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Abstract
Objective. Around 1% of the world’s population is affected by epilepsy, and nearly 25% of
patients cannot be treated effectively by available therapies. The presence of closed-loop
seizure-triggered stimulation provides a promising solution for these patients. Realization of
fast, accurate, and energy-efficient seizure detection is the key to such implants. In this study,
we propose a two-stage on-line seizure detection algorithm with low-energy consumption for
temporal lobe epilepsy (TLE). Approach. Multi-channel signals are processed through
independent component analysis and the most representative independent component (IC) is
automatically selected to eliminate artifacts. Seizure-like intracranial electroencephalogram
(iEEG) segments are fast detected in the first stage of the proposed method and these seizures
are confirmed in the second stage. The conditional activation of the second-stage signal
processing reduces the computational effort, and hence energy, since most of the non-seizure
events are filtered out in the first stage. Main results. Long-term iEEG recordings of 11
patients who suffered from TLE were analyzed via leave-one-out cross validation. The
proposed method has a detection accuracy of 95.24%, a false alarm rate of 0.09/h, and an
average detection delay time of 9.2 s. For the six patients with mesial TLE, a detection
accuracy of 100.0%, a false alarm rate of 0.06/h, and an average detection delay time of 4.8 s
can be achieved. The hierarchical approach provides a 90% energy reduction, yielding
effective and energy-efficient implementation for real-time epileptic seizure detection.
Significance. An on-line seizure detection method that can be applied to monitor continuous
iEEG signals of patients who suffered from TLE was developed. An IC selection strategy to
automatically determine the most seizure-related IC for seizure detection was also proposed.
The system has advantages of (1) high detection accuracy, (2) low false alarm, (3) short
detection latency, and (4) energy-efficient design for hardware implementation.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Epilepsy is one of the most common neurological disorders,
and temporal lobe epilepsy (TLE) is probably the most
common focal epilepsy in humans (Engel, 1989). TLE consists
of simple partial seizures without loss of awareness and
complex partial seizures (i.e. with loss of awareness). Through
treatment with antiepileptic drugs (AEDs), about 75% patients
can be treated. However, the side effects and safety issues
associated with the use of AEDs are still of concern (Stacey
and Litt, 2008). Alternative techniques, such as vagus nerve
stimulation (VNS; Labar et al 1999) and deep brain stimulation
(DBS; Chabardes et al 2002) have been proposed for
open-loop seizure control. However, the efficacy of
intermittent stimulation may decrease due to neuron
acclimation (Politsky et al 2005, Raghunathan et al 2009).
Therefore, a closed-loop device can suppress seizure events
more efficiently than an open-loop seizure controller by
activating the electrical stimulator once a seizure event is
detected (Stacey and Litt, 2008, Kossoff et al 2004).

An essential technique required for closed-loop
seizure control is robust, on-line seizure detection that can
drive effective antiepileptic stimulations in the very early stage
when seizures occur. Various techniques developed for seizure
detection over long-term continuous electroencephalogram
(EEG) recordings have been developed by leveraging line
length (Esteller et al 2001), data range autocorrelation
considering spike frequency (White et al 2006), combination
of approximate entropy and spectral sub-bands (Liang et al
2010), fuzzy-rule based classification (Aarabi et al 2009),
nonlinear dimension reduction via wavelet transform (Zhang
et al 2010), wavelet filtering (Osorio et al 2002), Davies–
Bouldin (DB) indexing (Wilson, 2006), and high frequency
activities in wavelet domain (Ayoubian et al 2013). The design
goal is to achieve high detection accuracy, a low false alarm
rate, and a short delay time. A seizure detection algorithm that
can be implemented efficiently is also necessary for portable
devices (Raghunathan et al 2009, Liang et al 2011, Young et al
2011). The effectiveness of the on-line detection algorithms
needs to be verified on continuous EEG data.

Movement artifacts are serious problems in EEG analysis.
The performance of seizure detection is usually degraded
significantly due to the artifacts. Independent component
analysis (ICA) is one promising solution to eliminate
artifacts and extract meaningful signals when applied to EEG
(McMenamin et al 2010, Kocyigit et al 2008). Although ICA
can be used to separate artifacts from the source signals, the
computational complexity after ICA is very high. The identical
algorithm needs to be applied to all independent components
(ICs) (Chang et al 2010, Subasi and Gursoy 2010) and it
may take a considerable amount of computation time for
seizure detection. The selection of the significant ICs are now
determined manually (LeVan et al 2006). An algorithm for
automatically determining the most seizure-related component
therefore becomes necessary.

For implantable or wearable devices, the battery life of
such a detection system becomes important. In this study, we
have developed a hierarchical seizure detection method that

has low computational complexity and high detection accuracy
for closed-loop seizure control devices. The long-term
intracranial EEG (iEEG) recordings of 11 patients suffering
from temporal lobe seizures were analyzed. ICA is first applied
to remove the artifacts. The IC which has the most ictal activity
is determined automatically. The processing time required for
seizure detection is reduced by using the selected IC. In the
first stage, two temporal features of a segment are evaluated.
If the segment is considered as a non-seizure, the current
segment is rendered up. When a suspected segment is found,
the second-stage detection is activated. In the second stage, we
use two metrics as the input vectors of a linear classifier for
confirmation. With this two-stage seizure detection algorithm,
the computational complexity is reduced, thereby reducing
the energy dissipation. In this way, the sustainability of
the closed-loop seizure control system can be improved by
the proposed method, and therefore the patients’ quality of life
can be enhanced as well.

2. Material and methods

2.1. Datasets

The iEEG data used in this study were obtained from the
Freiburg Seizure Prediction EEG database (Freiburg Seizure
Prediction Project, 2008). In this study, the iEEG recordings
of 11 epileptic patients who suffered from TLE were used to
test the detection performance. All of the data were recorded
during pre-surgical monitoring at the Epilepsy Center of the
University Hospital of Freiburg, Germany. The iEEG data
were acquired using a 128-channel Neurofile NT digital video
iEEG system with 16-bit resolution at a 256 Hz sampling
rate. Data were filtered by a 0.5–100 Hz band-pass filter,
and a 50 Hz notch filter was applied to remove power-line
noise. For each patient, only six channels of recordings were
released. Three channels were selected from the seizure onset
zone (i.e. from areas involved early in ictal activity, in-focus
electrodes; Aschenbrenner-Scheibe et al 2003). The remaining
three channels were selected from the out-focus area. There
are 42 seizures in the iEEG recordings of 11 patients. Details
of the patients’ characteristics are listed in table 1.

2.2. Seizure detection algorithm

The detection flow chart of the proposed hierarchical method is
shown as figure 1. To reduce the interference of artifacts, ICA is
first applied to multi-channel iEEGs. The IC that has the most
ictal activity is determined for further analysis. The signals of
the determined IC are divided into 512-point segments with
an overlap of 384 points. Each segment is visually labeled
as one of three possible behavioral states: normal, seizure, or
artifact. In the training phase, the features of segments are
grouped according to their behavioral states. Those features
are utilized for training the classification model.

The feature index of each segment is extracted and
analyzed for the two-stage seizure detection. When a suspected
segment is detected, the second stage is activated for
final confirmation. Meanwhile, a temporal constraint Nc
is used to reduce the false alarm rate. If the number of
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Table 1. Characteristics of 11 patients with TLE.

Seizure Electrode Resection Number of Average seizure
Patient Gender Age type Origin type outcome seizures duration (s)

2 M 38 SP,CP,GTC H D IV 3 118.2
4 F 26 SP,CP,GTC H d, g, s No surgery 5 87.4
6 F 31 CP,GTC H d, g, s I 3 66.9
7 F 42 SP,CP,GTC H D I 3 153.5

11 F 10 SP,CP,GTC NC g, s II 4 91.1
12 F 42 SP,CP,GTC H d, g, s IV 4 55.1
13 F 22 SP,CP,GTC H d, s II 2 158.3
14 F 41 CP,GTC H, NC d, s I 4 216.4
15 M 31 SP,CP,GTC H, NC d, s III 4 89.6
17 M 28 SP,CP,GTC NC S I 5 86.2
21 M 13 SP,CP NC g, s I 5 83.1

Average X 29.5 X X X X 3.8 109.6

Resection outcome according to Engel classification. Gender: F = female; M = male. Seizure type: SP = simple
partial; CP = complex partial; GTC = generalized tonic–clonic. Origin: H = hippocampal; NC = neocortical;
FT = frontal. Electrode types: g = electrodes grid; s = strip; d = depth.

Figure 1. Flow chart of the proposed hierarchical method. ICA is
first applied to multi-channel iEEG recordings. The first stage
evaluates each segment with a low-complexity algorithm in order to
operate in a low-power mode. The second stage stays idle until a
suspected seizure segment is found. The steps repeat until all
segments are analyzed.

consecutive segments classified as seizure states by the second
stage reaches approaches Nc, the system will report that a
seizure event occurs. The system repeats the detection steps
until all segments were analyzed. The details of the operations
are elaborated in the next sections.

2.3. Preprocessing

Our experiment is performed in two phases: training and
testing. In the training phase, we apply ICA to determine
the mixing matrix A for each patient. In the testing phase,
the obtained matrix A is used to decompose a subject’s iEEG
signals so that the most seizure related IC can be derived
without computing ICA again.

Fast ICA (FastICA; Hyvärinen, 1999) is used for
signal separation due to its robustness, low computational
complexity, and fast convergence. It has been commonly used
to remove artifacts and extract seizure components for seizure
identification (Jung et al 2000, Kocyigit et al 2008). Since only
six iEEG channels (three from in-focus electrodes and three
from out-focus electrodes) are released, the proposed approach
is developed based on six channel recordings.

Notations used in this paper are elaborated as follows.

(1) X = [x1, . . . , x6]T: the 6-channel iEEG signals.
(2) Y = [y1, . . . , y6]T: the six ICs after ICA decomposition.
(3) A = [aij]6 × 6: a mixing matrix, and X = AY. The entries of

ith column of A stand for the projection lengths of ith IC
onto respective iEEG channels, which also represents the
contribution of ith IC to the total variation of the 6-channel
iEEGs signals.

(4) α, β and γ : the three iEEG channels that are closest to the
seizure onset zone, where 1 � α, β, γ � 6 and α �=β �=γ .

For each patient, the automatic IC determination steps are
described as follows.

(1) α, β and γ are derived in advance from patient’s basic
characteristics (table 1).

(2) 6-channel iEEGs X are decomposed into 6 ICs Y and
mixing matrix A through FastICA.

(3) For ith IC, we calculate the weighted sum of entries
corresponding to α, β and γ channels, and further
compute its ratio over all entries (6 channels). The
resulting ratio Ri is formulated as (1), and it also represents
that the density of ictal activities of seizure onset zone
contributed by the ith IC.

Ri =
∑

k=α,β,γ aik∑6
k=1 aik

(1)

3
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(4) The IC that has the maximal R value is chosen. That is,
the IC that has the highest density of ictal activity in the
seizure onset zone is determined for seizure detection.

It is noted that the concept of the proposed IC selection
strategy is to analyze the density of ictal activities and to select
the IC with the strongest projection in the seizure onset zone.
Because only the data from six iEEG channels are released in
the utilized dataset, the proposed method is developed based
on six-channel recordings but not limited to six channels.

2.4. First stage for fast suspect detection

Extracting feature indexes of each segment is essential for
determining whether a particular iEEG segment is in a seizure-
like state. The design principle of the first stage is to detect
the suspected segment with a short delay time. The first
stage is therefore named the fast suspect detection stage. Two
temporal features, line length analysis and Hjorth parameters,
are utilized to detect the behavioral state of the iEEG segment.
When the feature values are greater than their respective
thresholds, the second stage is activated. This conditional
activation allows for considerable energy savings.

2.4.1. Line length analysis. Line length analysis was first
proposed by Esteller et al (2001) for seizure detection. It
is sensitive to the variations of amplitude and frequency
in signals, and is treated as a measure of ‘seizureness’
or the pathology of the combined amplitude–frequency
characteristics of the EEGs (Esteller et al 2004). Given a time
series x(n), n = 1, . . . , N, the line length (F_LL) is defined by
the sum of the lengths of the line segments between successive
samples of a signal:

F LL =
N−1∑
i=1

abs [x(i + 1)−x(i)]. (2)

Figure 2 shows two examples of iEEG waveforms after
applying line length analysis. Figure 2(a) first shows a segment
of the original waveforms with one seizure event of patient#6,
and the next row displays the corresponding F_LL values.
The dotted (solid) line indicates the time of seizure onset
(end) of seizures. It shows that the value of F_LL becomes
greater during the seizure period. F_LL is also sensitive
to amplitude and frequency variations in the signals. An
example is shown in figure 2(b) where the other segment
is affected seriously by artifacts. It shows the F_LL has
greater values for artifacts. Figure 2(c) shows the histogram
of F_LL for all patients. Although F_LL is a good index
to discriminate the seizure segments from normal segments,
it is still difficult to distinguish between artifact segments
and seizure segments using only F_LL. Therefore, one more
parameter, F_MDC, evolved from Hjorth analysis, is added to
improve the correctness and efficiency.

2.4.2. Hjorth analysis. Hjorth parameters (Hjorth, 1970)
have been extensively used in time-domain EEG analysis
(Indiradevi et al 2009, Päivinen et al 2005). Given a time

series x, three parameters, Activity, Mobility, and Complexity,
are defined as (3) to (5), respectively:

Activity = σ 2
x (3)

Mobility = σx′

σx
(4)

Complexity = σx′′/σx′

σx′/σx
, (5)

where σx,σx′ and σx′′ are the standard deviations of the original,
first, and second derivatives of the iEEG signals.

In this paper, we propose a new feature, F_MDC, the ratio
between Mobility and Complexity, for fast suspect detection:

F MDC = Mobility

Complexity
. (6)

Taking patient #21 for illustration, we calculate the
three Hjorth parameters and F_MDC of the iEEG signals.
Figure 3(a) first shows the original iEEG waveforms with one
seizure event. The dotted (solid) line indicates the onset (end)
of the seizure. The second to fifth rows illustrate the values of
Activity, Mobility, Complexity and the new proposed feature,
F_MDC, respectively. From the sub-figures, it can be seen
that the fluctuation of Activity is the most insignificant during
a seizure event. For a seizure event, the Mobility increases,
while Complexity decreases. F_MDC (Mobility divided by
Complexity) during seizure is steadily greater than that during
inter-ictal period. Figure 3(b) displays the histograms of four
Hjorth parameters of normal, seizure and artifact segments. It is
shown that ‘F_MDC’ has the smallest overlap between seizure
and non-seizure segments. F_LL and F_MDC are therefore
used to detect the suspected segments in the first stage.

2.4.3. Determination on two thresholds. The decisive
features of a segment used for detecting a suspected seizure
segment are determined by (7) and (8), where two thresholds
are denoted as Th_1 and Th_2, respectively. If F_LL and
F_MDC of a segment are both greater than their respective
thresholds, the segment is marked as a suspected seizure
segment. The second stage is then activated for final
confirmation:

T h 1 = Avg[F LL] − Std[F LL] (7)

T h 2 = Avg[F MDC] − Std[F MDC] (8)

where Avg[·] and Std[·] stand for the average and standard
deviation, respectively.

2.5. Second stage of seizure confirmation

In the second stage, we use two metrics as input vectors into
a linear discriminant analyzer (LDA) for the final seizure
confirmation. The two metrics are from the approximate
entropy (ApEn) analysis proposed by Pincus (Pincus 1991)
and from EEG power spectrum analysis. In our previous study
(Liang et al 2010), it was observed that combining ApEn with
the multi-band EEG power spectra can effectively classify the
ictal and non-ictal EEG segments. In this work, this approach
is further utilized for seizure detection in long-term continuous
iEEG signals.

4
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(a)

(b)

(c)

Figure 2. The examples of iEEG waveforms (a) with one seizure event and (b) seriously affected by artifacts when applying line length
analysis. The row below the original iEEG displays its corresponding F_LL values. The dotted (solid) line indicates the time of seizure onset
(end). (c) Histogram of F_LL for normal, seizure and artifact segments. The error bar for ‘mean ± standard deviation’ is also shown.

Based on the observation that the EEG pattern of a
seizure is more ordered than that of a non-seizure, entropy
has been used for seizure detection and analysis (Kannathal
et al 2005, Ocak, 2009). To reduce the computational cost,
ApEn (Pincus 1991) is used for real-time processing. Let
the N-point time sequence of data equally spaced in time be
[u(1), u(2), . . . , u(N)]. First, for a sequence of vectors x(1),
x(2), . . . , x(N–m+1) in Rm,

x(i) = [u(i), u(i + 1), . . . , u(i + m − 1)]

for 1 � i � (N − m + 1), (9)

where m is the length of the compared runs, we compare
every vector pair, element by element. The vector comparison
distance is defined as the maximum difference of the relative
elements in two sequences x(i) and x( j):

d[x(i), x( j)] = max[|u(i + k) − u( j + k)|],
for k = 0, 1, . . . , (m − 1). (10)

For each i, 1 � i � N − m + 1, we define

Cm
i (r) =

∑N−m+1
j=1 ωi, j

N − m + 1
, (11)

where

ωi, j =
{

1, if d[x(i), x( j)] � r,
0, else,

(12)

and r is the tolerance of d. The approximate entropy, ApEn, is
defined by

ApEn(m, r, N) = �m(r) − �m+1(r), (13)

where

�m(r) =
∑N−m+1

i=1 lnCm
i (r)

(N − m + 1)
. (14)

For the parameter setting of ApEn, we set that m = 2, N = 128
(0.5 s), and r = 0.05 for each patient. ApEn is a good index for
discriminating between normal and ictal EEGs, but the ApEn
values of the interictal EEGs overlap with those of the normal
and the ictal EEGs (Liang et al 2010). Multi-band EEG power

5
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(a)

(b)

Figure 3. (a) The original iEEG waveforms and their Hjorth parameters of patient#21. The dotted line indicates the time of seizure onset at
100th s, and the solid line indicates the end of seizure. The second to fifth rows illustrate the analyzed signals by Activity, Mobility,
Complexity and our proposed feature, ‘F_MDC’. (b) The histograms of four Hjorth parameters of normal, seizure and artifact segments. The
error bar for ‘mean ± standard deviation’ is also shown.

spectra are therefore utilized as the complementary features
of ApEn to reduce the false alarm rate. In this work, iEEG
segments are filtered through a 0–60 Hz passband and the
frequency band is divided into 15 sub-bands. The average
EEG power of each sub-band is extracted as the spectral
features. The spectral sub-band i, 0 � i � 14, is calculated as
follows:

F SSBi = Mean[SSB( f )], 4 · i < f � 4 · (i + 1) (15)

where SSB( f ) is the power of the frequency band f (unit: Hz).
Combining the ApEn feature, a total of 16 features are fed into
the LDA for final confirmation.

The aim of the LDA is to use a hyper-plane to separate the
data into different classes and to minimize the data distribution
of the same class in the feature space (Lin et al 2008). For a
two-class problem, the class of a feature vector depends on
which side of the hyper-plane the vector is. The computational
complexity of the LDA is relatively low and realizations in
an embedded system have been presented (Hargrove et al
2010, Donohoo et al 2012). This algorithm is also successfully
implemented on different processors for on-line detection of
spontaneous absence seizures in animal models (Liang et al
2011, Young et al 2011) and in 24 h long-term uninterrupted
EEG sequences (Chen et al 2011).
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(a)

(b)

Figure 4. (a) The 6-channel iEEG waveforms with a seizure onset at the 250th s for patient#6; (b) The six ICs after FastICA decomposition.

2.6. Temporal constraint

To reduce the influence of iEEG fluctuations, a temporal
constraint is used to make the final decision. In this study,
the system outputs 1 for seizure and 0 for non-seizure every
0.25 s. If the number of consecutive windows classified as
seizure by the second stage reaches a constant parameter Nc,
a seizure event is claimed.

2.7. Strategy of cross validation

In this work, the leave-one-out cross validation is used to
evaluate the generalization of the proposed system. When
testing a certain patient’s iEEG, the data of the other ten
patients are used for training the model.

3. Results

Continuous iEEG data were screened by an expert and the
seizure onset was defined as the onset of the epileptiform

activity identified by the expert. The performance of the
hierarchical approach is evaluated by three parameters:
seizure detection accuracy, detection delay time, and false
alarm rate (Aarabi et al 2009). Detection delay time is defined
as the duration between the onset of an epileptiform activity
scored by an expert and the time that the system reports.
The seizure detection accuracy and the false alarm rate are
defined as

Detection accuracy = T P

T P + FN
× 100% (16)

False alarm rate = FP/hr (17)

where
true positive (TP): total number of correctly detected

seizure events.
false negative (FN): total number of missed detections of

seizure events.
false positive (FP): total number of non-seizure segments

erroneously detected as seizure events.

7
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Figure 5. The 3D distribution of F_LL versus F_MDC of normal,
seizure, and artifact EEG segments.

Table 2. The mixing matrix A of patient#6 and the resulting R ratios
(sum of Ch1–Ch3/sum of Ch1–Ch6) of six ICs. The first three iEEG
channels (α = 1; β = 2; γ = 3) are closest to the seizure onset zone.
Each column of A represents the projection of the certain IC onto
the respective iEEG channels. The IC-5 has the highest ratio among
all ICs and therefore it is chosen for further seizure detection.

IC-1 IC-2 IC-3 IC-4 IC-5 IC-6

Ch-1 (α) 0.08 0.05 0.46 0.22 1.00 0.45
Ch-2 (β) 0.08 0.06 0.73 0.17 0.08 0.14
Ch-3 (γ ) 0.17 0.02 0.12 0.53 0.70 0.62
Ch-4 0.86 1.00 0.08 0.70 0.23 0.01
Ch-5 1.00 0.42 0.07 0.45 0.04 0.02
Ch-6 0.20 0.03 1.00 1.00 0.03 1.00

Sum of Ch1–Ch3 0.33 0.13 1.31 0.92 1.78 1.21
Sum of Ch1–Ch6 2.39 1.58 2.46 3.07 2.08 2.24
Ratio (R) 0.14 0.08 0.53 0.30 0.86 0.54

The proposed detection method is verified on 11 epileptic
patients who suffered from TLE. We first applied FastICA
to 6-channel iEEGs to remove artifacts and extract the most
seizure-related component. Taking patient #6 as an example,
figure 4(a) shows that the original iEEG signals contain one
seizure event of the subject, and figure 4(b) shows the six
ICs after ICA decomposition. The resulting mixing matrix
A is also shown in table 2, in which the first, second and
third iEEG channels (α = 1; β = 2; γ = 3) are closest
to the seizure onset zone of the patient. Each column of A
stands for the projection of each IC onto respective iEEG
channels. It shows that IC-5 has the highest R value and is
chosen for further seizure detection. Then, the signals of the
determined IC are divided into 512-point segments (2 s) with
an overlap size of 384 points (1.75 s). In the first stage, F_LL
and F_MDC are applied as temporal constraints to detect the
suspected seizure segments. A three-dimensional distribution
of F_LL versus F_MDC of normal, seizure, and artifact iEEG
segments is shown in figure 5. It can be seen that the non-
seizure segments (marked as normal and artifact in figure 5)
are distributed around the lower-left corner since they have
insignificant values of F_LL and F_MDC. In contrast, the
segments of seizures are distributed around the upper-right
corner of the plot. That is, the F_LL and F_MDC values of

Table 3. The thresholds (Th_1 and Th_2) used for each patient.

Patient Th_1 Th_2

2 11.75 0.30
4 11.99 0.19
6 10.10 0.29
7 10.07 0.22

11 12.68 0.22
12 15.21 0.20
13 16.46 0.18
14 27.40 0.40
15 17.08 0.00
17 10.76 0.27
21 15.22 0.29

Table 4. Detection results for each patient. The performance was
evaluated by three metrics: detection accuracy, false alarm rate, and
detection delay time.

Total Detected Total testing False alarm Delay
Patient seizures seizures EEG (h) rate (# FP/h) (s)

2 3 3 5.54 0 7.2
4 5 5 24 0 5.3
6 3 3 24 0.21 5
7 3 3 24 0 3.7

11 4 3 24 0.04 3.2
12 4 4 24 0.08 1.9
13 2 2 24 0.08 5.5
14 4 4 24 0.21 28.1
15 4 4 24 0.13 18.4
17 5 5 24 0.13 10.9
21 5 4 24 0.13 12.1

seizure segments are almost higher than those of non-seizure
segments. Table 3 shows the resulting values of Th_1 and Th_2
for each patient after the training phase. In the confirmation
stage, a total of 16 features (from approximate entropy and
15 power bands) of a segment are used as input vectors to
the LDA. When the LDA detects seizures for consecutive Nc
segments, the system reports that a seizure occurs.

Figure 6 presents an example of the detection result. The
delay time of one seizure event for patient #4 is 4 s. Table 4
shows the experimental results for each patient. The proposed
method misses two seizures, from patient#11 and patient#21.
The detection accuracy achieves up to 95.24%. The false alarm
rate ranges between 0 and 0.21 per hour, with an average of
0.09 per hour. The average delay time is 9.2 s with a standard
deviation of 7.9 s.

Next, we verified the advantages contributed by the
hierarchical detection method. We compared the results with
only the fast detection stage (ST1) and with the proposed
two-stage algorithm (ST12). When the number of consecutive
seizure-like segments detected by the first stage reaches Nc,
the system reports that a seizure occurs. Table 5 shows that
the seizure detection accuracy of ST1 is equal to ST12, which
both reached a detection accuracy of 95.24%. The delay time
of ST1 is 8.8 s with a standard deviation of 7.9 s, which is
also similar to that of ST12. Without the confirmation stage,
however, the average false alarm rate for all patients raises to
0.72/h, which is eight times higher than the proposed method.
It is proved that the second stage can significantly reduce the
false alarm rate.
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Figure 6. The detection results of one seizure event for patient#4. The dots indicate the seizure events labeled by an expert, while stars
denote the results detected by the proposed system. The detection delay time is 4.0 s.

Table 5. Performance comparison for two detection methods: fast suspect detection with only one stage (ST1) and two-stage detection
(ST12). Standard deviations are listed in parenthesis.

Total Detected False Total testing False alarm Average delay
Patient Stage seizures seizures detection EEG (h) rate (# FP/h) time (s)

2 ST1 3 3 11 5.54 1.99 6.7
ST12 3 0 0 7.2

4 ST1 5 5 16 24 0.67 4.8
ST12 5 0 0 5.3

6 ST1 3 3 15 24 0.63 4.7
ST12 3 5 0.21 5

7 ST1 3 3 11 24 0.46 3.7
ST12 3 0 0 3.7

11 ST1 4 3 1 24 0.04 3.2
ST12 3 1 0.04 3.2

12 ST1 4 4 3 24 0.13 1
ST12 4 2 0.08 1.9

13 ST1 2 2 9 24 0.38 5.5
ST12 2 2 0.08 5.5

14 ST1 4 4 69 24 2.88 28
ST12 4 5 0.21 28.1

15 ST1 4 4 7 24 0.29 17.8
ST12 4 3 0.13 18.4

17 ST1 5 5 5 24 0.21 9
ST12 5 3 0.13 10.9

21 ST1 5 4 5 24 0.21 12.1
ST12 4 3 0.13 12.1

Total ST1 42 40 152 245.54 X X
ST12 40 24

Avg. ST1 X 95.24% 13.8(18.9) 22.3 (5.6) 0.72 (0.9) 8.8 (7.9)
ST12 95.24% 2.2 (1.8) 22.3 (5.6) 0.09 (0.1) 9.2 (7.9)
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Figure 7. The six ICs decomposed by applying ICA to the segment containing the first seizure event of patient#6.

The fast suspect detection is a low-complexity seizure
detection method. Only two temporal features, F_LL and
F_MDC, are used to detect the state of iEEG segment:
seizure or non-seizure. The second stage is developed for final
confirmation to reduce the false alarm rate. The proposed
approach consists of line length analysis, Hjorth analysis,
approximate entropy, and LDA classification. It can be
easily implemented on hardware with current processing
platforms. Unlike patient-specific methods, the proposed
seizure detection method can be applied across patients for
real-time demands.

4. Discussion

An on-line seizure detection system can drive an antiepileptic
stimulator in real time to suppress seizures (Stacey and Litt
2008). This work develops an on-line seizure detection method
that can be applied to monitor continuous iEEG signals of
patients who suffered from TLE. The results show that the
proposed method has superior performance on leave-one-
out subject independent evaluation. The average detection
accuracy, false alarm rate, and delay time are 95.24%, 0.09/h,
and 9.2 s, respectively.

In previous studies that analyzed the same database, the
line length (Esteller et al 2001) or spike rate (Schad et al 2008)
was used as a simple threshold to detect a seizure; Meier et al
(2008) and Liu et al (2012) applied a support vector machine
(SVM) to classify the state of an iEEG’s segment; Aarabi et al
(2009) used a fuzzy-rule based classifier; Zhang et al (2010)
proposed a patient-specific seizure onset detection method
based on incremental non-linear dimensionality reduction.
The detection accuracies range between 62% and 98.8% and
the false alarm rates are between 0.15 and 0.58 per hour.
The average delays range from 10.8 to 12.3 s, except for the
method proposed by Meier et al (2008), whose average delay
is 1.6 s at the cost of a false alarm rate of 0.45 per hour. The
proposed hierarchical approach has comparable performance

Table 6. The mixing matrix A1 of patient#6 obtained by applying
ICA to the segment containing the first seizure event.

IC-1 IC-2 IC-3 IC-4 IC-5 IC-6

Ch-1 0.06 0.04 0.28 0.39 0.10 1.00
Ch-2 0.08 0.05 0.60 0.15 0.20 0.07
Ch-3 0.06 0.00 0.01 1.00 0.64 0.32
Ch-4 1.00 0.85 0.16 0.71 0.17 0.08
Ch-5 0.02 1.00 0.04 0.37 0.10 0.04
Ch-6 0.04 0.07 1.00 0.70 1.00 0.53

Ratio 0.16 0.04 0.43 0.46 0.43 0.68

on the detection accuracy and achieves the lowest false alarm
rate among the existing methods.

In this study, we propose an independent component (IC)
selection strategy to automatically determine the most seizure-
related IC for seizure detection. Experimental results show that
it can effectively reduce the false alarm rate by extracting
meaningful features and eliminating artifacts. Because the
mixing matrix can be predetermined, we further evaluate the
reproducibility of the determined IC. Taking the data from
patient#6, we apply ICA to the segment that contains only
the first seizure event. The six ICs after ICA decomposition
are shown in figure 7, in which A1 and A represent the ICA
results of the segment containing the first seizure event and the
whole segment, respectively. The resulting mixing matrix of
A1 is shown in table 6. IC-6 is selected since it has the highest
R value. Comparing table 6 with table 2 and figure 7 with
figure 4(b), respectively, it is observed that IC-6 of A1 and IC-
5 of A contain the most ictal activities and Ch-1 of the original
recording has the strongest correlation with these two ICs.
Figure 8 shows that the ICs during the same period contain the
second seizure event of patient#6. Figures 8(a) and 8(b) depict
the ICs of A1 and A, as listed in tables 6 and 2, respectively.
The signals of IC-6 in figure 8(a) and IC-5 in figure 8(b)
contain stronger seizure waveforms after seizure onset
(800–815 s) compared with the other ICs. Analysis on other
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(a)

(b)

Figure 8. The IC signals during the period containing the second seizure event of patient#6. Plots (a) and (b) show the signals of IC
decomposed by A1 (table 6) and A (table 2), respectively.

subjects is shown in table 7. Only the vectors corresponding
to the selected ICs are shown. It is found that the determined
ICs from A1 and A for each patient have stronger correlations
on the same channel, although these ICs are obtained from
different iEEG segments. This verifies the reproducibility of
the selected IC on the utilized database. In addition to off-line
ICA, we are also developing an on-line ICA chip to deal with
the drift of iEEG signals due to long-term medication or the
use of closed-loop seizure controllers (Chen et al 2012, Liang
et al 2011). The proposed IC selection strategy can be applied
to these applications.

The ICA pre-processing and temporal constraint strategy
used in our approach effectively reduces the false detections
caused by the influence of unexpected signal variability and/or
artifacts. There is a fundamental tradeoff between accuracy,
delay time, and false alarm rate in setting the parameters
for seizure detection. The number of consecutive windows

Nc for seizure detection is set to 6 in this work so that the
minimum delay time is 1.5 s. An increased Nc results in a
reduced false alarm rate and an increased detection delay. On
the contrary, a decreased Nc causes an increased false alarm
rate. Figure 9 shows the performance of the proposed seizure
detection method for various values of Nc: Nc = 1, 2, 4, 6, 8
to 10. Without temporal constraint (i.e. Nc = 1), integrating
entropy and the spectral features of EEG signals along with a
linear classifier can achieve a 100% detection accuracy and the
average delay time is less than 6 s, at the cost of a false alarm
rate of up to 15.8 FP/h. When Nc = 10 is applied, the false
alarm rate reduces to 0.03. However, the detection accuracy
decreases to 90% and the detection delay increases to 14 s
accordingly.

Table 8 summarizes the detection results of the proposed
method with respect to different seizure types, origins, and
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Figure 9. The performance of accuracy, delay time and false alarm rate when various values of Nc are applied. The lines are expressed as
‘mean ± 0.5∗standard deviation’.

Table 7. The vectors (in the mixing matrices A1 and A) corresponding to the selected ICs for 10 patients with TLE in this study.

Patient#2 Patient#4 Patient#7 Patient#11 Patient#12

A1 A A1 A A1 A A1 A A1 A

Ch-1 0.73 0.48 0.96 0.85 0.10 0.41 0.00 0.02 1.00 1.00
Ch-2 1.00 1.00 0.05 0.12 0.25 0.35 0.02 0.21 0.47 0.20
Ch-3 0.25 0.01 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.66
Ch-4 0.00 0.25 0.02 0.08 0.02 0.00 0.08 0.11 0.08 0.06
Ch-5 0.03 0.07 0.01 0.00 0.04 0.07 0.01 0.23 0.10 0.04
Ch-6 0.03 0.02 0.00 0.02 0.17 0.14 0.03 0.15 0.16 0.00

Ratio 0.96 0.81 0.98 0.95 0.86 0.89 0.89 0.71 0.87 0.95
Patient#13 Patient#14 Patient#15 Patient#17 Patient#21

A1 A A1 A A1 A A1 A A1 A
Ch-1 1.00 1.00 0.15 0.78 1.00 1.00 0.72 0.21 1.00 1.00
Ch-2 0.73 0.95 1.00 1.00 0.14 0.09 0.70 0.82 0.00 0.29
Ch-3 0.21 0.05 0.03 0.01 0.11 0.89 1.00 1.00 0.04 0.04
Ch-4 0.02 0.01 0.05 0.34 0.08 0.01 0.02 0.01 0.03 0.00
Ch-5 0.00 0.01 0.00 0.03 0.09 0.12 0.01 0.01 0.00 0.29
Ch-6 0.71 0.00 0.03 0.00 0.10 0.16 0.02 0.04 0.03 0.35
Ratio 0.73 0.99 0.93 0.83 0.82 0.87 0.98 0.97 0.94 0.67

Table 8. Analysis of detection results with respect to seizure type, origin, and resection outcome.

Seizure type
Number of subjects Detection accuracy (%) False alarm rate (FP/hr) Delay time (s)

Simple partial seizures 9 94.5% 0.06 ± 0.05 7.6 ± 5.3
Complex partial seizure 11 95.2% 0.09 ± 0.08 9.2 ± 7.9
Generalized tonic–clonic seizures 10 97.3% 0.09 ± 0.08 8.9 ± 8.3

Origin
Number of subjects Detection accuracy (%) False alarm rate (FP/hr) Delay time (s)

Hippocampus 6 100.0% 0.06 ± 0.08 4.8 ± 1.8
Neocortex 3 85.7% 0.10 ± 0.05 8.7 ± 4.8
Hippocampus and Neocortex 2 100.0% 0.17 ± 0.06 23.2 ± 6.9

Resection outcome

Number of subjects Detection accuracy (%) False alarm rate (FP/hr) Delay time (s)
Class I and II 7 92.3% 0.11 ± 0.08 9.8 ± 8.8
Class III and IV 3 100.0% 0.07 ± 0.07 9.1 ± 8.4

resection outcomes. The proposed method outputs stable
results for a variety of seizure types and resection outcomes,
but its performance depends on the origins. For the origins, this
method yields the best performance on the six patients with
mesial TLE of hippocampal origin (patient#2, #4, #6, #7, #12

and #13) in terms of detection accuracy, false alarm rate, and
delay time. There are two missed detections in the neocortical
group (patient#11 and #21). Although seizures from patients
with TLE of hippocampal and neocortical origin are 100%
detected, the detection delay is 23.2 s on average.
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A seizure detection system that can monitor long-term
continuous EEG signals of epileptic patients is essential for
closed-loop seizure control and pre-surgical monitoring. For
implantable or wearable devices, the battery life of such
a detection system becomes important. Power consumption
can be saved through the use of a power-efficient hardware
computing platform. Chen et al (2011) carried out a real-
time seizure detection system based on reduced instruction
set computer (RISC) architecture. The measurement results
show that the RISC architecture can reduce over 90% power
consumption compared with its previous prototype, which was
implemented on an enhanced 8051 microprocessor (Liang
et al 2011). Given a computing platform, the energy can
be further saved by using an improved detection algorithm.
This work proposes a two-stage method of energy saving. The
first stage fast detects the suspected seizure segment. Due to
the low-complexity algorithm, it can be operated with less
power dissipation. The engine of seizure confirmation stays
idle until the suspected seizure segment is detected. For the
database used in this work, the length of iEEG recordings for
11 patients is 245.54 h. Without the fast suspect detection, the
engine needs to keep running all along. With the proposed
hierarchical detection algorithm, the engine only operates
to detect seizures for 1.72 h for all patients. The execution
time is saved by 99.3% in this experiment. In this way, the
sustainability of the closed-loop seizure control system can
be improved. The energy savings depend on the occurrence
of seizures in patients. Better energy savings are achieved for
patients with mild or moderate seizure occurrences.

EEG onset is defined as a sustained rhythmic change in the
brain’s activity accompanied by subsequent clinically typical
seizure activity (Lee et al 2000). Instead of detecting seizures
after clinical onset, our system detects the seizures after EEG
onset. The duration between EEG seizure onset and clinical
seizure onset is an important issue to discover. It was reported
that the EEG seizure onset precedes clinical seizure onset by
at least 11.7 s in patients with refractory TLE (Weinand et al
2007). Our system can detect the seizures 9.2 s after EEG
seizure onset on average, which is shorter than the results
reported in Weinand et al (2007). This makes an early detection
of seizure events before the clinical seizure activity possible.
However, how early an anti-epileptic device could effectively
control clinical seizures is still under investigation.

The discrimination of vigilance states is very important,
and it helps us to understand the functional relationship
between brain and behavior. A combination of video and
EEG is commonly used in the clinic, but the video provides
low spatial- and temporal-resolution for the study of brain-
behavior association. Recently, we have presented a multi-
channel wireless system for monitoring the EEG signals of
freely moving rats, and TLE detection is performed through a
combination of EEG and an accelerometer (Chang et al 2011,
Wang et al 2012). We have confirmed its performance by
video examination and demonstrated the improved accuracy
of discrimination in a vigilance stage. If accelerometers can be
integrated into our proposed system, the detection delay time
would be further reduced.

In the future, this method will be implemented in
our closed-loop seizure controller (Liang et al 2011) for

suppression of temporal lobe seizures. Because the developed
method has low computational complexity and high detection
accuracy, it can be integrated with an electrical stimulator or
drug delivery device to perform closed-loop seizure control
to enhance the patients’ quality of life. In conjunction
with wireless transmission, the maximum portability and
wearability of the seizure control system can be achieved
(Young et al 2011, Liang et al 2011). In addition to off-line
ICA, we are also developing an on-line ICA chip to deal with
the drift of iEEG signals due to long-term medication or the
use of closed-loop seizure controllers (Chen et al 2012). The
proposed IC selection strategy can also be applied to these
applications. We also plan to discover the longest stimulation
delay, after the EEG onset, to suppress seizures successfully
in animal models.
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