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Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their
occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions
is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity
of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire
return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity
(GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk
models all fail to fit the statistical structure of excursions.
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I. INTRODUCTION

Given a sequence of stock prices s0,s1, . . . recorded at fixed
intervals, say every 5 min, let rn

.= log sn

sn−1
, n = 1,2, . . . be

the corresponding sequence of returns. Fix N and define an
excursion to be a return that is large, in absolute value, relative
to the set {r1,r2, . . . ,rN }. Specifically, following Hsieh et al.
[1], define the excursion process z1,z2, . . . ,zN :

zn =
{

1 if rn � l or rn � u,

0 if rn ∈ (u,l),

where l and u are, respectively, the 10th and 90th percentiles
of {r1, . . . ,rN }. We call the event zn = 1 an excursion since it
represents a large movement of the stock relative to the chosen
set of returns. We will study the distribution of waiting times
between large stock returns by studying the distribution of
the number of zeros between successive ones of the excursion
process. Our motivation includes the following.

(1) An empirical observation (cf. [2]) indicates that this
waiting-time distribution is nearly invariant to time scale
(e.g., 30-s, 1-min, or 5-min returns), to stock (e.g., IBM or
Citigroup), and to year (e.g., 2001 or 2007).

(2) The waiting time to large returns is of obvious interest
to investors and much easier to study if, and to the extent that,
it is invariant across time scale, stock, and year.

(3) The particular waiting-time distribution found in the
data and its invariance to time scale have implications for
models of price and volatility movement. For instance, Lévy
processes, “market-time” models based on volume or trades,
and generalized autoregressive conditional heteroskedasticity
(GARCH) models are each one way or another inconsistent
with the empirical data.

(4) Overwhelmingly, the evidence for self-similarity comes
from studies of the univariate (marginal) return distributions
(e.g., evidence for a stable-law distribution), but marginal dis-
tributions leave data models underspecified. Waiting-time dis-
tributions provide additional, explicitly temporal constraints,
and these appear to be nearly universal.

Larger returns can be studied by using more extreme
percentiles. Although we have not experimented extensively,

the empirical results we will report on appear to be qualitatively
robust to the chosen percentiles and hence the definition of
“large return.” In general, the upper and lower percentiles index
a family of waiting-time distributions that might prove useful
to systematically constrain the dynamics of price and volatility
models.

In Sec. II, we study the invariance of the empirical waiting-
time distribution. Starting with the Lévy type models, we first
make a connection between the model-based distribution and
the geometric distribution. To be concrete, let S(t) follow the
“Black-Scholes model” (geometric Brownian motion) as an
example: d log S(t) = μdt + σdw(t), where w(t) is a standard
Brownian motion. Because of the independent increments
property of Brownian motion w(t), the return sequence under
this model is exchangeable (i.e., the distribution of any per-
mutation remains the same). Therefore, the empirical waiting-
time distribution under this model is provably invariant to time
scale and to time period. More specifically, the probability of
getting a large return, with l being the 10th percentile and u

being the 90th percentile, is exactly 0.2 at each return interval,
and the empirical waiting-time distribution is therefore nearly
a geometric distribution with a parameter of 0.2 (see Sec. II A
for more details). We emphasize the these considerations
apply without modification not just to the geometric Brownian
motion but to all of its popular generalizations as geometric
Lévy processes.

Not surprisingly (cf. “stochastic volatility”), the actual
(i.e., empirical) waiting-time distribution is different from
geometric. But what is surprising is the invariance of this
distribution across time scale, stock, and year. In Sec. II B
we make an exhaustive comparison of empirical waiting-time
distributions using trading prices of approximately 300 stocks
from the S&P 500 observed over the 8 years from 2001 through
2008. Invariance to time scale is strong in all 8 years; invariance
to stock is strong in years 2001–2007 and less strong in 2008,
and invariance across years is stronger for pairs of years that
do not include 2008. (We have not studied the years since
2008.) In Sec. II C, we will connect waiting-time invariance
to self-similarity, being careful to distinguish a self-similar
process from a process having self-similar increments (i.e.,
distinguish dynamics from marginal distributions).
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FIG. 1. (Color online) Returns, percentiles, and the excursion process. (a) IBM stock prices, every 5 min, during the 252 trading days in
2005. The opening (9:30 to 9:40 AM) and closing (3:50 to 4:00 PM) prices are excluded, leaving 75 prices per day (9:40 AM, 9:45 AM, . . . ,
3:50 PM). (b) Intraday 5-min returns for the prices displayed in (a). There are 252 × 74 = 18 648 data points. (c) Returns, with the 10th and
90th percentiles superimposed. (d) Zoomed portion of (c) with 200 returns. The “excursion process” is the discrete time zero-one process that
signals (with ones) returns above or below the selected percentiles.

Which of the state-of-the-art models of price dynamics are
consistent with the empirical distribution of the excursion
process? The existence of a nearly invariant waiting-time
distribution between excursions provides a new tool for evalu-
ating these models, through which questions of consistency
with the data can be addressed using statistical measures
of fit and hypothesis tests. In general, we will advocate for
permutation and other combinatorial statistical approaches that
robustly and efficiently exploit symmetries shared by large
classes of models, supporting exact hypothesis tests as well
as exploratory data analysis. In Sec. III we introduce some
combinatorial tools for hypothesis testing and explore the
implications of waiting-time distributions to the time scale
of volatility clustering. We continue with this approach in
Sec. IV with a discussion of stochastic volatility modeling as
well as market time and other stochastic time-change models.
We conclude in Sec. V with a summary and some proposals
for price and volatility modeling.

II. WAITING TIMES BETWEEN LARGE RETURNS

There were 252 trading days in 2005. The traded prices of
IBM stock (sn, n = 0,1, . . . ,18 899) at every 5-min interval
from 9:40 AM to 3:50 PM (75 prices each day) throughout the
252 days are plotted in Fig. 1(a).1 Often, activities near opening
and closing are not representative. To mitigate their influence,
we exclude prices in the first 10 min (9:30 to 9:40 AM) and
last 10 min (3:50 to 4:00 PM) of each day. The corresponding
intraday returns, rn

.= log sn

sn−1
, n = 1,2, . . . ,18 648 (74 returns

per day), are plotted in Fig. 1(b). Overnight returns are not
included.

We declare a return “rare” if it is rare relative to the interval
of study, in this case the calendar year 2005. We might, for

1The price at a specified time is defined to be the price of the most
recent trade.
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instance, choose to study the largest and smallest returns in the
interval or the largest 10% and smallest 10%. Figure 1(c) shows
the 2005 intraday returns with the 10th and 90th percentiles
superimposed. More generally, given any fractions f,g ∈ [0,1]
(e.g., 0.1 and 0.9), define

lf = lf (r1, . . . ,rN )

= inf {r : No.{n : rn � r,1 � n � N} � f N}, (1)

ug = ug(r1, . . . ,rN )

= sup {r : No.{n : rn � r,1 � n � N} � (1 − g)N}, (2)

where, presently, N = 18 648. The lower and upper lines
in Fig. 1(c) are l0.1 and u0.9, respectively. Figure 1(d) is a
magnified view, covering r1001, . . . ,r1200, but with l0.1 and u0.9

still figured as in Eqs. (1) and (2) from the entire set of 18 648
returns.2

The excursion process is the zero-one process that signals
large returns, meaning returns that either fall below lf or above
ug:

zn = 1{rn�lf or rn�ug}.

Hence zn = 1 for at least 20% of n ∈ {1,2, . . . ,18 648} in
the example in Fig. 1. Obviously, many generalizations are
possible, involving indicators of single-tale excursions (e.g.,
f = 0, g = 0.9 or f = 0.1, g = 1) or many-valued excursion
processes (e.g., zn is 1 if rn � lf , 2 if rn � ug , and 0 otherwise).
Or we could be more selective by choosing a smaller fraction
f and a larger fraction g and thereby move in the direction of
truly rare events. (There is then an inevitable tradeoff between
the magnitude of the excursions and the sample size; more rare
events are studied at the cost of statistical power.) Here we will
work with the special case f = 0.1 and g = 0.9, but a similar
exploration could be made of these other excursion processes.

A. The role of the geometric distribution

As with the Black-Scholes model discussed in the Introduc-
tion, any stochastic process with stationary and independent in-
crements (i.e., any Lévy process) has exchangeable increments
and hence exchangeable returns if used as a model for the
log-price distribution. What would the excursion waiting-time
distribution look like under a geometric Brownian-motion
model or one of its generalizations to geometric Lévy?

Specifically, assume

d log S(t) = μdt + σdw(t),

where w(t) is a Lévy process. Then the return sequence

Rk = log S(t0 + kδt) − log S(t0 + (k − 1)δt),

∀k = 1,2,3, · · · ,n (3)

is exchangeable. With the particular percentiles used here,
the sequence z1,z2, . . . ,zN has 20% 1’s and 80% 0’s. If real
returns were exchangeable, then the excursion process would
be as well since the percentiles lf and ug [Eqs. (1) and (2)]
are symmetric functions of the returns. Hence, the probability

2To break ties and to mitigate possible confounding effects from
“microstructures,” prices are first perturbed, independently, by a
random amount chosen uniformly between −$0.005 and +$0.005.

that a 1 is followed immediately by another 1 (waiting time
zero) is very close to 0.2. (Not exactly 0.2, even ignoring edge
effects, because there are a finite number of 1’s; the first 1
of the pair uses one of them up.) The probability that exactly
one 0 intervenes is very close to (0.8)(0.2) = 0.16, two 0’s is
very close to (0.8)(0.8)(0.2) = 0.128, and so forth following
the geometric distribution.

In general, the waiting-time distribution for an exchange-
able process converges to the geometric distribution as the
number of excursions (number of return intervals) goes to
infinity [2,3]. In this sense, the Kolmogorov-Smirnov (KS)
distance to the geometric distribution is a measure of departure
of a return process from exchangeability and can be used as
a statistic to calibrate the temporal structure of real price data
as well as proposed models of prices and returns (as will be
discussed more deeply in Secs. III and IV).3 Figure 2 compares
the empirical waiting-time distribution generated by 93 240
one-minute 2005 IBM returns to the geometric distribution
with a parameter of 0.20. Obviously, there is a substantial
departure, characterized by high probabilities of short and long
waits in the real data compared to the geometric distribution.
(The slope of the P -P curve is greater than 1 or less than
1 as waiting-time probabilities are, respectively, larger than
or smaller than geometric.) Thus, for example, the empirical
probability that the waiting time is zero (zn+1 = 1 given that
zn = 1) is about 0.32 instead of 0.20. Indeed, estimates of
this probability reliably fall in a narrow range, from about
0.32 to 0.33, independent of the time interval with respect to
which returns are defined, the stock from which the returns
are derived, and the year from which the data are collected. In
fact, the entire empirical waiting-time distribution is nearly
invariant to time scale, stock, and year, as we shall now
demonstrate.

B. Empirical evidence for invariance

Chang et al. [2] and Hsieh et al. [1] studied the waiting-
time distribution between excursions, i.e., the distribution
on the number of 0’s between two 1’s. The empirical
waiting-time distribution from 2005 for the 18 648 five-minute
returns, the 93 240 one-minute returns, and the 186 480 thirty-
second returns of IBM are shown in the top row of Fig. 3. They
are remarkably similar.

Invariance to scale. The bottom row of Fig. 3 has three P -P
plots that come from taking the three waiting-time distributions
(30 s, 1 min, and 5 min, shown in the top row) two at a time.
The KS distances, one for each comparison, are also shown.
The distribution of waiting times between excursions for IBM
2005 returns is strikingly invariant to the return interval. (We
are using dKS here as a descriptive statistic and not for the
purpose of hypothesis testing. These waiting times are not
precisely invariant, and many pairs that look well matched

3Given two cumulative distribution functions (cdf’s), F1 and F2, the
P -P plot is the two-dimensional curve from (0,0) to (1,1) defined
by {(F1(t),F2(t)) : t ∈ R}. The Kolmogorov-Smirnov distance is the
maximum vertical (and horizontal) distance between the diagonal and
the P -P plot, which is also the maximum distance between F1 and
F2: dKS(F1,F2) = supt |F1(t) − F2(t)|.
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FIG. 2. (Color online) Geometric (0.2) and empirical waiting times. The empirical waiting-time distribution of 1-min returns of IBM stock
in 2005 was compared with the geometric distribution with parameter 0.2. (left) Log plots for the geometric distribution and the empirical
waiting-time distribution. The x axis is the waiting times, and the y axis is the log probabilities of the waiting times. (right) P -P plots for
the geometric distribution vs the empirical waiting-time distribution. The KS distance is the maximum horizontal (maximum vertical) distance
between the P -P curve [shown in blue (dark gray)] and the diagonal [shown in red (light gray)].

will nevertheless have small p values simply because of the
large sample sizes.)

The phenomenon is not unique to IBM or to the year
2005. We tested approximately 300 of the S&P 500 stocks
for the years 2001 through 2008. The results are summarized
in Table I. In this regard, 2008 is not an outlier, as can be seen
from the last column of the table and from the three histograms

of KS distances, one for each pair of return intervals, over all
stocks tested in 2008 (Fig. 4).

As we will see shortly, self-similar processes have excursion
waiting-time distributions that are invariant to scale. It is
interesting then to note that the empirical evidence for
waiting-time invariance is substantially weaker at larger inter-
vals, e.g., using hourly or daily returns. This same progression
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FIG. 3. (Color online) Scale invariance. (top) Empirical waiting-time distributions captured from 30-s, 1-min, and 5-min returns of IBM in
2005. (bottom) P -P plots for the three waiting-time distributions taken two at a time and their corresponding Kolmogorov-Smirnov distances.
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TABLE I. Scale invariance, aggregate data. Approximately 300 stocks were tested. Median KS distances for pairwise comparisons of three
time scales (30 s, 1 min, 5 min) are shown for 2001 through 2008.

2001 2002 2003 2004 2005 2006 2007 2008

30 s vs 1 min 0.0199 0.0109 0.0148 0.0148 0.0163 0.0128 0.0113 0.0103
1 min vs 5 min 0.0253 0.0203 0.0197 0.017 0.0175 0.017 0.0194 0.0143
30 s vs 5 min 0.0348 0.0247 0.0268 0.0259 0.0264 0.0223 0.0242 0.0172

is often observed in studies of self-similarity (cf. [4]). Possibly,
it can be traced to sample size. Because the return sequences
are derived from a single calendar year, larger return intervals
have smaller numbers of returns and hence a larger variance
of the empirical waiting-time distribution. For example, as a
rough estimate, we can expect hourly returns to multiply the
spread of a 5-min-return across-stock histogram of empirical
KS distributions (as in the bottom left panel of Fig. 5) by about√

60/5 ≈ 3.5, which would substantially obscure the evidence
for invariance. It is also possible that invariance systematically
breaks down for larger return intervals. We have not explored
either hypothesis.

Invariance to stock and year. How do the excursion
waiting-time distributions of one stock compare to those of
another? For each of the 8 years studied we compared the
waiting-time distributions for 5-min returns between all pairs
of the 300 or so stocks in our data set. See Fig. 5 and the
accompanying table. With the possible exception of 2008,
excursion waiting-time distributions are nearly invariant across
stocks.

Finally, we examined the change in waiting-time distribu-
tions from year to year. For each stock and each return interval
(30 s, 1 min, 5 min), we compared distributions between
pairs of years. Table II indicates that waiting-time distributions
were typically unchanged during the period 2001 to 2007 but
considerably different during the financial crises of 2008.

C. Connections to self-similarity

Recall that P (t), t � 0, is a self-similar process if there
exists H � 0 (Hurst index) such that

L{P (δt),t � 0} = L{δH P (t),t � 0}
for all δ � 0, where L{Q(t),t � 0} denotes the probability
distribution (“law”) of the process Q(·). In other words,

the joint distributions of (P (δt1),P (δt2), . . . ,P (δtm)) and
δH (P (t1),P (t2), . . . ,P (tm)) are the same for all m, t1,t2, . . . ,tm,
and δ (e.g., [5]). Let S(t), t � 0, be the price of a stock at
time t . Beginning with Mandelbrot [6,7], it has often been
observed that the marginal distribution of the (drift-corrected)
increments in price, or, more typically, log price, is nearly
self-similar, e.g., log S(δt) − log S(δ(t − 1)) has nearly the
same distribution as δH log S(t) − δH log S(t − 1), although
different methods for estimating the exponent H give different
values. Many authors (e.g., [8,9]) argued that the exponent
is not constant (generally decreasing at larger scales) or
that there are actually multiple exponents, as in the more
general multifractal models. Within the framework of (single-
exponent) self-similarity, the estimation method of Mantegna
and Stanley [10] is among the most convincing since it focuses
on the centers of return distributions rather than their tails.
Mantegna and Stanley reported a Hurst index of about 0.71
for the S&P 500, with evidence for self-similarity spanning
three orders of magnitude in the return interval, although as
they and others (e.g., [11]) pointed out, scaling breaks down
at larger intervals.

Additionally, many authors have studied empirical scaling
through a variety of statistics that can be derived from, but
are not directly equivalent to, self-similarity. For example,
Gopikrishnan et al. [12] investigated scaling properties of
normalized returns, while Wang and Hui [13] studied scaling
phenomena using returns divided by their daily average
returns. Gencay et al. [14] explored wavelet variance, Matteo
[15] used rescaled range analysis, and Glattfelder et al. [16]
described 12 scaling laws in high-frequency foreign exchange
data. Wang et al. [17] studied the return interval between big
volatilities and showed the persistence of scaling for a range
of time resolution scales (δt = 1,5,10,15,30 min).

Here we give a brief explanation of the mathematical
relationship between self-similarity and scale invariance of the

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

KS distanceKS distanceKS distance

nu
m

be
r o

f p
ai

rs

nu
m

be
r o

f p
ai

rs

nu
m

be
r o

f p
ai

rs

30 sec vs 1 min 1 min vs 5 min 30 sec vs 5 min

FIG. 4. (Color online) Histogram of KS distances from 2008. Each panel shows the histogram of Kolmogorov-Smirnov distances between
excursion waiting-time distributions at different time scales in 2008 for approximately 300 stocks.
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FIG. 5. (Color online) Invariance to stock. Comparisons of excursion waiting-time distributions for 5-min returns between IBM and GPS
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stocks in 2008 as compared to 2005. The table gives a summary of year-by-year comparisons of waiting-time distributions across stocks. With
the exception of 2008, waiting times are nearly invariant to stock.

excursion waiting distribution. Assume that the drift-corrected
log price P (·) is a self-similar process. Then, as for the return
process, at scale δ with drift coefficient r ,

R
(δ)
t

.= log
S(δt)

S(δ(t − 1))
= P (δt) − P (δ(t − 1)) + δr

⇒ L
{
R

(δ)
t ,t � 1

} = L
{
δHR

(1)
t + (δ − δH )r,t � 1

}
= L

{
G(δ)(R(1)

t ),t � 1
}
,

where G(δ)(x) is the monotone function δH x + (δ − δH )r .
Now let Z(δ)

n , n = 1,2, . . . ,N , be the excursion process
corresponding to the return process R(δ)

n , n = 1,2, . . . ,N , for
some scale (interval) δ (e.g., 30 s or 5 min). Since percentages
are unchanged by monotone transformations, it follows that
L{Z(δ)

n ,n = 1,2, . . . ,N} =L{Z(1)
n ,n = 1,2, . . . ,N} for all δ >

0. In short, self-similarity of the process P (t), t � 0, implies

TABLE II. Year-to-year changes in excursion waiting-time distri-
butions, giving medians of KS distances over all stocks and all pairs
of years from 2001 through 2007 and median distances over all stocks
from a single pair of years, 2005 and 2008. Waiting-time distributions
in 2008 differ substantially from those of previous years.

2001 to 2007 2005 vs 2008

30-s returns 0.0236 0.0623
1- min returns 0.0219 0.0681
5-min returns 0.0228 0.0811

that the excursion process, and therefore its waiting-time
distribution, is invariant to scale.

One family of self-similar models for P , made popular
in finance by Mandelbrot [6], is the family of stable Lévy
processes, i.e., processes with stable, stationary, and indepen-
dent increments. But the corresponding returns, R(δ)

1 ,R
(δ)
2 , . . . ,

are then independent and identically distributed (iid) for all
δ > 0, and this violates volatility clustering. This shortcoming
(already apparent to Mandelbrot [6] in 1963) has led to
the consideration of other self-similar models that have
stationary and possibly stable, but not necessarily independent,
increments. One way to construct such processes is through
random time changes of Brownian motion [7,18–21]. We will
return to this approach in Sec. IV C. A more direct approach
is with fractional Brownian motion (FBM), which we will
briefly discuss now as an illustration of the application of
the excursion waiting-time distribution in the study of price
fluctuations and their models.

The FBMs are a family of self-similar Gaussian processes,
one for each Hurst index H ∈ (0,1]. The particular value
H = 1/2 is the ordinary Brownian motion. Which value of H

best describes the 5-min excursion waiting-time distribution
of the 2005 IBM data? We explored different values of H .
For each value, we generated 500 samples of the process P

and extracted 18 648 returns, along with the corresponding
excursion processes and their waiting-time distributions. (As
discussed, in light of the fact that FBM is self-similar, the
waiting-time distribution is invariant to δ.) Each waiting-time
distribution has a KS distance to the distribution extracted
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FIG. 6. (Color online) Fractional Brownian motion and excursion waiting times. (left) For each Hurst index H = 0.76,0.77, . . . ,0.89 we
generated 500 FBM samples and extracted 18 648 returns, matching the 18 648 returns in the 5-mine 2005 IBM data. The average KS distances
between the FBM excursion waiting times and the empirical IBM waiting times are plotted. The best fit, with a KS of about 0.046, is at
H = 0.81. (right) P -P plot of excursion waiting-time distribution for a sample from the best-fitting FBM vs the empirical IBM distribution.
FBM overestimates the probabilities of short and very long waiting times.

from the real data. The averages of the 500 KS distances for
each of H = 0.76,0.77, . . . ,0.89 are shown in the left panel of
Fig. 6. The smallest KS distance over all examined H values
was approximately 0.046 at H = 0.81. As can be seen from
the right panel of Fig. 6, in comparison to real returns the fitted
FBM model has too many short and too many long waiting
times.

III. CONDITIONAL INFERENCE, PERMUTATIONS,
AND HYPOTHESIS TESTING

Our purpose in this section is to introduce some statis-
tical tools that relate the near-invariance of the excursion
waiting-time distribution to the temporal characteristics of
the empirical return data, focusing particularly on the time
scale of volatility clustering. In Sec. IV these tools will
be used to explore some familiar themes in price-dynamics
modeling, including implied volatility, GARCH models, and
various approaches to stochastic time change, also known
as market time. The statistical characterization of price and
volatility fluctuations is obviously very complicated. Under
that circumstance, model-free statistical methods can be par-
ticularly effective tools for probing dynamics and discerning
spatial and temporal patterns. The excursion process itself is an
example in that it avoids absolute thresholds and model-based
parameter estimates. Permutation tests are another example
and are particularly suitable for relating the excursion process
to the time scales operating in price fluctuations, as we shall
now discuss.

A. Permutation tests

Returns are not exchangeable. If they were, there would
be no stochastic volatility. Although we anticipated a failure
of exchangeability, what is not apparent is the time scales
involved in this departure of real dynamics from the basic

random-walk models encapsulated by the geometric Lévy
processes. Are the 5-min returns of IBM locally exchangeable?
What if we were to permute the twelve 5-min returns in each
hour; would the price process look any different, either visually
or statistically? As for visually, there is certainly no obvious
“tell,” judging from a comparison of Figs. 7(b) and 7(c).
Figure 7(b) plots the prices of IBM at 5-min intervals from
9:45 AM to 3:45 PM on a randomly selected day in 2005.
Figure 7(c) plots a surrogate price sequence, derived from
the original [i.e., the trajectory in Fig. 7(b)] by permuting,
randomly and independently, each set of 12 returns within
each of the 6 h. The surrogate sequence is started at the same
price as the original and therefore again has the same price as
the original at each ensuing hour. There is no visual clue that
separates the real from the surrogate price sequence, and in
our experience there never is one.

How about statistically? Can we detect a difference in
the dynamics? Is there any indication that separates a real
trajectory from its permutation surrogates? If so, how does
this separation depend on time scale? We could as easily
permute the set of 5-min returns within each week, each
day, each hour, or each 30-min interval. At what time scale
does exchangeability break down? Put differently, at what time
scales does volatility clustering operate? These questions can
be systematically and robustly answered through a permutation
test and the resulting departure of the excursion waiting times
between the permuted and original trajectories as measured
through the KS distance.

Let r1,r2, . . . ,r18648 be the 18 648 five-minute intraday
returns, as defined in Sec. II. Consider any statistic T (function
of these returns), such as the KS distance between the excur-
sion waiting-time distribution and the geometric distribution,
as examined in Fig. 7(a). Also consider the particular “null
hypothesis” Ho that L{(Rρ(1),Rρ(2), . . . ,Rρ(18648))} is invariant
to the permutations ρ in a set �, where R1,R2, . . . ,R18648 are
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FIG. 7. (Color online) Exchangeability and time scale. The 5-min returns on IBM stock in 2005 were tested for their departure from
exchangeability, as reflected in the excursion waiting-time distribution. (a) P -P plot of the excursion waiting-time distribution of the IBM
returns vs the geometric distribution (corresponding to the waiting time between successes in a Bernoulli sequence with a probability of 0.2 of
success). The distributions would be nearly identical if the returns were exchangeable. (b) Trajectory of IBM prices from 9:45 AM to 3:45 PM,
sampled every 5 min, for a randomly selected day in 2005. (c) Same starting price as in (b), but with the twelve 5-min returns in each of
the six 1-h intervals randomly and independently permuted. Since the returns within a given hour are exactly preserved, the stock prices in
(b) and (c) are the same at 10:45 AM and at each hour thereafter. The dynamics governing the trajectories in (b) and (c) are not apparently
different. (d) Distribution of KS distances to the geometric distribution, obtained from 5000 surrogate return sequences corresponding to 5000
random permutations of the 18 648 IBM 5-min returns. The vertical red line marks the KS distance (0.131) of the original sequence of returns.
(e) Test for local exchangeability. Surrogates were produced by independently permuting every disjoint 20-min block of four 5-min returns.
The distribution of KS distances was again computed from 5000 surrogates. In general, tests employing larger time intervals produce still
lower p values. Thus, despite appearances, the evidence strongly points to a highly significant difference between the trajectories in (b) and
(c). (f) The ensemble of surrogates derived from permutations of pairs of returns for every 10-min block are indistinguishable from the original
sequence with respect to the departure of their excursion waiting-time distributions from geometric.

the random variables associates with the observed returns. The
point is not that we actually believe Ho (among other things,
it violates volatility clustering), but rather that it leads to a
measure of departure from exchangeability as determined by
the particular statistic being examined and the particular set of
permutations �. Under the null hypothesis a sequence of M iid
permutations, ρ1(·),ρ2(·), . . . ,ρM (·), chosen from the uniform
distribution on the set of permutations in �, produces a
sequence of M + 1 conditionally iid T ’s, namely, the observed
Tobs = T (r1,r2, . . . ,r18648) together with one additional value
for each permutation:

Tρm
= T

(
rρm(1),rρm(2), . . . ,rρm(18648)

)
, m = 1,2, . . . ,M.

It follows that under Ho

Pr{No.{m = 1,2, . . . ,M : Tρm
� Tobs} � N} � N + 1

M + 1
.

(4)

In other words, if N = No.{m = 1,2, . . . ,M : Tρm
� Tobs},

then (N + 1)/(M + 1) is an exact p value for Ho in the

direction of the alternative Ha that Tobs is larger than would be
expected under Ho.4

Figure 7(d) illustrates the test with M = 5000 and �

unrestricted, i.e., the entire permutation group on the sequence
1,2, . . . ,18 648. Since Tobs is larger than any of the values of T

evaluated for the surrogate (i.e., permuted) sequences, N = 0,
and the test has a p value of 1

5001 ≈ 0.0002. As expected, the
waiting-time distribution of real returns is not consistent with
exchangeability and in fact produced the largest deviation from
geometric among all of the 5001 sequences. Suppose now that
we restrict � to include only local permutations, say within
each day or hour or 20-min period. Then selecting from the
uniform distribution on � is the same thing as independently
choosing a permutation for each (nonoverlapping) day or hour

4This is an instance of conditional inference in that the test is
conditioned on the particular realization. The correctness of the p

value follows from its correctness for any realization.
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or 20-min period, providing a mechanism for systematically
exploring the time scale of volatility clustering.

B. Exploring time scale

Clearly, we cannot treat the entire set of 18 648 IBM 5-min
returns from 2005 as exchangeable [Fig. 7(d)]. In practice,
traders adjust for changes in volatility, as measured by σ (the
standard deviation of logarithmic returns); returns should only
be considered exchangeable within a time period. But how
often should volatility be updated? Are the returns, at least
approximately, exchangeable within days or perhaps within 1-
or 0.5-h intervals? In general, consider a partitioning of the
index set {1,2, . . . ,18 648} into disjoint intervals of length λ,
where λ is a time span, measured in units of 5 min, over which
the returns are presumed to be essentially exchangeable. We
would use λ = 74 to test exchangeability within single days
(recall that the first and last 10 min of each day of prices
are excluded) and λ = 12, 6, 4, and 2, respectively, to test
exchangeability in 1-h, 30-min, 20-min, and 10-min intervals.
By virtue of Eq. (4), these hypotheses can be tested, and exact p
values can be computed by generating ensembles of surrogate
return sequences from ensembles of random permutations and
then comparing the corresponding values of the KS statistic
to its observed value. For fixed λ, permutations are drawn iid
from the uniform distribution on the set of permutations � that
preserves membership in the designated intervals.

Figures 7(e) and 7(f) show the results of testing for local
exchangeability of the excursion process in the 5-min IBM data
over 20-min [λ = 4, Fig. 7(e)] and 10-min [λ = 2, Fig. 7(f)]
intervals. Intervals longer than 20 min result in smaller p

values. Evidently, if time-varying volatility is the source of
the breakdown in exchangeability, then it is operating at an
extremely high frequency.

In line with the near-invariance of the waiting-time distri-
bution, we find that other intervals, other stocks, and other
years lead to similar results.

IV. TIME SCALE AND STOCHASTIC
VOLATILITY MODELS

These observations of nongeometric waiting times and
remarkably rapid changes in volatility suggest mechanisms
for evaluating the validity of models of price and return
dynamics. Which models and mechanisms are consistent
with the observed properties of the excursion process? Stock
dynamics are highly nonstationary, and stochastic volatility is
a compelling modeling tool through which nonstationarity can
be accommodated. We examined implied volatility, GARCH
volatility models, and market-time transformations (trade and
volume based) for their consistency with the invariance of
excursion waiting times and the empirical characteristics of
local and global exchangeability. We were unable to match the
data from any one of these points of view, as discussed in the
following sections.

A. Implied volatility

One place to look for a nonstationary volatility process
that is commensurate with the breakdown of exchangeability
is in the volatility implied by the pricing of options. Implied

volatilities are forward looking and, as such, not a model for
σ → σt in the Black-Scholes model. But the question here
is not whether they reflect the actual minute-to-minute or
hour-to-hour volatilities of their underlying stocks, but rather
whether they include sufficiently rapid changes in amplitude
to support the lack of global and even local exchangeability in
the return process.

Eight days of minute-by-minute Citigroup 2008 stock and
option prices were sampled from 9:35 AM until 3:55 PM
(381 prices per day) and used to compute the minute-by-minute
volatilities implied by the 19 April 2008 put with strike
price 22.5 (left panel, Fig. 8). This sequence was used to
produce a corresponding return process, from which an empir-
ical excursion waiting-time distribution was extracted.5 The
volatility trajectory includes substantial fluctuations across
multiple time scales, as is evident Fig. 8, and it would be
reasonable to expect a failure of exchangeability in the derived
return process. To the contrary, the waiting-time distribution
was surprisingly similar to geometric (Fig. 8, middle panel,
KS value of 0.02), and in fact the return sequence was
indistinguishable from global exchangeability based on the KS
statistic and full-interval permutations (right panel). Results
for local exchangeability were similar. The experiment again
makes the point that extreme high-frequency fluctuations in
volatility might be needed to match the properties of the real
excursion process in the context of a Black-Scholes model
with time-varying σ . Implied volatilities evidently do not take
into account these strong intraday volatility fluctuations.

B. GARCH

We examined the suitability of Engle’s [22] autoregressive
conditional heteroskedasticity (ARCH) model and its general-
ization, GARCH [23], for producing excursion processes that
match the statistics of the excursions of real stock returns.
We explored a collection of ARCH and GARCH models by
fitting to the 1-min returns from the 2005 IBM stock prices.
Over a wide range of values for the moving average and
autoregressive orders (q and p, respectively), we found that
GARCH(p,q) models provide a nearly perfect fit to empirical
waiting-time distributions but fail to match the invariance
properties of these distributions across return intervals. We
will show results for the particular model GARCH(10,10) but
emphasize that virtually identical results were obtained for the
more commonly used GARCH(1,1) model, as well as every
combination of 1 � p � 10 and 1 � q � 10 that we tested.
Given the ample amount of data (93 240 one-minute returns)
and given that for 1 � p,q � 10 the GARCH(p,q) model is
included in the GARCH(10,10) model, we choose to show the
results for GARCH(10,10).

After fitting the GARCH parameters (see Table III for
estimated parameters and their standard errors), the model
was used to produce a full year of simulated 1-min returns.
The excursion waiting-time distribution of the simulated data
matches the distribution extracted from the real data, as
indicated by the P -P plot in the top left panel of Fig. 9 and

5The scale of the volatility process is irrelevant since the excursion
process is invariant to multiplication of the returns.
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FIG. 8. (Color online) Implied volatility generates exchangeable returns. Eight days of minute-by-minute 2008 Citigroup stock and
put prices (strike price 22.5, maturing on 19 April 2008) were used to calculate the minute-by-minute implied volatility and to generate
simulated minute-by-minute returns from a geometric Brownian motion with volatility function (σ = σt ) equal to the implied volatility. (left)
Minute-by-minute implied volatility. (middle) The excursion waiting-time distribution of the simulated returns closely resembles the geometric
distribution, unlike the real 1-min returns for which the P -P plot against the geometric is essentially identical to the one shown in the
Fig. 7(a) (5-min returns of IBM). (right) Simulated returns were not distinguishable from exchangeable returns through the KS statistic, despite
substantial fluctuations in the implied volatility at multiple time scales.

the small KS distance. Furthermore, as with the real data and
in contrast to experiments with implied volatility (Sec. IV A),
GARCH simulated returns are not exchangeable, even under
permutations confined to 2-min intervals (see top right, bottom
left, and bottom right panels, respectively, for results on full
exchangeability and 4- and 2-min exchangeability). In general,
the match between simulated and actual returns was excellent.

On the other hand, real stocks produce excursion waiting
times that are nearly scale invariant, as already documented
in Sec. II and illustrated in Fig. 3 for the 2005 IBM data. For
comparison, the left panel of Fig. 10 reproduces the bottom
middle panel of Fig. 3, whereas the right panel shows the
corresponding P -P plot for the GARCH simulated data. The
KS distance between 1- and 5-min waiting-time distributions
for the IBM data is 0.005, whereas the GARCH generated
1-min returns, aggregated to produce 5-min returns, produce
a KS distance of 0.05. In general, GARCH models have
poor scaling properties, as already noted in the discussion of
intraday return intervals in Sec. 4 of Andersen and Bollerslev
[24]. In fact, GARCH models, although elegant and apparently

suitable for fitting volatility, are inconsistent in the sense
that, in general, a process cannot obey a GARCH model for
both 1- and k-min returns for any k = 2,3, . . . , as is easily
demonstrated analytically.

C. Market time

There is no reason to believe that a good model for the
logarithm of stock prices should be homogeneous in time.
To the contrary, the random-walk model suggests that the
variance of a return should depend on the number or volume of
transactions (the number of “steps”) rather than the number of
seconds. The compelling idea that market time is measured by
accumulated activity rather than the time on the clock seems
to have been suggested first by Mandelbrot and Taylor [7]
and then worked through, more formally, by Clark [18]. It has
been revisited in several influential papers since then; see the
discussions by Geman [25] and Shephard [26] for reviews and
references.

TABLE III. GARCH parameter estimation. The GARCH(10,10) model (σ 2
t = ω + ∑10

i=1 αiR
2
t−i + ∑10

i=1 βiσ
2
t−i)

was estimated from 93 240 one-minute returns of IBM stock from 2005 (Rt, t = 1,2, . . . ,93 240), using the Univeristy
of California, Davis, GARCH MATLAB toolbox. The estimated values and standard errors of the 21 parameters are shown.
Zero values are common due to stability and positivity constraints.

Parameter Estimated value Standard error Parameter Estimated value Standard error

ω 1.5111 0.0000 β1 0.0646 0.3472
α1 0.1445 0.0044 β2 0 0.3514
α2 0.0758 0.0508 β3 0 0.3200
α3 0.0427 0.0404 β4 0.2385 0.2767
α4 0.0368 0.0406 β5 0 0.2305
α5 0 0.0285 β6 0 0.2140
α6 0 0.0283 β7 0.1892 0.1739
α7 0 0.0260 β8 0 0.1994
α8 0 0.0179 β9 0 0.1862
α9 0 0.0178 β10 0.1613 0.1038
α10 0 0.0163
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FIG. 9. (Color online) Simulated 1-min IBM returns using GARCH. One-minute returns on IBM for all of 2005 were used to fit a GARCH
model with autoregressive and moving average terms each of order 10 (p = q = 10). (top left) Waiting-time distribution between excursions in
the simulated returns was a near-perfect match to the empirical distribution. Results of permutation tests for (top right) global exchangeability
and (bottom) local exchangeability (4-min intervals, bottom left, and 2-min intervals, bottom right) were essentially identical to the results for
the real returns (not shown).

Here we employ a simple yet definitive test that rules out
the possibility that any function of volume or number of
transactions can render the return process compatible with
a geometric Brownian motion or, for that matter, any of
its Lévy generalizations. In particular, time changes based
on volume or trade numbers do not transform returns into
exchangeable sequences. The key, then, to ruling out these
simple market-time transformations lies in the dynamics; it is
not enough to simply match the marginal distributions of the
returns, as we now demonstrate.

Formally, let D(t)
.= log S(t), and start with the cus-

tomary model D(t) = μt + σw(t), where w is a standard
Brownian motion or a more general process with stationary
and independent increments (i.e., a Lévy process). Volatility
clustering is inconsistent with the resulting stationarity and/or
independence of the increments of D (and hence the modeled
returns). One remedy is to introduce a volatility process,
σ → σ (t), as in the well-known models of Hull and White [27]

and Heston [28], or any of a variety of other models for
stochastic volatility (cf. [26]). Another remedy is to introduce
a market-time process τ (t), usually independent of w, and
write w(τ (t)) in place of w(t). (Actually, the two models
are oftentimes equivalent; see, e.g., [21,29].) Depending on
the details of the model for S and for τ , D(t) becomes
μt + σw(τ (t)) or μτ (t) + σw(τ (t)).

Assuming that τ is independent of w, Clark [18] experi-
mented with various functions of the volume as measures of
market time:

τ (t) − τ (s) = f (V (t) − V (s)) ∀ s � t, (5)

where V (t) is accumulated volume and f is monotone
increasing. More recently, Easley et al. [30] provided support
for Eq. (5) by demonstrating “partial recovery of normality”
using equal-volume returns. On the other hand, Ané and
Geman [31] have argued that the number of trades, as opposed
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FIG. 10. (Color online) Failure of the GARCH model to match waiting-time scale invariance of real returns. (left) P -P plot matching
excursion waiting-time distributions for the IBM 1-min to the IBM 5-min returns (2005). Distributions are nearly identical. (right) Same
comparison using GARCH-generated 1-min returns, aggregated to make a record of 5-min returns. Although there is an excellent fit to the
1-min data (see Fig. 9), the model fails to scale across different return intervals.

to the accumulated volume, is the fundamental determinant of
τ [hence f (T (t) − T (s)) in (5), where T (t) is the accumulated
number of transactions]. Mandelbrot and Taylor [7] raised both
possibilities.

The typical test shows that the normal distribution is a better
approximation of the distribution of returns when returns are
defined by equal intervals of τ rather than equal intervals of
“clock time.” But this is a weak test. The marginal distribution
of a process carries no information about its temporal statistics.
Dynamics are more important but not as easily explored. The
excursion waiting-time distribution is fundamentally about
dynamics and provides an easy and sensitive test of whether
a time-transformed price process is, even approximately, a
geometric Lévy process (e.g., geometric Brownian motion).

Whether volume based [e.g., Eq. (5)] or trade based
[V (t) → T (t)], let 0 < t1 < t2 < · · · be an increasing se-
quence yielding equal increments of τ : τ (tk) − τ (tk−1) =
τ (tl) − τ (tl−1) ∀ k �= l, k,l > 0. If D(t) = μτ (t) + σw(τ (t)),
then set Rk = D(τk) − D(τk−1), and otherwise, if D(t) =
μt + σw(τ (t)), set Rk = D(τk) − D(τk−1) −μ(tk − tk−1).
(The difference is negligible for short intervals.) For either
model of D and either model of τ (volume based or trade
based), if the market-time corrected process is geometric
Brownian motion (or, more generally, Lévy), then the return
sequence R1,R2, . . . constructed in this manner is necessarily
iid and therefore exchangeable.

Consider, for example, Fig. 11, where we examine equal-
market-time returns on IBM 2005 stock under the assumption
that τ is determined by the number of trades. In particular,
returns were defined on successive intervals containing 110
trades each (corresponding, on average, to 5 min of clock
time). Thus,

Rk = D(τk) − D(τk−1) = log S
(
tτk

) − log S
(
tτk−1

)
,

where tτk
is the time when the τkth trade occurred and τk =

110k for all k = 0,1,2, . . .. Obviously, the process R1,R2, . . .

is far from exchangeable (right panel), and the waiting-time
distribution is a poor approximation of the geometric distribu-
tion (left panel). We examined all combinations of models for
D and τ (volume based and trade based). Each case produces
a figure essentially identical to Fig. 11; these market-time
transformations fail to render the returns exchangeable.

By the evidence, neither the number of trades nor the
accumulated volume is, in and of itself, a viable measure of
market time. The dynamics of the return process, following a
volume or trade-based time change, do not resemble those of
a geometric Brownian motion or any other Lévy process.

V. SUMMARY AND CONCLUDING REMARKS

We have given empirical evidence for a new invariant in
the price movements of stocks. The waiting-time distribution
between large returns (excursions) is nearly invariant to
scale (length of the return interval), stock, and the year of
observation. The clustering of excursions is a manifestation
of the well-studied clustering of volatility. The invariance
in the clustering of excursions therefore constrains proposed
models and mechanisms for volatility clustering. Self-similar
(log) price processes have invariant waiting times between
excursions, but the evidence for self-similarity is confined to
the distributions on log price increments and not the processes
themselves. Furthermore, scaling indices estimated from
return data vary from study to study [11] and are extremely
sensitive to statistical methodology, as might be expected given
that most approaches focus on the tail behavior of the return
distributions. By contrast, waiting-time distributions rely on
percentiles, which are robust and nonparametric and evidently
stable given the weight of evidence for invariance presented in
Sec. II.

We have illustrated the possible utility of excursion waiting
times by examining some models for price and volatility
dynamics. In general, the failure of even local exchangeability
of excursions (and therefore returns) points to rapid changes
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FIG. 11. (Color online) Interval time measured by number of trades. In 2005, there was an average of about 110 trades of IBM stock every
5 min. If market time were measured by the number of trades and were adequate to transform prices into a Lévy process, then returns over
110-trade intervals would be exchangeable. (left) Excursion waiting-time distribution for equal-market-time intervals (110 trades) does not
match the geometric distribution. (right) Equal-market-time returns are not exchangeable, as evidenced by the distribution of KS values under
permutations. Market time measured by volume instead of trades also fails to render returns exchangeable.

in volatility. Thus, implied volatility, for example, is much
too smooth (despite its appearance; see Fig. 8). ARCH and
GARCH models, even of low order, track volatility sufficiently
well to produce simulated returns with excursion waiting times
that are a near-perfect match to empirical waiting times. But
unlike real returns, aggregating the simulated 1-min returns
into simulated 5-min returns produces a different waiting-time
distribution. This might have been anticipated (though not
guaranteed) by the observation that these models themselves
lack scale invariance. Finally, we examined the appealing
idea of a market-activity-based time change in an effort to
remove volatility clustering and restore exchangeability to
the random-walk model. Returns were redefined with respect
to equal increments of market time, as opposed to clock
time, under both volume-based and trade-based measures of
market activity. Neither definition of market time rendered an
exchangeable sequence of excursions.

The usual caution about the distinction between statistical
significance and scientific significance bears repeating here.
We have introduced exact hypothesis tests that produce very
small p values. In and of themselves, these values are not
particularly interesting given the large sample sizes involved
(e.g., almost 20 000 five-minute returns on IBM stock from
2005). Our focus, instead, was on the trajectory of p values
under a sequence of global-to-local exchangeability tests and
on the comparison of p values between data produced by real
returns and data simulated from models.

A more subtle statistical issue concerns the use of aggre-
gated data for inference about temporal dynamics, especially
scaling properties, such as self-similarity. Consider using a
year’s worth of price data (S(t),t ∈ [0,T ]) for estimating
the joint distribution on successive returns R

(δ)
1 , . . . ,R(δ)

n over
intervals of length δ, where

R
(δ)
k = log

S(δk)

S(δ(k − 1))
.

(Typically, n = 1, and the goal is to study the distribution on
returns and its relationship to δ.) To keep things simple, assume
that

log S(t) =
∫ t

0
σ (s)dw(s),

where w is an α-stable Lévy process (α = 2 when w is Brown-
ian motion), consistent with the basic geometric random-walk
framework but accommodating nonconstant volatility.6 The
α-stable Lévy processes are self-similar, with scaling exponent
α ∈ (0,2] (i.e., Hurst index H = 1/α ∈ [0.5,∞)). However,
given the year under study, with its particular sample path
of σ (t), t ∈ [0,T ], log S(t) is not self-similar: L{log S(δt)} �=
L{δ1/α log S(t)}.7 Nevertheless, an experimental study, such
as Refs. [4,6,32], to name just a few, might well lead to the
opposite conclusion, as follows.

Assume for the time being that σ (t) is independent of w(t)
and pathwise smooth enough to have negligible fluctuations in
intervals of length nδ, which is reasonable for all δ sufficiently
small. What properties should be expected of the empirical
joint distribution F̂ on R

(δ)
1 , . . . ,R(δ)

n ,

F̂
R

(δ)
1 ,...,R

(δ)
n

(r1, . . . ,rn) = δ

T

T/δ∑
k=1

n∏
i=1

1
R

(δ)
k+i<ri

,

derived from a year of returns? In particular, which, if any,
of the scaling properties of w are inherited by the empirical
return distribution? Under the smoothness assumption on σ ,

6The other general approach to time-varying volatility is through a
time change of w: w(t) → w(τ (t)). As mentioned in Sec. IV C, in
most models the two approaches, σdw(t) → σ (t)dw(t) and w(t) →
w(τ (t)), come down to the same thing. For more on conditions of
equivalence see Veraart and Winkel [29].

7Here log S(t) = ∫ t

0 σ (s)dw(s), but L{log S(δt)} =
L{δ1/α

∫ t

0 σ (δs)dw(s)} �= L{δ1/α log S(t)}.
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a straightforward calculation shows that

F̂
R

(δ)
1 ,...,R

(δ)
n

(r1, . . . ,rn) ≈ F̂
R

(1)
1 ,...,R

(1)
n

(δ−1/α(r1, . . . ,rn)), (6)

which is in fact the property that characterizes the increments
of a self-similar process, with scaling index α, such as the
increments of w itself. The fact that σ = σ (t) is lost in the
aggregation. The returns R

(δ)
1 , . . . ,R(δ)

n appear to come from a
self-similar process even though they do not.

The implicit assumption behind aggregation is stationarity.
In its absence, the aggregated estimator is a mixture of
distributions, each generated by w but mixed with respect to
the occupation measure of σ (t) over the yearlong observation
t ∈ [0,T ].8 Chang and Geman [33] demonstrated that the
convergence is quite rapid and the approximation in (6)
typically holds even when the return interval δ is large relative
to the fluctuations of σ . What does the same reasoning say
about the empirical waiting-time distribution for excursions,
as computed over the same time interval? This is a substantially
harder calculation, but in one regard the conclusion is likely to
be the same: if we accept the geometric random-walk model,
then scale invariance of the empirical waiting-time distribution
for all δ sufficiently small is a foregone conclusion. On the
other hand, the particular invariant distribution, including,
for example, the empirical probability of zero wait between
excursions (approximately 0.32), very much depends on the
particular occupation measure of σ .

In light of these observations, empirical scale invariance in
the timing of excursions and for self-similarity of the price
process is at least consistent with the geometric random-walk
model, if not in fact further support for its basic soundness,
whether or not the volatility process is stationary. What is more,
the near invariance of the excursion waiting-time distribution
across stocks and years points to a volatility-generating process

8The distribution of the random variable σ (X) when X is uniform
on [0,T ].

with an occupation measure that is surprisingly reproducible,
modulo a constant scale. Notice that if nonconstant market
activity were the source of stochastic volatility, then its strong
correlations across stocks would begin to explain invariance of
waiting times across stocks. Notice also that most days begin
and end with relatively high activity, a daily rhythm which
might contribute to the invariance from one era to another.

In light of the results in Sec. IV C, however, we would
need to look beyond any simple function of trades or volume
for the relevant measure of market activity (and hence market
time). It might be sensible, for example, to view trades as
indicating the time of a step in the random walk and volume
as determining the scale of the distribution on the step size
(related to the ideas of Gabaix et al. [34]). There is no reason
to believe that the relationship between the volume v of a
trade and the scale σ = σ (v) of the resulting random step
would be linear (though presumably it is monotonic). To the
contrary, it would depend on the complexities of supply and
demand, as might be reflected in the state and dynamics of
the collective order book. In any case, it might be feasible to
estimate σ (v) nonparametrically by maximum likelihood. The
test of the model would then be the same: are returns over
equal market-time intervals exchangeable?

ACKNOWLEDGMENTS

The authors gratefully acknowledge insightful discussions
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