collection due to
the improved microstructural property of the interface.

Figure 4(a) is the energy dispersive spectroscopy (EDS)
mappings that show the elemental distribution in a selected
area of the HPS-PV cell. From the mappings, Au-NPs are
strictly confined in the AZO capping layer without

800 FIG. 3. (a) The initial QE of MS-, PS-,
and HPS-PV devices and the QE oper-
ated under OV and —1V bias for (b)

(d) MS-PV device, (¢) PS-PV device, and
(d) HPS-PV device.
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perceivable Au diffusion into the a-Si:H multilayer. The
high resolution TEM (HRTEM) image in Fig. 4(b) shows the
presence of crystalline Si nanograins near the interface
between the p-layer and the AZO layer as indicated by the
dashed circles and the inverse fast-Fourier transform image
in Fig. 4(c). Raman spectroscopy also revealed the formation
of nanocrystalline-Si (nc-Si) in the p-layer of the HPS-PV
cell (not shown). The nc-Si grains were not found in the
p-layer of the MS- and PS-PV cells, suggesting that the con-
formal AZO layer induces the partial crystallinity. Because
the a-Si:H/nc-Si mixed-phase layer is analogous to the poly-
morphous Si (pm-Si) in the aspect of microstructure, it can
exhibit a better photocarrier transport efficiency compared
with the a-Si:H layer.>*?

Figure 5(a) shows the QE,y of the three PV cells as a
function of the light wavelength. The QE,; is herein defined
by the ratio of QE at —1V to QE at O V. All the three cells
demonstrate a higher QE,, in the ultraviolet-blue wave-
lengths range and a lower QE, in the green-red wavelengths
range, suggesting that trapped charge carriers near the p-/i-
layer interface influence the photovoltaic behavior much
more than those near the i-/n-layer interface.”*** The high
QE,ss in the ultraviolet-blue wavelengths range primarily
arises from the recombination of photogenerated electrons
with holes trapped by defects near the p-/i-layer interface.

Appl. Phys. Lett. 103, 073107 (2013)

FIG. 4. (a) The elemental distribution
in a selected area of the HPS-PV cell
for Sn, Zn, Au, and Si by TEM-EDS,
(b) the dispersed nc-Si in the a-Si:H p-
layer, and (c) the inverse fast-Fourier
transform image of nc-Si.

Therefore, the lowest QE,, of the HPS-PV cell in the
ultraviolet-blue wavelengths range can be ascribed to a less
hole accumulation across the p-/i-layer interface. In addition
to a smaller defect density at the interface, an efficient collec-
tion of photogenerated carriers can also improve the QE, . It
has been reported that the high work function of the AZO
layer can moderate the abrupt band bending across the AZO/
a-Si:H interface leading to a barrier height lowering and, thus,
to a better collection efficiency of hole carriers.*®?’
Therefore, the introduction of the AZO layer may result in
the barrier height lowering between the electrode and the
p-layer and, thus, yields the better QE, of the HPS-PV cell.

To study the influence of the three transparent electrodes
on the film quality of the intrinsic a-Si:H layer, we measured
the bulk-defect density of the intrinsic a-Si:H layer after light
illumination at 120 °C for 10*s by DLCP.">"'®!? Figure 5(b)
shows the integrated defect density (Np) of the PV cells as a
function of the depth from the top of the p-i-n active layer af-
ter light-soaking. The HPS-PV cell exhibits the lowest bulk-
defect density of ~6 x 10" cm_3, and both the MS- and the
PS-PV cells have a Np higher than 1.4 x 10"°cm . The
DLCP analysis suggests that the FTO/Au-NPs/AZO structure
facilitates the growth of an intrinsic a-Si:H layer of low-
defect density, which improves the stability of the HPS-PV
cell after light-soaking.

1.3
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Photo-degradation of a-Si:H PV devices resulting from
the Staebler-Wronski effect (SWE) is the major obstacle to
the practical use of PV devices because the induced metasta-
ble defects during light-soaking enhances the recombination
of photogenerated carriers. Figure 6(a) shows the QE spectra
of the three PV cells before (initial state) and after (stabilized
state) the light-soaking process. These cells demonstrate very
slight photo-degradation in the green-red wavelengths range
after the light-soaking. On the other hand, obvious photo-
degradation occurs to all the three cells in the range of
350-500 nm. However, HPS-PV cell shows a higher resist-
ance to photo-degradation than the MS- and PS-PV cells.
Figure 6(b) shows the conversion efficiency of the PV cells
subjected to light exposure of 6-sun irradiance at 60 °C as a
function of the light exposure time. According to the figure
and Table I, the conversion efficiency of the HPS-PV cell
decreases by about 7.0% after the light exposure of 10*s, and
the MS- and PS-PV cells show a decrease in the conversion
efficiency of 12.5% and 13.6%, respectively. In combination
of the hybrid plasmonic-structured electrode and the ICP-a-
Si:H p-i-n multilayer of low defect density, the HPS-PV cell
clearly demonstrates a high efficiency and a high stability.

In summary, the a-Si:H thin film solar cell, which consists
of the hybrid plasmonic-structured AZO/Au-NPs/FTO elec-
trode and the a-Si:H active layers of low-defect density, has a
high photovoltaic efficiency and stability. The hybrid plas-
monic light-trapping structure exhibits a broadband light har-
vest, a high conversion efficiency of 10.1% and a slight photo-
degradation as small as 7% after light-soaking. The good pho-
tovoltaic properties result from the introduction of the confor-
mal AZO ultra-thin layer between the active layers and the
Au-NPs dispersed FTO substrate. The AZO layer encourages
the growth of the a-Si:H layers of low defect density and, thus,
improves the interface properties between the a-Si:H active
layers and the electrode. As a result, the plasmonic a-Si:H solar
cell has an enhanced efficiency in the green-red band and a
high resistance to photo-degradation in the ultraviolet-blue
wavelengths regime. This multi-functional light-trapping elec-
trode structure has a great application potential for the a-Si:H
thin film solar cell technology, in which devices of high per-
formance and high stability are extremely desirable.
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