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Exciton wave function localization and exciton diamagnetic coefficient in semiconductor
quantum rings without reflection symmetry
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We theoretically study how reflection asymmetry affects the neutral exciton diamagnetic coefficient in self-
assembled InGaAs/GaAs semiconductor wobbled quantum rings. The previously proposed mapping method
is used to simulate the exciton wave function and energy in the rings. The description is suited to clarify the
important question of the exciton diamagnetic coefficient stability in the rings with broken reflection symmetry.
Our simulation results confirm that the exciton wave function of the reflection symmetrical (balanced) wobbled
ring is distributed equally over two potential valleys corresponding to the hills in the ring’s shape. At the same
time, even a very small reflectional imbalance in the geometry and (or) material content of the wobbled rings
destroys the ringlike shape of the exciton wave function and causes the localization of the function in one of
the potential valleys of the ring (dotlike shape of the exciton wave function). This leads to a rapid decrease
of the exciton diamagnetic coefficient. Our calculation results are in good agreement with recent experimental
observations.
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I. INTRODUCTION

Semiconductor self-assembled quantum rings (SAQRs)
are nano-objects of a non-simply-connected topology.1–5

This distinctive characteristic of SAQRs recently has
attracted considerable attention. It is assumed that SAQR
specific geometry and the absence of crystal defects and
impurities can provide experimentalists with the unique
opportunity to observe topological quantum effects for
charged particles confined in the SAQRs (including the
optical Aharonov-Bohm effect).6–15 Impressive progress
in semiconductor nanofabrication technology makes it
possible to produce and investigate SAQRs within a
wide range of geometrical and material parameters (see,
e.g., Refs. 16–28 and references therein). Among them,
IncAs1−cGa/GaAs SAQRs have been investigated extensively
both experimentally and theoretically (see, for instance,
Refs. 3, 8, 11, 13–15, 17, 26, and 28–43). It was found that
magnetic and magneto-optical properties of the rings strongly
depend on their actual geometrical and material parameters.
At the same time, the shape of embedded IncAs1−cGa/GaAs
SAQRs grown on a (001) surface of a GaAs substrate in
general does not possess cylindrical symmetry. The height of
the IncAs1−cGa/GaAs ring at the rim (and In concentration
near the rim) is larger along the [110] direction (x axis in Fig. 1)
than in the [110] direction (y axis in Fig. 1).17,34 This forms
two distinct hills in the ring’s shape (and correspondingly two
potential valleys for electrons and holes) along the x direction
(see Fig. 1). The “wobbled” geometry affects the magnitude
of the single-electron magnetization oscillation35,36,43

and exciton diamagnetic response13,37–39 of the
rings.

The ground-state energy of an exciton in a weak magnetic
field (B) can be presented by

Eext(B) = E0
ext + sμBgextB + αdB

2,

where E0
ext stands for the exciton energy at B = 0 T, μB is

the Bohr magneton, gext is the exciton Landé factor, s = ±1
presents the exciton spin polarization along the magnetic
field direction, and αd is the exciton diamagnetic coefficient.
The diamagnetic coefficient is obviously connected to the
second derivative of the exciton energy with respect to the
magnetic field magnitude and for the weak-field limit: αd =
1
2

dEext
dB

|B=0.15,40 In the strong confinement regime10,41 (when
the magnetic field is applied along the system growth direction,
z axis), the coefficient can be evaluated by using the effective
radii (the characteristic confinement lengths) of the electron
ρe and hole ρh in the plane perpendicular to the magnetic
field,44

αd = e2

8

(
ρ2

e

me

+ ρ2
h

mh

)
,

where e is the electronic charge and me (h) stands for the
electron (hole) effective mass. Therefore, the actual value
of the exciton diamagnetic coefficient can be used for a
preliminary estimation of the exciton confinement length.
In some recent experiments13,38 (and earlier),8 it has been
found that for some asymmetrical SAQRs, the diamagnetic
coefficient for neutral excitons can be surprisingly small
(considerably smaller than that expected from the conventional
theory). In Ref. 38, it was proposed that the lack of the
perfect rotation symmetry (for wobbled rings) is a reason
for the hole localization in one of the potential valleys of
the rings (which corresponds to one of the hills in the rings
shape). Due to the electron-hole Coulomb interaction, the
hole’s localization should lead to a localized exciton wave
function (in the same potential valley), which decreases the
neutral exciton effective confinement length and diamagnetic
coefficient. However, the geometrical model of the wobbled
ring in Ref. 38 still possesses the reflection symmetry with
respect to the reflection in the y-z plane. According to a general
symmetrical consideration, the ground-state wave functions
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FIG. 1. (Color online) Cross section of the ring structure
for different values of the parameter dh and xp = R(1 + ξR):
(a) Cross section by the (x,yp,z) plane (inset: general shape of the
IncGa1−cAs/GaAs wobbled SAQR); (b) zoom of the cross section
by the (x,yp,z) plane near x = xp; (c) cross section by the (xp,y,z)
plane. Remark: type-A ring is presented; see descriptions below and
Table. I.

of the electron and hole confined in the ring consequently
should possess the same reflection symmetry.45 The symmetry
cannot be broken by the electron-hole Coulomb interaction
in a dielectric structure of the same reflection symmetry.
Therefore, the ground-state exciton wave function has to be
distributed symmetrically between two symmetrical potential
valleys. This fact raises the question about the actual reason
for the decrease of the neutral exciton confinement length and
diamagnetic coefficient in the wobbled rings.

In this paper, we theoretically study the impact of the
broken reflection symmetry on the diamagnetic coefficient
of the ground state of the neutral exciton confined in
IncAs1−cGa/GaAs SAQRs. Using our mapping method,43,46

we can efficiently reproduce three-dimensional geometrical
shapes and material compositions of the rings and simulate
excitonic properties of the rings with the reflection symmetry
and when the symmetry is broken. We demonstrate that for
the rings with reflection symmetry with respect to reflection in
the (110) plane (y-z plane in Fig. 1), the ground-state exciton
wave function is equally distributed (balanced) between two
potential valleys of the rings. But, a small imbalance in
geometrical or material characteristics of the rings along the
[110] direction (x axis in Fig. 1) leads to the localization of
the exciton wave function in one of the potential valleys of
the ring, which causes a significant decrease of the exciton
diamagnetic coefficient.

II. THEORETICAL MODEL

To simulate IncAs1−cGa/GaAs wobbled SAQRs with and
without the reflection symmetry, we adopt the model of the
ring’s height profile from Ref. 36 with some modifications.
This model suggests that the bottom of the ring is perfectly
flat and parallel to the x-y plane. The height of the ring
h(x,y) along the z direction (Fig. 1) can be written as

follows:36,43

h(x,y)

= h0 + [̃hM (x,y) − h0]γ̃0(x,y)2

�R(x,y)2 + γ̃0(x,y)2

× R̃(x,y)2 − �R(x,y)2

R̃(x,y)2
,
√

x2 + y2 � R̃(x,y),

h(x,y)

= h∞ + [̃hM (x,y) − h∞]γ̃∞(x,y)2

�R(x,y)2 + γ̃∞(x,y)2
,
√

x2 + y2 > R̃(x,y),

(1)

with

h̃M (x,y) = hM

(
1 + ξh

x2 − y2

x2 + y2

)
Fh(x,y), (2)

R̃(x,y) = R

(
1 + ξR

x2 − y2

x2 + y2

)
, (3)

�R(x,y) =
√

x2 + y2 − R̃(x,y), (4)

γ̃0(x,y) = γ0

(
1 + ξγ

x2 − y2

x2 + y2

)
, (5)

γ̃∞(x,y) = γ∞

(
1 + ξγ

x2 − y2

x2 + y2

)
, (6)

Fh(x,y) = 1 + dh exp

[
− (x − xp)2 + (y − yp)2

b2

]
, (7)

where R is the ring’s rim average radius; h0, hr , and h∞,
respectively, stand for the height at the center of the ring, at
the rim, and far outside of the ring; γ0 and γ∞, respectively,
determine the inside and outside slopes near the ring’s rim. The
wobbling parameters ξh, ξR , and ξγ describe the anisotropy
(circular asymmetry) of the ring height on the x-y plane. The
reflection asymmetry in the ring hills’ heights (the ring shape’s
reflection asymmetry) is described by the function Fh(x,y),
where {xp = ±R(1 + ξR),yp = 0} stands for the position of
the appropriate ring’s profile maximum (top of the ring’s hills;
see Fig. 1), and the range of the reflection asymmetry in the
wobbling is presented by a parameter b. According to Eq. (1),
in our model deviations from the reflection symmetry in the
ring’s shape are controlled by a unitless parameter dh as

dh = h(xp,yp)|dh �=0 − h(xp,yp)|dh=0

h(xp,yp)|dh=0
. (8)

In Fig. 1, we present the shape of the structure and cross
sections of the ring by (x,yp,z) and (xp,y,z) planes for
different dh when the ring height deviations are concentrated
at the position of the maximum at the positive xp = R(1 + ξR)
and yp = 0.

We use h(x,y) to describe the corresponding three-
dimensional smooth confinement potential for electrons
(holes) by the shape and composition-dependent profiles of
the local conduction (e) and valence (h) band offsets:43,46

Ve (h)(r) = �E0
e (h)[1 − FV (r)T (r)], (9)
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where

T (r) = 1

4

[
1 + tanh

(
z

a

)]{
1 − tanh

[
z − h(x,y)

a

]}
, (10)

FV (r) = 1 + dV

{
exp

[
− (x − xp)2 + (y − yp)2

b2

]

× exp

[
− (z − zp)2

b2
z

]}
. (11)

r = (x,y,z) is the three-dimensional radius vector, �E0
e (h) =

Eout
c(v) − Ein

c(v) is the overall conduction (valence) band offset
between the inner and outer semiconductor materials in the
InGaAs/GaAs heterostructure, and superscripts “in” and “out”
denote the actual material parameters inside and outside the
ring. The slope and range (the degree of smoothness) of the
potential change at the boundaries of the ring are controlled
by a parameter a [when the parameter a goes to 0, Eq. (9) de-
scribes a rigorous full three-dimensional hard-wall potential].
In addition to the ring’s shape asymmetry (controlled by dh),
the reflection asymmetry in the ring’s potential (the reflection
asymmetry in the ring’s material content) is presented by the
function FV (r), where rp = (xp,yp,zp) refers to the position
of the appropriate potential valley, and the range of the
asymmetry in the z direction is presented by a parameter bz.
Deviations from the reflection symmetry in the ring’s potential
are controlled by a unitless parameter dV , which, according to
Eq. (9), can be presented as

dV = Ve (h)(rp)|dV =0 − Ve (h)(rp)|dV �=0

�E0
e (h)

+ O

(
a

zp

)
. (12)

This approximate relationship becomes exact when a → 0.
Following the actual three-dimensional shape and content of
the ring, Eq. (9) represents the three-dimensional confinement

FIG. 2. (Color online) Projections of the electron (Ve) and hole
(−Vh) confinement potentials (with the actual energy gap in between)
on the (x,yp,z) plane [dh = dV = 0.1 and xp = R(1 + ξR)]. Ee

and −Eg
in − Eh denote the electron and hole ground-state energies.

Remark: type-A ring is presented; see descriptions below and
Table I.

FIG. 3. (Color online) Electron (e ⇔ Ve) and hole (h ⇔ −Eg
in −

Vh) confinement potential profile along different directions in the
ring and for different values of the parameter dV [dh = 0.1 and
xp = R(1 + ξR)]: (a) [x,yp,zp] direction; (b) [xp,y,zp] direction;
(c) [xp,yp,z] direction. Remark: Type-A ring is presented; see
descriptions below and Table. I.

potential for electrons (holes) with the smooth changes of
the material parameters across the boundaries of the ring.46

Deviations of the parameter dV obviously mimic the material
content deviations at the hill locations of the wobbled ring.
The local band offsets for electrons and holes grow when dV

is positive and increases. The offsets locally decrease when
dV is negative and its absolute value increases. In Figs. 2
and 3, we demonstrate some projections of the asymmetrical
confinement potential defined by Eq. (9).

According to the available experimental data, two parame-
ters dh and dV can be correlated: the height of a wobbled ring at
the rim reflects the profile of the actual In concentration in the
ring.17,34 However, it is very difficult to derive this correlation.
Therefore, to make this theoretical study more self-contained,
we consider independently and cumulatively the impacts of
the ring’s shape reflection asymmetry and content reflection
asymmetry on the exciton diamagnetic coefficient. When the
parameters have the same sing, we can consider their changes
as “correlated.” When the signs are opposite, the parameters’
changes can be considered as “anticorrelated.”

Using Ve (h)(r), we define the mapping function Me (h)(r) for
electrons (holes) which accumulates experimental information
about the ring’s shape and local material content43,46 as
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follows:

Me (h)(r) = 1 − Ve (h)(r)

�Ee (h)
. (13)

According to Eq. (13), the mapping functions for electrons
and holes can be different only when FV (r) is different for
these particles. An appropriate modification obviously requires
extra parameters to be introduced to our model of the ring. To
keep our study within certain frames and to concentrate on the
reflection symmetry issue, in this paper we confine ourselves to
a description with the equivalent for electron and hole function
FV (r). Therefore, in this study,

M(r) = Me(r) = Mh(r) = FV (r)T (r). (14)

We present the position-dependent effective mass me (h)(r) of
electrons (holes), band gap Eg(r), and dielectric constant ε(r)
of the system as follows:

me (h)(r) = min
e (h)M(r) + mout

e (h)[1 − M(r)], (15)

Eg(r) = Ein
g M(r) + Eout

g [1 − M(r)], (16)

ε(r) = εinM(r) + εout[1 − M(r)]. (17)

The Hamiltonian of the single neutral exciton within
the effective position-dependent mass approximation
reads30,33,40,47

Ĥext =
∑
i=e,h

�̂i

1

2mi(ri)
�̂i +

∑
i=e,h

Vi(ri) + VC(re,rh), (18)

where �̂e (h) = −h̄∇re (h) − qe (h)A(re(h)) is the electron (hole)
momentum operator, ∇re (h) is the spatial gradient in the
electron (hole) coordinate system, qe (h) = −(+)e, and A(r)
is the vector potential of the magnetic field, B(r) = ∇r ×
A(r). VC(re,rh) presents the attractive electron-hole Coulomb
interaction, which can be written as

VC(re,rh) = −e2G(re,rh), (19)

where G(re,rh) is the Green’s function of the Poisson
equation,48,49

ε0∇rε(r)∇rG(r,r′) = −δ(r − r′). (20)

For systems without reflection symmetry, the conventional
Coulomb cylindrically symmetric gauge for the vector po-
tential A(r) and uniform magnetic field B [A(r) = 1

2 B × r]
leads to unphysical behavior of the magnetic coupling part
of the energy of a particle (see, for instance, Refs. 50–52
and references therein). This is an “origin-dependent gauge,”
which suggests at the very beginning that the expectation value
of the position of a particle in the ground state (r̄) is exactly at
the origin of the coordinate system (r̄ = 0), which is not correct
in general for the particle ground state in a system without
reflection symmetry. For the results to be reliable, it is essential
that the system model is rigorously invariant with respect to
the gauge origin.50–52 To satisfy this condition (according to
the principle of the minimal magnetic coupling)53–55 we use
agauge-origin-independent definition for the vector potential:

A(r) = 1
2 B × (r − r̄). (21)

Using this gauge and Eq. (18) for the weak-field limit (when
the magnetic field is applied along the z direction), we can

TABLE I. Geometrical parameters of two types of rings.

Type R (nm) hm (nm) h0 (nm) h∞ (nm) ξh ξR ξγ

A 9 3.6 1.6 0.4 0.2 0.0 −0.25
B 7 2.1 1.0 0.4 0.15 0.07 0.0

write the exciton diamagnetic coefficient as

αd = e2

8

〈
(ρe − ρ̄e)2

me(re)
+ (ρh − ρ̄h)2

mh(rh)

〉∣∣∣∣
B=0

, (22)

where ρ = (x,y) is the two-dimensional radius vector in the
x-y plane, 〈f 〉 stands for the expectation value of a quantity f

in the exciton ground state,

〈f 〉 =
∫

	∗
G(re,rh)f (re,rh)	G(re,rh)dredrh (23)

[	G(re,rh) is the exciton ground-state wave function], and
ρ̄e (h) = 〈ρe (h)〉 is the expectation value of the electron (hole)
position in the x-y plane.

We use the Hartree approximation when the exciton wave
function is presented by a product of the electron ψe(re) and
hole ψh(rh) wave functions: 	G(re,rh) = ψe(re)ψh(rh). The
functions have to be obtained by solving self-consistently the
following system of equations:48

[Ĥe(re) + Vh(re)]ψe(re) = Eeψe(re), (24)

[Ĥh(rh) + Ve(rh)]ψh(rh) = Ehψh(rh), (25)

FIG. 4. (Color online) Contour plot of the ground-state wave
function of the noninteracting electron and hole in the (x,yp,z) plane
for different positive values of the parameters dh and dV (type-A ring).
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FIG. 5. (Color online) Three-dimensional contour plot of the
ground-state wave function of the noninteracting electron and hole
for different configurations of the type-A ring.

ε0∇rε(r)∇rVe (h)(r) = e2|ψe (h)(r)|2, (26)

where Ĥe (h) is the effective one-band Hamiltonian for the
electron (hole) confined in the ring:

Ĥe (h)(r) = �̂e (h)
1

2me (h)(r)
�̂e (h) + Ve (h)(r). (27)

The exciton ground-state energy in this approximation is
defined as

Eext = Ein
g + Ee + Eh − 1

2

[ ∫
|ψe(r)|2Vh(r)dr

+
∫

|ψh(r)|2Ve(r)dr
]
. (28)

III. SIMULATION RESULTS AND DISCUSSION

We compute the exciton ground-state wave function,
energy, and diamagnetic coefficient for two types of asym-
metrical IncAs1−cGa/GaAs SAQRs: A and B. Geometrical
parameters of the type-A ring are close to those of the rings
discussed in Refs. 13, 37, and 39, and the parameters for the
type-B ring are chosen according to the data from Ref. 38.
Table I presents basic geometrical parameters for both types
of rings. Other relevant geometrical parameters are taken
as xp = R(1 + ξR), yp = 0, zp = 0.6hm, b = xp, bz = hm,

a = 0.4 nm, and γ0 = γ∞ = 3 nm. In Fig. 1, we show
(for the type-A ring with and without the reflection sym-
metry) the ring’s height profiles along the x axis [h(x,0)]
and along a direction which is parallel to the y axis
[h(xp,y)]. Material parameters for IncAs1−cGa/GaAs het-
erostructures we take from Refs. 48 and 56 and adjust them
according to the actual composition and strain inside the
rings:43,49,57 EgInAs = 0.842 eV, meInAs = 0.044m0, mhInAs =
0.074m0, εInAs = 15.1, EgGaAs = 1.52 eV, meGaAs = 0.067m0,
mhGaAs = 0.5m0, εGaAs = 12.9 (m0 is the free-electron mass).
A material parameter Din (out) for the IncGa1−cAs compound is
obtained according to the linear interpolation Dc = cDInAs +
(1 − c)DGaAs. The In concentration inside rings is taken to
be c = 0.55 and 0.7 for types A and B, respectively. In
addition, we take 70% of the heterostructure gap difference
to be the conductance band offset and 30% to be the valence
band offset in the rings. The energy and wave function of
the exciton confined in the SAQRs are obtained numerically
form the self-consistent solution of Eqs. (24)–(26) by the
iterative method using the COMSOL MULTIPHYSICS package.58

We use the wave function to simulate the exciton diamagnetic
coefficient [Eq. (22)] for SAQRs with the reflection symmetry
and when the symmetry is broken.

FIG. 6. (Color online) The expectation value of the position of
the noninteracting electron (a) and hole (b) in the ground state on
the x axis (type-A ring). The parameter dC represents simultaneous
changes of dh and dV for different configurations: (c1) dC = dh =
dV � 0; (c2) dh = 0, dC = dV � 0; (c3) dC = dh � 0, dV = 0; (c4)
dC = |dh| = dV , dh � 0, dV � 0; (c5) dh = 0, dC = |dV | ; dV � 0;
(c6) dC = |dh| ; dh � 0, dV = 0; (c7) dC = dh = |dV | , dh � 0, dV �
0; (c8) dC = |dh| = |dV | , dh � 0, dV � 0.
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First we present the ground-state wave functions of the
noninteracting electron and hole for the type-A ring at zero
magnetic field. We independently consider the impacts of
the ring’s shape reflection asymmetry and content reflection
asymmetry on the electron and hole wave functions inside the
ring. In Fig. 4, we show the contour plot of the x-y plane cross
section of the electron and hole ground-state wave functions.
When two parameters dh and dV change from 0 (reflectional
symmetrical ring) to 0.1, the wave functions change from a
reflectional symmetrical ringlike function (extended around
the ring volume) to reflection nonsymmetrical quantum dotlike
wave functions (localized in one of the potential valleys of the
ring near x = xp). Note that the wave functions are localized
in one of the potential valleys when the imbalance in the ring
potential profile is relatively small. Both the electron and hole
wave functions are more sensitive to the variations of the
parameter dV . At the same time, the hole wave function is
generally more sensitive to the imbalance in the reflection
symmetry, which can be understood as a consequence of the
particles’ effective-mass difference: as the hole has a larger
effective mass, the effect of the imbalance is stronger.

Figure 5 shows that for negative values of the parameters dh

and dV , the electron and hole wave function mean localization
positions move in the direction of x = −xp. However, for
the cases in which the parameters have different signs
(“anticorrelation”), the position of the localization is controlled
by the sign of dV . Notice that the change of the parameters’
signs in our description does not generate a simple symmetrical

FIG. 7. (Color online) The effective lateral radius of the nonin-
teracting electron (a) and hole (b) (type-A ring). The configurations
c1, . . . ,c8 are described in the caption to Fig. 6.

reflection in the y-z plane for the wave functions (compare, for
instance, the cases {dh = 0.05, dV = 0.05} and {dh = −0.05,

dV = −0.05}). This can be understood from Figs. 1 and 2. It
is clear that the transformations dh ⇒ −dh and dV ⇒ −dV

cannot be presented as C2 rotations of the ring.
For a better understanding of the impact of the broken

reflection symmetry in the wobbled rings on the actual
localization positions and characteristic confinement lengths
of the electron and hole, we study the expectation value of
the ground-state electron (hole) position ρ̄e (h) = (x̄e (h),ȳe (h))
in the x-y plane and the mean (effective) lateral electron (hole)
radius

ρe (h) =
√

〈(ρe (h) − ρ̄e (h))2〉

for the type-A ring at zero magnetic field. For all configura-
tions, the expectation value of the electron (hole) position on
the y axes remains unchanged: ȳe (h) = 0. Figure 6 shows x̄e (h)

of the noninteracting electron and hole in the ground states
for different values and combinations of dh and dV . When
the absolute values of the parameters dh and dV increase, the
electron mean position gradually moves from the center of
the ring toward one (appropriate) of the unbalanced potential
valleys. At the same time, the hole mean position is almost
stabilized in the valley when parameters dh or dV are only

FIG. 8. (Color online) Three-dimensional contour plot of the
electron and hole components of the exciton ground-state wave
function for different configurations of the type-A ring.
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FIG. 9. (Color online) Three-dimensional contour plot of the
electron and hole component of the exciton ground-state wave
function for different configurations of the type-A ring for dC =
|dh| = |dV | = 0.05 (see Fig. 6).

about 0.1 in the absolute value. Furthermore, from Fig. 7 we
see that the effective lateral radii of the electron and hole follow
the same tendency: the electron’s radius decreases smoothly
and the hole’s radius shrinks rapidly.

The interparticle interaction drastically changes the sen-
sitivity of the particles’ wave functions to the imbalance in

FIG. 10. (Color online) The expectation value of the position of
the electron (a) and hole (b) on the x axis for the exciton in the ground
state (type-A ring). The configurations c1, . . . ,c8 are described in the
caption to Fig. 6.

FIG. 11. (Color online) The effective lateral radius of the electron
(a) and hole (b) for the exciton in the ground state (type-A ring). The
configurations c1, . . . ,c8 are described in the caption to Fig. 6.

the reflection symmetry of the ring. We show in Fig. 8 the
electron and hole components of the ground-state exciton
wave function [self-consistent solutions of Eqs. (24)–(26)].
Now even very small (∼0.01) nonzero dh and (or) dV generate
the simultaneous localization of the electron and hole wave
functions (the ground-state exciton wave function) in one of the
potential valleys. The reason is that the Coulomb interaction
makes the electron and hole move in the same direction of
the position of the hole (dotlike wave function). The actual
mean position x̄e (h) is controlled by the sign of dV . Figure 9
shows that a further increase of dh and dV magnitudes does not
considerably affect the wave functions which are well localized
in one of the potential valleys.

The high sensitivity of the holes to the imbalance in
the reflection symmetry of the ring is a “triggering factor”
in the “one-valley localization effect” for the exciton. We
demonstrate in Fig. 10 that the dependency of the electron
mean localization position on dh and dV becomes very
similar to that for the hole when we impose the electron-hole
interaction. Moreover, the Coulomb interaction makes the
electron and hole effective lateral radii both very sensitive to
the reflection asymmetry of the ring: the radii simultaneously
and rapidly decrease when a small imbalance appears, as is
shown in Fig. 11 (compare with Fig. 7).

With the obtained actual positions of the electron and
hole components of the ground-state exciton wave function,
we examine now the effect of the reflectional asymmetry
on the exciton diamagnetic coefficient αd [Eq. (22)]. In
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FIG. 12. (Color online) Exciton diamagnetic coefficient (a) and
ground-state energy (b) for the type-A ring. The configurations
c1, . . . ,c8 are described in the caption to Fig. 6.

Fig. 12(a), we show the dependence of the exciton diamagnetic
coefficient on the parameters dh and dV . It is clear that the
above-described sensitivity of the electron and hole wave
functions’ localizations and distributions to the imbalance in
the reflection symmetry leads to a rapid decrease of the exciton
diamagnetic coefficient (about two times) already for small
values of dh and dV (about 0.01 in magnitude). However, the
coefficient decreases only gradually when the ring’s geometry
and material content become more unbalanced along the x

direction.
Figure 12(b) shows our simulation results for the ground-

state energy of the exciton confined in the ring. Clearly, accord-
ing to the actual profiles of the energy gap and confinement
potential in the structure (see Fig. 3), the exciton energy can
decrease, increase, and remain unchanged when the absolute
values of the parameters dh and dV increase. Notice that the
positive nonzero dV always leads to an effective decrease of
the distance between the bottom of the conduction band and
the top of the valence band [Eg(rp)], which causes the exciton
energy to decrease when dV is growing. When the parameter
dV is taken to be negative and (or) we impose dh �= 0, the
effective band gap (the smallest distance between the bottom
of the conduction band and the top of the valence band)
does not change. Some minor growth of the self-consistent
energies of the electron and hole (because of their dotlike
confinement in one of the valleys) is mainly compensated by an
increase of the electron-hole Coulomb interaction. As a result
of those factors’ combination, the exciton energy can decrease

FIG. 13. (Color online) Exciton diamagnetic coefficient (a) and
ground-state energy (b) for the type-B ring. The configurations
c1, . . . ,c8 are described in the caption to Fig. 6.

slightly, increase, or even remain unchanged for dV < 0 [see
Fig. 12(b)].

Let us now consider the quantum ring of the type B. The
impact of the broken reflection symmetry on the characteristics
of this ring is similar to that for the type-A ring (see Fig. 13).
The mean localization positions and effective radii of the
noninteracting and interacting electron and hole follow the
general dependencies described above for the type-A ring.
Nevertheless, the rim radius of the type-B ring is smaller
than that for the type-A ring (see Table I). This obviously
leads to a smaller value of the exciton diamagnetic coefficient
for the reflection symmetrical ring (dh = dV = 0). When
the symmetry is broken, the exciton diamagnetic coefficient
decreases rapidly and it remains gradually decreasing when
the absolute values of the parameters dh and dV increase up
to 0.2 [Fig. 13(a)]. Note that in the type-B ring, the distance
between potential valleys is smaller than that in the type-A
ring. Therefore, even when the exciton wave function is mainly
localized in one of the potential valleys, the small distance
between the valleys causes some “relict” penetration of
the function into the opposite valley. By increasing the absolute
values of the parameters dh and dV , the electron and hole wave
functions gradually shrink near the mean localization position.
This results in the gradual decrease of the exciton diamagnetic
coefficient, which is more visible than that for the type-A ring.
In Fig. 13(b), we show the ground-state exciton energy for
the type-B ring. Comparing with Fig. 12(b), we notice that

085310-8



EXCITON WAVE FUNCTION LOCALIZATION AND . . . PHYSICAL REVIEW B 88, 085310 (2013)

the dependence of the energy on the parameters dh and dV in
general has the same explanation as for the type-A ring.

Our results for both types of rings agree well with exper-
imental data.13,38 Furthermore, by comparing Figs. 12(a) and
13(a) with the data from Refs. 13, 38, and 39, we can suggest
that for the type-A ring, the reflection asymmetry can be
characterized by |dh| � |dV | ≈ 0.1 (αd ≈ 10 μeV/T2), while
for the type-B ring it can be characterized by |dh| � |dV | ≈ 0.2
(αd ≈ 7μeV/T2). This is consistent with our results for the
exciton ground-state energy. The best agreement we obtain
with the experimental data for the exciton energy is when the
parameters dh and dV are chosen to be in between +0.1 and
+0.15 (type-A ring), and in between +0.15 and +0.2 (type-B
ring). Notice that for both types of quantum rings, our results
suggest a strong “correlation” between dh and dV .

IV. CONCLUSION

In this paper, using the mapping method and Hartree
approximation, we calculated the diamagnetic coefficient for
the neutral exciton confined in IncAs1−cGa/GaAs wobbled
SAQRs. We have systematically investigated the impact of the
rings’ reflection asymmetry on the exciton ground-state wave
function localization, energy, and diamagnetic coefficient.
Two types of the rings known from experimental works
were considered. Deviations from the reflection symmetry
caused by the imperfect ring shape and material content
are controlled by the parameters dh and dV , respectively
(the case dh = dV = 0 stands for the reflection symmetrical
ring). We have found that for the noninteracting particles, the
electron wave function is more stable to the unbalance in the
ring reflection symmetry than the hole wave function. This
originates from the difference in the particles’ effective masses.
The Coulomb interaction causes the localization of the exciton
wave function in one of the potential valleys of the wobbled
ring for very small deviations of the parameters dh and dV

from zero. Moreover, the effective lateral radii of the electron
and hole are shrinking rapidly when the absolute values of
the parameters dh and dV are growing. This results in the
rapid decrease of the neutral exciton diamagnetic coefficient.
After the rapid drop, the diamagnetic coefficient only gradually
decreases with the further increase of the magnitudes of
parameters dh and dV . In addition, we have found that a
“correlative” imbalance in the ring geometry and material
content has a recognizable impact on the ground-state energy
of the neutral exciton. Our results are in good agreement with
experimental observations. Moreover, they can give a very
useful insight into the actual magneto-optical properties of
the self-assembled semiconductor quantum rings. We note
that a strong sensitivity of the magneto-optical properties
to the actual imbalance in the reflection symmetry (which
is very likable in experiments) and the rapid transition from
the ringlike exciton wave function to the dotlike exciton wave
function can be a reason for the optical Aharonov-Bohm effect
suppression in IncAs1−cGa/GaAs wobbled rings. At the same
time, the wave function of an independent election is less
sensitive to the lack of the reflection symmetry, which helps to
explain the observation of the Aharonov-Bohm magnetization
oscillation even in quantum rings with broken reflection
symmetry.

More generally, our approach can be used for the realistic
modeling of the magneto and magneto-optical characteristics
of semiconductor nano-objects with realistic and nonsymmet-
rical geometry and material content.
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