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Abstract We consider the solution of large-scale Lyapunov and Stein equa-
tions. For Stein equations, the well-known Smith method will be adapted,
with Ak = A2k

not explicitly computed but in the recursive form Ak = A2
k−1,

and the fast growing but diminishing components in the approximate solu-
tions truncated. Lyapunov equations will be first treated with the Cayley
transform before the Smith method is applied. For algebraic equations with
numerically low-ranked solutions of dimension n, the resulting algorithms
are of an efficient O(n) computational complexity and memory requirement
per iteration and converge essentially quadratically. An application in the
estimation of a lower bound of the condition number for continuous-time
algebraic Riccati equations is presented, as well as some numerical results.
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1 Introduction

Consider the large-scale Stein equation

S(X) ≡ −X + A� X A + H = 0, H = CT−1C�, (1)

where A ∈ R
n×n is d-stable (with eigenvalues inside the unit circle), C ∈ R

n×l

and the symmetric T−1 ∈ R
l×l. We assume that l � n and A is large and

sparse(-like) or banded, requiring cs
amn flops to form the products AZ or

A� Z , where Z ∈ R
n×m and cs

a is independent of n.
Similarly, consider the large-scale Lyapunov equation

L(X) ≡ A� X + X A + H = 0, H = CT−1C�, (2)

where A ∈ R
n×n is c-stable (with eigenvalues on the left half-plane). Again,

we assume that l � n and A is large and sparse(-like) or banded, requiring
cl

amn flops to evaluate A−1 Z or A−� Z , where Z ∈ R
n×m and cl

a is a constant
independent of n.

We are looking for efficient algorithms for the symmetric solutions X to
(1) and (2), with O(n) computational complexity and memory requirement
per iteration. Without utilizing the properties of A and H, the state-of-the art
algorithms for these equations [12] are based on techniques for dense matrices,
requiring O(n3) flops and O(n2) memory storage. They will not be feasible for
large systems.

A variety of applications in systems and control theory, such as stability
analysis, balanced truncation model order reduction, solution of algebraic
Riccati equations (by Newton’s method) in optimal control, H∞ control,
system identification, game theory, filtering and image restoration, involve the
Stein and Lyapunov equations. Large systems [1–3] arise from the (boundary)
control problems modelled by partial differential equations, as in the cooling of
steel profiles, circuit design, VLSI computer-aided design and large mechanical
space structures.

We are motivated by the pioneering work by Benner, Fassbender and Saak
in model order reduction and the solution of large-scale algebraic Riccati equa-
tions (AREs), as well as the work by others in large-scale AREs and algebraic
matrix equations [4, 6, 7, 26, 27, 30]. For large-scale AREs, the application
of Newton’s method leads to large-scale Stein/Lyapunov equations, on which
Galerkin projection or Krylov subspace based methods were applied.

In this paper, we shall apply the well-known Smith method (SM) [29], with
modifications for efficiency, in the same spirit as the low-rank squared Smith
method in [13, 25]. For equations with numerically low-ranked solutions, which
we shall define later, we attain O(n) computational complexity and memory
requirement for the resulting algorithms. Some interesting new insights into
the link of Krylov subspaces and the SM reveal the fast convergence and
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efficiency of our SM. An application in the estimation of condition of algebraic
Riccati equations will also be discussed.

Our methods look very much like the low-rank Smith methods in [13, 25]
but are substantially different. We have not applied their ADI approach
in rewriting Lyapunov equations into Stein equations, with the associated
difficulty in estimating the shift parameters. The corresponding accelerated
convergence is evidently not as fast as the original SM, as shown in the
numerical results from our algorithms. Also, we shall construct our Krylov
subspaces implicitly through our iterations, contrasting the explicit Arnoldi
process in [25].

In the paper, ‖ · ‖ denotes the 2-norm and ρ(·) is the spectral radius.

1.1 Main contributions

The main contributions of this paper are as follows. We shall formalize the
discussion on the numerical rank of the solution X to Stein and Lyapunov
equations, showing constructively when X is numerically low-ranked. Then
we shall show that we can adapt the well-known Smith method efficiently for
large-scale Stein and Lyapunov equations. Finally, we shall apply our tech-
niques to the estimation of lower bounds of condition numbers for continuous-
time algebraic Riccati equations.

2 Large-scale Stein equations

The original SM [29] considered the (continuous-time) Sylvester equa-
tion X A + BX = C, transforming by Cayley transform to the discrete-time
Sylvester equation X − U XV = W. We shall adapt the method for (1). See
also the convergence analysis and the posteriori error bound in [29, Sections 3
and 4].

2.1 Smith method

For the Stein equation

X = f (X) ≡ A� X A + H, (3)

consider the functional iteration

Xk+1 = f (Xk) = f 2(Xk−1) = · · · = f k+1(X0).

Alternatively, substitute X = f (X) into the right-hand-side of (3), we obtain

X = f 2(X) ≡ f (A� X A + H) = (A2)� X A2 + A� H A + H. (4)
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Next substituting the expression for X in (4) into the right-hand-side of itself,
we obtain

X = f 22
(X) ≡ (A22

)� X A22 +
22−1∑

i=0

(Ai)� H Ai.

Repeating the process and substitute the most up-to-date expression X =
f 2k

(X) back into the right-hand-side of itself, we have

X = (A2k+1
)� X A2k+1 +

2k+1−1∑

i=0

(Ai)� H Ai. (5)

With A being d-stable, we have A2k → 0 quadratically as k → ∞, and

X = lim
k→∞

Hk, Hk ≡
2k−1∑

i=0

(Ai)� H Ai. (6)

From (5) and (6), one resulting algorithm will be (for k ≥ 0)

Ak+1 = A2
k, Hk+1 = Hk + A�

k Hk Ak, (7)

with A0 = A and H0 = H. Similar to the more general case in [29, Section 2],
we have Ak = A2

k−1 = A2k
(k ≥ 1), and Hk → X as k → ∞.

For the large-scale Stein equation (1), we can organize the iterations as
follows:

Hk+1 = Hk + A�
k Hk Ak = Ck+1Tk+1C�

k+1, (8)

with

Ck+1 = [
Ck, A�

k Ck
]
, Tk+1 = Tk ⊕ Tk (9)

and the initial values

A0 = A, C0 = C, T0 = T−1. (10)

A simple error analysis is quoted from [29, Section 2]. As A is d-stable, there
exist constants M and λ such that ρ(A)2 = λ < 1 and

‖Ak‖ · ‖(A�)k‖ ≤ Mλk. (11)

Consequently, we have

‖Hk − X‖ ≤ M‖H‖ · λ2k

1 − λ
, (k ≥ 0). (12)

From the above convergence result, we next define the numerical rank of
the solution X:

Definition 2.1 For a given tolerance τ > 0, the numerical rank of X with
respect to τ , rankτ X, is defined as the rank of Hk where k is the smallest
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integer such that

‖Hk − X‖ ≤ τ.

From (6), we have

rankτ X = rankHk ≤ rankCk ≤ 2kl, (13)

where the equalities hold generically. Note that the right-hand-side in (13)
is the number of columns in Ck. Orthogonalization of Ck eliminates linear
dependence in its columns, also suggesting to the possibility of compressing
Ck further by truncating small but fast growing components, as in Section 2.2
later.

We then define the concept of numerically low rank:

Definition 2.2 The solution X ∈ R
n×n to the large-scale Stein equation (1) is

said to be numerically low-ranked with respect to the numerical rank tolerance
τ > 0 if rankτ X ≤ cτ for a constant cτ independent of n. In other words, for a
given τ > 0 and relative to n, we have rankτ X = O(1).

We then have he following result for the SM applied on the large-scale Stein
equation (1):

Theorem 2.1 Assume the Smith method converges after k iterations, according
to some criterion. For a given tolerance τ > 0, the solution X is numerically
low-ranked if, relative to n,

2k = O(1). (14)

Generically, the suf f icient condition (14) is also necessary.

Proof From Definitions 2.1 and 2.2 as well as (13), it is easily seen that the
statement in the Theorem holds. �

Remark 2.1 The result in Theorem 2.1 seems so obvious, almost a trick of
syntax. However, previous work mostly neglect to define “numerical rank”
or the meaning of being “numerically low-ranked”. Many have their methods
built on the basis of a plot of singular values of X for some given examples.
This obscures the associated discussion and theoretical development for large-
scale problems. Also, under our new framework of numerical rank, it is easy
but important to recognize that if the SM fails to achieve a high enough
accuracy within reasonable number of iterations, the solution X is obviously
not numerically low-ranked. In such circumstances, we have to lower our
expectation on accuracy, accepting whatever approximate solution we can
compute within our computing means, in terms of CPU time or memory
resources. Equivalently, we see from (7) that the SM for Stein equations is
a competition between the quadratic convergence of Ak = A2k

towards zero
and the exponential growth in the width of Ck. The latter may be controlled, as
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suggested in Section 2.2 later. Another vital consequence is that the growth in
Ck is a limiting factor on the accuracy of X. If the convergence of Ak is slow, we
may have to restrict the width of Ck, thus limiting the size of the corresponding
Krylov subspace for the approximate solution Hk (see Sections 2.4 and 2.5),
lowering its accuracy.

2.2 Compression and truncation of Ck

The truncation and compression process described in this section is un-
necessary in most circumstances. It is described for the situation when the
convergence of the SM is slow in comparison with the exponential growth
in the dimensions of the iterates Hk. In this situation, the numerical rank
of X will be high and we obviously cannot achieve high accuracy in the
approximation Hk of X by any method. We then have to compromise its
accuracy for the sake of less memory and CPU-time consumption. We should
then either choose a larger tolerance for the truncation and compression
process (τ below), to control the growth in the iterates and adjust it until
the accuracy of the approximate solution is acceptable, or simply abandon the
truncation and compression process and accept whatever approximate solution
obtained within reasonable time.

Obviously from (9) and the fact that Ak = A2k
with the d-stable A, as the

SM converges, increasingly smaller low-ranked components are added to Ck.
Apparently, the growth in the sizes and ranks of these iterates is potentially
exponential.

To reduce the dimensions of Ck, necessary not just when dependencies arise
or to control the associated round-off errors, we shall compress their columns
by orthogonalization. Consider the QR decomposition with column pivoting:

Ck = Qk Mk + Q̃k M̃k, ‖M̃k‖ ≤ τ,

where [Qk, Q̃k] is unitary and [M�
k , M̃�

k ]� is upper triangular. Here τ is some
small tolerance controlling the compression and truncation process, nk is the
number of columns in Ck bounded from above by some corresponding lmax,
and

rank Ck ≤ nk ≤ lmax � n.

We have Qk ∈ R
n×rk with orthogonal columns and Mk ∈ R

rk×nk being full-
ranked and upper triangular. Consequently, we have

CkTkC�
k = Qk

(
MkTk M�

k

)
Q�

k + O(τ ), (15)

and we should replace Ck and Tk by the lower-ranked Qk and MkTk M�
k ,

respectively. As a result, we ignore the O(τ ) term, control the growth of Ck

while sacrificing a hopefully negligible bit of accuracy. Equivalently, we may
also control the width of Ck, now relabelled lk = rk after the compression and
truncation in (15), by setting a reasonable upper limit lmax.
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2.3 Residuals and convergence control

Consider the difference of successive iterates, with

dHk ≡ Hk+1 − Hk = A�
k CkTkC�

k Ak = C̃k+1T̃k+1C̃�
k+1, (16)

and

C̃k+1 ≡ A�
k Ck, T̃k+1 ≡ Tk.

For the residual rk ≡ ‖S(Hk)‖ of the Stein equation, the corresponding
relative residual, commonly used for convergence control, equals

r̃k ≡ rk

‖Hk‖ + ‖M̆k‖ + ‖H‖ , M̆k ≡ A� Hk A.

We then have

S(Hk) = −Hk + A� Hk A + H = ĈkT̂kĈ�
k ,

with

Ĉk ≡ [
Ck, A�Ck, C

]
, T̂k ≡ (−Tk) ⊕ Tk ⊕ T−1.

For relative error estimates and residuals, we also need the norms of

Hk = CkTkC�
k , H = CT−1C�, M̆k = A�CkT̆kC�

k A,

with a different notation T̆k = Tk in M̆k. Note that Tk in Hk and T̆k in M̆k

will be different after the subsequent orthogonalization of Ck and A�Ck,
respectively, analogous to (15). All the calculations in this subsection involve
the norms of similar low-rank symmetric matrices. For example for Hk, we
can proceed as in (15), where we orthogonalize Ck and transform Tk. With the
orthogonal C̃k, Ĉk, Ck, C and A�Ck, and the transformed T̃k, T̂k, Tk, T−1 and
T̆k respectively, we have the efficient formulae, for the 2- and F-norms,

‖dHk‖ = ‖T̃k+1‖, rk = ‖T̂k‖,
‖Hk‖ = ‖Tk‖, ‖H‖ = ‖T−1‖, ‖M̆k‖ = ‖T̆k‖. (17)

Equations (5) and (7), the corresponding initial conditions (10) and the
compression and truncation in (15), with the recursion Ak = A2

k−1 = A2k
and

the quantities in (17), constitute our SM for Stein equations. We summarize
the algorithm for large-scale Stein equations in Algorithm 1 below.

We would like to emphasize that care has to be exercised in Algorithm 1,
where the multiplications by Ak and A�

k are carried out recursively. Otherwise,
the computation cannot be realized in O(n) complexity. Similar care has to be
taken in the computation of residuals (used in Algorithm 1) or differences of
iterates (as an alternative convergence control), as discussed in this subsection.

Note that the recursive multiplication by Ak (or its inverse for Lyapunov
equations later) is just one way to produce the operation counts in Section 6.
Alternatively, we may be able to achieve similar efficiency by using cheap
memory wisely. For example if A is banded, we may be able to compute and
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store Ak. Assuming that the band-width in Ak doubles in every iteration, a
similar operation count can be obtained. This will be cheaper for really large
problems, when the communication costs of recursive multiplications by Ak

and A�
k dominate.

Algorithm 1 SM for large-scale Stein equations

Input: A ∈ R
n×n, C ∈ R

n×l, T−1 = T−� ∈ R
l×l, positive tolerances τ and ε,

and lmax;
Output: Cε ∈ R

n×lε and Tε = T�
ε ∈ R

lε×lε , with CεTεC�
ε approximating the

solution X;
Set k = 0, r̃0 = 2ε; A0 = A, C0 = C and T0 = T−1;
Compute h = ‖H‖ = ‖CT−1C�‖;
Do until convergence:

If the relative residual r̃k = |dk/(hk + mk + h)| < ε,
Set Cε = Ck and Tε = Tk;
Exit

End If
Compute Ck+1 = [Ck, A�

k Ck], Tk+1 = Tk ⊕ Tk, with Ak+1 = A2
k;

Compress Ck+1, using the tolerance τ , and modify Tk+1 as in (15);
Compute k←k+1, dk =‖S(Hk)‖, hk =‖Hk‖ and mk =‖A�

k Hk Ak‖,
as in Section 2.3;

End Do

2.4 SM and Krylov subspaces

There is an interesting relationship between the SM and Krylov subspaces.
Define, unorthodoxly, the Krylov subspaces

Kk(A, B) ≡
{

span{B} (k = 0),

span{B, AB, A2 B, · · · , A2k−1 B} (k > 0).

From (9), we have

Ck ⊆ Kk(A�, C). (18)

(We have abused notations, with V ⊆ Kk(A, B) meaning span{V} ⊆
Kk(A, B).) In other words, the SM is closely related to approximating the
solutions X using Krylov subspaces, with additional components vanishing
quadratically. However, for problems of moderate size n, Ck becomes full-
ranked after a few iterations.

The link between the SM and the Krylov subspaces defined above is
important in explaining the fast convergence of the SM. We used to believe the
convergence of the SM came solely from the following inequalities from (8):

‖dHk‖ ≤ ‖A�
k ‖ · ‖Hk‖ · ‖Ak‖, dHk ≡ Hk+1 − Hk,

and the fact that ‖Ak‖ ≤ ‖A‖2k → 0 quadratically as k → ∞. However, we un-
derstand now the power of approximation of the Krylov subspaces contributes
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in (8) as well, creating cancellations and diminishing components in dHk itself
in (16). This is consistent with numerical results from examples associated
with A which is barely stable, where the corresponding Ak → 0 slowly but
the overall convergence for Hk is much faster.

2.5 Error of SM

We may limit the rank of the approximation to X, trading off the accuracy
in the approximate solution for higher efficiency from the SM. Assume that
the compression and truncation in (15) create errors of O(τ ) in Hk. It is easy
to see from (7)–(9) that errors of the same magnitude will propagate through
to Hk+1.

Let δHk and δAk are the errors in Hk and Ak, created from the compression
and truncation of Ck (as described in Section 2.2) or round-off errors respec-
tively. From (7), we have

δHk+1 = δHk + δA�
k Hk Ak + A�

k δHk Ak + A�
k HkδAk + O(τ 2),

δAk+1 = δAk Ak + AkδAk + δA2
k.

Let δk ≡ max{‖δHk‖, ‖δAk‖}, ak ≡ ‖Ak‖ and αk ≡ ‖Hk‖, we have

‖δHk+1‖ ≤ δk
(
1 + 2αkak + a2

k

) + O(τ 2),

‖δAk+1‖ ≤ 2‖Ak‖‖δAk‖ + ‖δAk‖2,

or

δk+1 ≤ max {1 + ak(2αk + ak), 2ak} · δk + O(τ 2),

assuming that the round-off errors in δAk is much smaller in comparison with
τ . Recall that Ak → 0 and Hk converges to X. Eventually, ak converges to
zero, αk converges to a constant and the errors δAk and δHk then pass into
δAk+1 and δHk+1 respectively, creating errors of the same order. From our
numerical experience, the trade-off between the rank of Hk and the accuracy
of the approximate solution to X contributes towards the success of our
computation. If the rank grows out of control, unnecessary and insignificant
small additions to the iterates overwhelm the computation in terms of flop
counts and memory requirement. Limiting the rank will obviously reduce the
accuracy of the approximate solution. We found we do not need to experiment
much with the tolerances for the compression/truncation and convergence
while trying to achieve a balance between accuracy and the feasibility or
efficiency of the SM.

We shall also write down the simple error analysis for the truncated SM, in
the context of Galerkin methods as in [15–17] and Section 2.4. (See also the
Galerkin method in [28], where Krylov subspaces are generated by A as well
as A−1, similar to that in (21) later, without the shift γ .) However, there is
a hidden difference flowing from the fact that the SM generates automatically
the Krylov subspaces in (18), to which Ck, or the approximate solutions Hk, are
associated. In most Galerkin methods like the one in [17], the Krylov subspaces
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have to be generated explicitly by some Arnoldi processes. Both approaches
yield small residuals for the matrix equations in different forms. However, the
Arnoldi process may not benefit from the diminishing Ak as in the SM.

First, let us consider the following Galerkin method for Stein equations.
Let the column spaces of the orthogonal Z ∈ R

n×N be some Krylov subspaces
associated with the solution of our equation and assume that the approximate
solution has the low-rank form X̃ ≡ Z	Z �, with 	 ∈ R

N×N . Assume that X̃
approximates the solution X to the Stein equation in the sense that the residual
S(X̃) is small, of order O(ε). As mentioned before, the Krylov subspace
spanned by the columns of Z may be the result of an Arnoldi process [14–17]
or the SM.

Substituting X̃ in place of X in (1), we have

−Z	Z � + A� Z	Z � A + H = O(ε),

which leads to the projected or reduced Stein equation in 	 of size N:

S̃(	) ≡ −	 + Ã� Z	Z � Ã + H̃ = O(ε) (19)

with Ã ≡ Z � AZ and H ≡ Z � HZ . We next extend Z to the orthogonal
matrix [Z , Z̃ ] ∈ R

n×n. We then have

[Z , Z̃ ]�S(X̃)[Z , Z̃ ] =
[
S̃(	) O(ε)

O(ε) O(ε)

]
= O(ε).

In the SM, a particular 	 is produced such that S̃(	) = O(ε). If the associated
Krylov subspaces are known or have been generated from an Arnoldi process,
a solution 	̂ to the small projected Stein equation

S̃(	) = 0 (20)

can be computed, generating an approximate Galerkin solution X̂ ≡ Z 	̂Z
to the Stein equation in (1). Consequently, X̃ and X̂ are approximately
equal, as they solve two equations differed by at most O(ε). Note that the
solvability of (20) (or the stability of Ã) is inherited from that of (1). Also, the
Galerkin method summarized in (20) will be inferior to the SM if the Krylov
subspaces are selected inappropriately. Note that many others selected the
Krylov subspaces generated arbitrarily by A, its inverse and transpose, by the
Arnoldi process. These approaches resulting in subspaces very different from
those in (21) by the SM, which also benefits from the diminishing magnitudes
of Ak.

3 Large-scale Lyapunov equations

For the Lyapunov equation (2), with A being c-stable, a Cayley transform to
the corresponding Stein equation will be required, before the SM in Section 2
can be applied. Consequently, for the Lyapunov equations, we have

Ck ⊆ Kk
(

A−�
γ , A−�

γ C
)
, Aγ ≡ A − γ I. (21)
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Note that the Krylov subspaces Kk(A±1, C) and Kk(A±�, C) have been used
in the solution of continuous-time algebraic Riccati equations (CARE) and
Lyapunov equations in [11, 14–23]. From (21), we can see clearly the appropri-
ate choice for Lyapunov equations, as compared to (18) for Stein equations.

We summarize the algorithm for large-scale Lyapunov equations in
Algorithm 2 below, modified from Algorithm 1 with different initial A0, C0
and T0. Note that the repeated multiplication by A−1

γ and it transpose can be
achieved efficiently through the LU factors of Aγ , computed at the beginning
of the algorithm below. In our numerical experiments, sparse matrix inversions
(or the solution of corresponding linear systems) were implemented using LU
factors from the MATLAB command lu. The interesting possibility of inexact
inversion will be left for future work.

Algorithm 2 SM for large-scale Lyapunov equations

Input: A ∈ R
n×n, C ∈ R

n×l, T−1 = T−� ∈ R
l×l, shift γ > 0, positive

tolerances τ and ε, and lmax;
Output: Cε ∈ R

n×lε and Tε = T�
ε ∈ R

lε×lε , with CεTεC�
ε approximating

the solution X to the large-scale Lyapunov equation (2);

Compute Aγ = A − γ I, and its LU factors;
Set k = 0, r̃0 = 2ε; C0 = A−�

γ C, T0 = 2γ T−1, A0 = In + 2γ A−1
γ ;

Compute h = ‖H‖ = ‖C0T0C�
0 ‖;

Do until convergence:
If the relative residual r̃k = |dk/(hk + mk + h)| < ε,

Set Cε = Ck and Tε = Tk;
Exit

End If
Compute Ck+1 = [Ck, A�

k Ck], Tk+1 = Tk ⊕ Tk, with Ak+1 = A2
k;

Compress Ck+1, using the tolerance τ , and modify Tk+1 as in (15);
Compute k←k+1, dk =‖S(Hk)‖, hk =‖Hk‖ and mk =‖A�

k Hk Ak‖,
as in Section 2.3 (for an equivalent Stein operator S);

End Do

4 Other low-rank Smith methods

In [13], a modified low-rank Smith method for large-scale Lyapunov equations
was proposed. The method looks similar to our SM but is actually very
different. The Lyapunov equation (2) was first rewritten into a Stein equation,
using the ADI approach. Essentially, we can consider that to be a complicated
version of our Cayley transform, with its associated difficulty in estimating the
shift parameters. The rank of the low-ranked approximation to X seems to be
predetermined in [13], contrasting our truncation and compression process in
Section 2.2, which is dynamically determined by the diminishing magnitudes
of updates dHk in (16). The supposedly faster convergence is not evident from
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the numerical simulation in [13]. From our experience, the SM converges to
machine accuracy in less than twenty iterations, because of the stability of
A or Aγ .

In [25], Sadkane proposed a low-rank Krylov squared Smith method. Apart
from the ADI approach in rewriting (2), a block Arnoldi process was employed
to construct the Krylov subspaces, contrasting again the implicit dynamic
approach in the SM. Note that we restrict the size of the Krylov subspaces,
but new components are added in each iteration before the compression and
truncation process. Restarts were also employed in [25] when the sizes of
the approximating Krylov subspaces were considered to be too large. We
believe restarts are unnecessary and wasteful, as indicated in our examples
in Section 7. In the SM, the iterates converge faster than λ2k

and restarts give
up this advantage, and reset some large k to 0. We have applied the SM to
the examples in [25], with much faster convergence to higher accuracies, as
summarized in the examples in Section 7.1 below.

5 Estimation of condition numbers for CAREs

Apart from the solution to algebraic Riccati equations using Newton’s method,
there are many other obvious applications which require the solution of
Stein and Riccati equations. In this section, we shall consider the problem
of estimating the condition number of a large-scale continuous-time algebraic
Riccati equation (CARE).

In [20], the sensitivity of algebraic and differential Riccati equations was
considered. In particular, a condition number κCARE (denoted originally as K)
for CAREs

A� X + X A − XGX + H = 0

were investigated. For the estimation of κCARE, sharp bounds are obtained:

KL ≤ κCARE ≤ KU

with

KU = ‖H‖ · ‖Z0‖ + 2‖A‖√‖Z0‖ · ‖Z2‖ + ‖G‖ · ‖Z2‖
‖X‖ ,

KL = ‖H‖ · ‖Z0‖ + 2‖A‖ · ‖Z1‖ + ‖G‖ · ‖Z2‖
3‖X‖ ,

(where KL absorbs the factor 3 in the denominator, different from [20]) and
Zi obtained from the Lyapunov equations

(A − GX)� Zi + Zi(A − GX) = −Xi, (i = 0, 1, 2). (22)

We shall attempt to modify the SM for the solution of (22).
For large-scale systems, we have A being large, sparse(-like) or banded, and

the low-ranked G = BR−1 B�. We then need to solve the Lyapunov equations
(22) efficiently, preferably in O(n) computational complexity. Substituting an
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accurate low-ranked approximate solution H̃ = C̃T̃−1C̃� into X in (22), for
i = 1, 2, we have the large-scale Lyapunov equations

(A − GH̃)� Zi + Zi(A − GH̃) = −H = −H̃i (23)

with the low-ranked right-hand-sides involving

H = CT−1C� = (
C̃T̃−1C̃�)i

, (i = 1, 2).

This implies that

C = C̃, T−1 = T̃−1 (i = 1), or T−1 = T̃−1C̃�C̃T̃−1 (i = 2).

The matrix operator in (23), instead of A in (2), will be

Ac ≡ A − GH̃ = A − GC̃T̃−1C̃�.

Note that Ac is in a sparse-plus-low-rank (splr) form. For (23), the replacement
of A by Ac in Algorithm 2 only modifies it slightly and does not affect its O(n)

computational complexity. Note that the Cayley transform (to an equivalent
Stein equation for doubling to be applicable) requires, with the help of the
Sherman–Morrison–Woodbury formula (SMWF),

(Ac − γ I)−1 = (
Aγ − GC̃T̃−1C̃�)−1

= A−1
γ + A−1

γ GC̃ · T̃−1 (
Il − C̃� A−1

γ GC̃T̃−1)−1 · C̃� A−1
γ , (24)

again in a similar form to Ac. With v ∈ R
n, note that A−�

γ v and A−1
γ v, thus

(Ac − γ I)−1v and (Ac − γ I)−�v, can be computed efficiently in O(n) flops.
For initial values, we have

C0 = (Ac − γ I)−�C = A−�
γ C + D(2)

0 S−1
0

[
D(1)

0

]�
C, T−1

0 = 2γ T−1,

A0 = I + 2γ (Ac − γ I)−1 = (
I + 2γ A−1

γ

) + 2γ D(1)
0 S−1

0

[
D(2)

0

]�
,

with

D(1)
0 ≡ A−1

γ GC̃, D(2)
0 ≡ A−�

γ C̃, S−1
0 ≡ T̃−1 (

Il − C̃� A−1
γ GC̃T̃−1)−1

and Aγ in Algorithm 2 replaced with Ac − γ I in (24).
For i = 0 in (22), notice that the algorithm in (7) has the form

Ak+1 = A2
k, Hk+1 = Hk + A�

k Hk Ak.

With H0 = I, we have

H1 = I + A�
0 A0 = I + [

I + 2γ (Ac − γ I)−�] [
I + 2γ (Ac − γ I)−1] .

It is not hard to deduce, in general, that the corresponding Hk = I +∑k−1
i=0 A�

i Ai and Z0 are not low-ranked, although Ak → 0 as k → ∞. After
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convergence, the estimation of ‖Z0‖ ≈ ‖Hk‖ will still be computationally ex-
pensive, of O(n2) computational complexity. Consequently, the estimation of
Z0 may then be vastly more expensive than the solution of the corresponding
large-scale CAREs. This makes the estimation of Z0 for large-scale CAREs
nonsensical in practice, until better methods can be found.

Alternatively, Z0 in (22) can be bounded in terms of ‖Z1‖ and ‖Z2‖, as
in [20]:

‖Z0‖ · ‖Z2‖
κ(X)

≤ ‖Z1‖2 ≤ ‖Z0‖ · ‖Z2‖,

giving rise to

‖Z1‖2

‖Z2‖ ≤ ‖Z0‖ ≤ κ(X) · ‖Z1‖2

‖Z2‖ ,

and the less sharp bounds

K̃L ≤ κCARE ≤ K̃U

with

K̃U = κ(X)‖H‖ · ‖Z1‖2 + 2
√

κ(X)‖A‖ · ‖Z1‖ · ‖Z2‖ + ‖G‖ · ‖Z2‖2

‖X‖ · ‖Z2‖ ,

K̃L = ‖H‖ · ‖Z1‖2 + 2‖A‖ · ‖Z1‖ · ‖Z2‖ + ‖G‖ · ‖Z2‖2

3‖X‖ · ‖Z2‖ .

A large value for one of the norms of Z0, Z1 or Z2 will indicate ill-condition
of the CARE.

Unfortunately, we still cannot produce a sharp upper bound in K̃U for large-
scale problems. As X is numerically low-ranked, ‖X−1‖ in κ(X) is large, thus
producing a large and pessimistic, thus useless, upper bound K̃U . Worse still,
X is approximated by the low-ranked H̃, which contains no information of
‖X−1‖. Anyhow, in most applications for large-scale problems, we are usually
interested in detecting ill-condition, thus the lower bound K̃L.

It will be interesting to generalize the approach in [20] and this section for
large-scale discrete-time algebraic Riccati equations.

6 Operation and memory counts

The operation and memory counts of Algorithms 1 and 2 for the kth iteration
are summarized in Table 1 below. In the second column, we assume that l � n
and A is large and sparse(-like) or banded, requiring cs

amn flops to form the
products AZ or A� Z , where Z ∈ R

n×m and cs
a is a constant independent of

n. Similarly, we assume that cl
amn flops are required to evaluate A−1 Z or

A−� Z , where cl
a is a constant independent of n. (Note that there may be a

sharper upper bound, as the LU factors of Aγ need to be computed only
once at the start of Algorithm 2.) To simplify notation, we use ca for cs

a and
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Table 1 Operation/memory
counts, kth iteration,
Algorithms 1 and 2

Computation Flops Memory

Ck+1 2kcalkn Nk+1n
Tk+1 − O

(
l2
k

)

Compress Ck+1 4l2
kn −

Modify Tk+1 O
(
l3
k

) −
r̃k+1 4

[
(2lk + l)2 + 2l2

k

]
n −

Total
[
2kcalk + 4l2

k+ Nk+1n

4(2lk + l)2 + 8l2
k

]
n

cl
a when considering the Stein and Lyapunov equations, respectively. In the

third column, the memory requirement in terms of the number of variables
is recorded. Only O(n) operations or memory requirement are included.
Note that most of the work is done in the computation of Ck+1, for which
A�

k Ck has to be calculated recursively, as Ak is not available explicitly. In
Table 1, we shall use the notation Nk ≡ ∑k

j=1 l j. The operation count for
the QR decomposition with column pivoting of an n × r matrix is 4nr2 flops
[12, p. 250].

With lk controlled by the compression and truncation in Section 2.2, the
operation count will be dominated by the calculation of Ck+1. In our numerical
examples in Section 7, the flop count near the end of Algorithm 1 dominates,
with the work involved in one iteration approximately doubled that of the pre-
vious one. This corresponds to the 2k factor in the total flop count. However,
the last iteration is virtually free because there is no need to prepare Ck+1 for
the next iteration. In other words, for the true total CPU time up to a certain
iteration, the total CPU time up to the previous iteration should be considered.

In addition, for large-scale Stein equations, there will be a start up cost of
4l2n flops in the orthogonalization of C and the modification of T−1, in the
calculation of h = ‖H‖ = ‖T−1‖. For large-scale Lyapunov equations, a start
up cost of

(
cl

al + 4l2 + 1
)

n flops for the SM is made up of the following:

(1) setting up Aγ , requiring n flops;
(2) setting up C0, requiring cl

aln flops; and
(3) the orthogonalization of C0 and the modification of T−1

0 , in the calcula-
tion of h = ‖H0‖ = ‖T−1

0 ‖, requiring 4l2n flops.

We have ignored the one off LU factorization of Aγ at the beginning of
Algorithm 2.

From Theorem 2.1 and the operation count in Table 1, we have the following
result for the SM:

Corollary 6.1 Assume the Smith method converges after k iterations to an ap-
proximate solution Hk with rankHk ≤ 2kl = O(1), according to some accuracy
criterion. Then the Smith method has an O(n) computational complexity and
memory requirement.
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7 Numerical examples

Most of the numerical results were computed using MATLAB [24] Version
R2010a, on a MacBook Pro with a 2.66 GHz Intel Core 2 Duo processor
and 4 GB RAM, with machine accuracy eps = 2.22 × 10−16. However, the
Lyapunov equation in Examples S1c and B4 overwhelmed the memory of the
MacBook Pro and were solved on a Dell PowerEdge R910 computer.

Various parameters were put into the SM, with ε = 0.5 × 10−15 controlling
the convergence in terms of the relative residual r̃k, and τ the compression and
truncation of Ck in (15). We also set the upper bound lmax for lk, the ranks
of Ck. The sub-total CPU time is tk = ∑k

i=1 δti, with δti being the CPU time
required for the ith iteration.

Typically, we start with a small lmax and a very small τ , with the SM achieving
certain accuracy in terms of residuals. The appropriate τ , usually ranging from
10−16 to 10−10, can then be chosen to achieve the accuracy we desire (around
10−16 to 10−15 in the numerical examples in this section). Too small a τ or too
large an lmax will be ineffective.

7.1 Examples from [26]

In this section, we apply our SM to the examples in [25]. In the Stein equations
in Examples S1a–S1c, we have the parameter α = 0.45, 0.49, 0.499, giving the
increasingly difficult spectral radii σ(A) = 0.9, 0.98, 0.998, respectively. We
have tried only the most difficult examples with n = 50, 000. Eight to thirteen
iterations were required for the SM for approximate solutions to the large-
scale Lyapunov equations to (near-)machine accuracy. Even with σ(A) =
0.998, Example S1c was easy for the SM.

The Lyapunov equation in the small Example S2 is not a challenge for the
SM, even with σ(A) = 0.9999. Again, a near-machine accuracy was achieved
quickly in twelve iterations. In [25], dozens to hundreds of restarts (with many
more iterations) were required for worse accuracies. The example shows that
the power and accuracy of the SM come from the convergence of Ak = A2k

as
well as the approximate Krylov subspaces. The error in the SM turns out to be
better than expected, with λ2k ≈ [σ(A)]213 = 0.4408 (after k = 12 iterations)
being moderately large in the right-hand-side of (12). This combines with a
large approximate Krylov subspace of dimension lmax = 500 and yields the
near machine accuracy of O(10−15). We have tried smaller subspaces but less
accurate results were obtained.

In all the examples in this subsection, we choose a small τ = 10−30, essen-
tially surrendering the control of the compression and truncation process in the
SM to lmax, the upper limit of the size of the approximating Krylov subspaces.
The actual CPU time was not as informative as the number of iterations
required. Note also that we work with A in Example S1, as compare to A2

in [25, p. 18]. Recall that for the total CPU time up to the kth iteration, tk−1
should be considered because the last iteration is virtually free.
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Table 2 Example S1a (n = 50, 000, l = 2, α = 0.45, σ(A) = 0.9; τ = 10−30, lk ≤ 50)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 4.0500e−01 3.2610e−01 2.0503e−01 7.5132e−02 3 1.6e−02 1.6e−02
2 2.4655e−01 1.7524e−01 7.0624e−02 2.3371e−02 5 7.8e−02 9.4e−02
3 1.1966e−01 8.0626e−02 1.3747e−02 4.3498e−03 9 1.4e−01 2.3e−01
4 3.0961e−02 2.0679e−02 1.0365e−03 3.2528e−04 17 7.5e−01 9.8e−01
5 2.8277e−03 1.8878e−03 1.3571e−05 4.2572e−06 33 2.5e+00 3.5e+00
6 4.1215e−05 2.7515e−05 5.8842e−09 1.8458e−09 50 7.3e+00 1.1e+01
7 1.9024e−08 1.2701e−08 3.2093e−15 1.0067e−15 50 1.4e+01 2.5e+01
8 9.8856e−15 6.5997e−15 3.0942e−15 9.7063e−16 50

Remark 7.1 The numerical examples in Tables 2, 3, 4 and 5 reveal an inter-
esting phenomenon. The convergence result in (12) relies solely on the fact
that 0 < λ < 1. With λ ≈ 1, the predicted numbers of iteration required for
convergence are higher than what are actually required. This faster conver-
gence came from the power of approximation of the Krylov subspaces in (21).
This creates cancellations in the increment dHk ≡ A�

k Hk Ak in (7), thus the
subsequent faster convergence.

7.2 Examples from [10]

In this subsection, we have tested the SM on selected numerical examples
from [9]. The suite of benchmark problems involves Lyapunov equations from
the continuous-time systems originated from the boundary control problem
modelling the cooling of rail sections. The PDE model was semi-discretized
using 2D finite elements to a continuous-time linear system with n variables,
where n = 1357, 5177, 20209, 79841. For Stein equations, we transformed these
continuous-time systems (with �t = 0.01) to discrete-time models, as in [8]
(i.e., the path indicated by the dashed arrows in Fig. 1).

Lyapunov equations are first transformed to equivalent Stein equations a
là Cayley (i.e., the path represented by the solid arrows in Fig 1). Of course,
the final Stein equations from the two different paths are not the same, with
parameters δt and γ playing their parts. Somehow, for the examples from [9],

Table 3 Example S1b (n = 50, 000, l = 2, α = 0.49, σ(A) = 0.98; τ = 10−30, lk ≤ 150)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 4.8020e−01 3.7088e−01 2.8824e−01 9.9728e−02 3 1.6e−02 1.6e−02
2 3.5745e−01 2.3211e−01 1.3958e−01 4.1578e−02 5 4.7e−02 9.4e−02
3 2.7288e−01 1.5820e−01 5.3697e−02 1.4457e−02 9 1.4e−01 2.3e−01
4 1.7029e−01 9.4270e−02 1.5814e−02 4.0657e−03 17 7.0e−01 9.4e−01
5 8.1265e−02 4.4407e−02 3.1592e−03 8.0069e−04 33 2.5e+00 3.4e+00
6 2.4811e−02 1.3530e−02 3.1885e−04 8.0614e−05 65 9.0e+00 1.2e+01
7 3.4068e−03 1.8576e−03 8.6637e−06 2.1900e−06 115 3.4e+01 4.6e+01
8 1.1086e−04 6.0446e−05 1.7557e−08 4.4380e−09 150 1.3e+02 1.7e+02
9 2.4824e−07 1.3535e−07 2.0079e−13 5.0757e−14 150 2.5e+02 4.2e+02
10 3.0069e−12 1.6395e−12 4.4366e−15 1.1215e−15 150
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Table 4 Example S1c (n = 50, 000, l = 2, α = 0.499, σ(A) = 0.998; τ = 10−30, lk ≤ 300)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 4.9800e−01 3.8086e−01 3.1001e−01 1.0582e−01 3 3.0e−02 3.0e−02
2 3.8720e−01 2.4588e−01 1.6146e−01 4.6852e−02 5 4.0e−02 7.0e−02
3 3.2677e−01 1.8161e−01 7.1849e−02 1.8487e−02 9 4.2e−01 4.9e−01
4 2.4943e−01 1.2963e−01 2.8312e−02 6.8075e−03 17 8.6e−01 1.4e+00
5 1.7730e−01 8.9477e−02 1.0126e−02 2.3565e−03 33 1.7e+00 3.1e+00
6 1.1752e−01 5.8659e−02 3.2761e−03 7.5229e−04 65 6.9e+00 1.0e+01
7 7.0360e−02 3.5003e−02 9.1463e−04 2.0911e−04 117 2.70e+01 3.7e+01
8 3.5132e−02 1.7464e−02 1.9567e−04 4.4687e−05 192 9.9e+01 1.4e+02
9 1.2454e−02 6.1903e−03 2.4948e−05 5.6966e−06 300 3.1e+02 4.5e+02
10 2.3237e−03 1.1550e−03 1.1383e−06 2.5993e−07 300 6.4e+02 1.1e+03
11 1.3407e−04 6.6639e−05 6.6778e−09 1.5248e−09 300 1.2e+03 2.3e+03
12 8.9421e−07 4.4445e−07 6.4879e−13 1.4814e−13 300 2.4e+03 4.7e+03
13 9.3417e−11 4.6431e−11 1.2753e−14 2.9120e−15 300

the first path (via the Lyapunov equation from the original continuous-time
system, represented by the solid arrows in Fig. 1) yields slightly easier Stein
equations to solve, as indicated by the numerical examples in this section. We
have chosen γ = 0.1, 0.5 or 100 (for the largest Lyapunov equation with n =
79841) after a few tests, yielding good accuracy and efficiency, without any
exhaustive attempt for optimality. From our experience in the numerical tests
here and [10], the choice of γ is neither sensitive nor critical.

7.2.1 Example B1 (n = 1357, l = 6)

Although the smallest in the suite of examples on the cooling of steel profiles
[9], Example B1 is not the easiest in any sense. Somehow for Stein equations,
the SM converges faster (in terms of number of iterations) for the larger
examples. The phenomenon can be quantified through the decreasing spectral
radii of A0 for increasing values of n.

From Tables 6 and 7, the machine accuracy of O(10−16) is achieved for
the relative residual within 15 iterations and 12 s for the Stein equation, and

Table 5 Example S2 (n = 1, 000, σ(A) = 0.9999, l = 2, γ = 300; τ = 10−30, lk ≤ 500)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.1484e−03 3.6687e−01 8.2658e−04 1.1398e−01 2 2.0e−02 2.0e−02
2 1.4491e−03 3.2635e−01 5.1737e−04 5.3438e−02 4 1.0e−02 3.0e−02
3 1.6022e−03 2.7440e−01 2.6767e−04 2.1664e−02 8 1.0e−02 4.0e−02
4 1.4626e−03 2.1099e−01 1.2879e−04 8.8778e−03 16 2.0e−02 6.0e−02
5 2.0279e−03 2.7481e−01 1.7922e−04 1.1573e−02 32 2.2e−01 2.8e−01
6 1.0496e−02 8.5724e−01 5.0245e−04 1.8600e−02 64 4.3e−01 7.2e−01
7 4.4239e−02 7.9035e−01 7.5340e−04 6.5714e−03 128 1.7e+00 2.4e+00
8 5.2868e−02 4.8908e−01 7.8938e−05 3.6180e−04 256 7.6e+00 1.0e+01
9 4.7654e−03 4.2240e−02 9.5450e−06 4.1946e−05 500 3.1e+01 4.1e+01
10 4.3457e−04 3.8375e−03 3.8276e−08 1.6758e−07 500 6.4e+01 1.1e+02
11 2.8088e−06 2.4803e−05 1.2854e−13 5.6276e−13 500 1.4e+02 2.4e+02
12 1.3282e−11 1.1729e−10 7.8168e−16 3.4224e−15 500
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Fig. 1 Paths from continuous-time system to Stein equation

5 iterations and less than 0.13 s for the Lyapunov equation. Somehow, the
Lyapunov equations are faster to solve than the analogous Stein equation,
in terms of number of iterations. Note that the last iteration is virtually free
because there is no need to prepare for the next iteration.

Recall that the Stein and Lyapunov equations in Tables 6 and 7 origi-
nate from the same system in [9], with the latter coming from the original
continuous-time system (then transformed a là Cayley) and the former from
the approximating discrete-time system (see Fig. 1). The difference in the total
CPU time required is misleading. There is very little difference when the total
CPU time is compared after the same number of iterations are completed,

Table 6 Example B1 (Stein equation, with n = 1357, l = 6; τ = 10−12, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.1953e+01 4.9903e−01 1.1907e+01 1.9907e−01 12 0 0
2 2.3768e+01 4.9805e−01 1.1815e+01 1.1015e−01 17 1.0e−02 2.0e−02
3 4.6985e+01 4.9612e−01 1.1633e+01 5.7862e−02 20 0 2.0e−02
4 9.1815e+01 4.9226e−01 1.1279e+01 2.9348e−02 20 2.0e−02 4.0e−02
5 1.7537e+02 4.8462e−01 1.0682e+01 1.4546e−02 20 2.0e−02 6.0e−02
6 3.3700e+02 4.9266e−01 1.0373e+01 7.5194e−03 20 4.0e−02 1.0e−01
7 6.4504e+02 4.8533e−01 9.7815e+00 3.6650e−03 20 7.0e−02 1.7e−01
8 1.1820e+03 4.7072e−01 8.7002e+00 1.7291e−03 20 1.1e−01 2.8e−01
9 1.9870e+03 4.4177e−01 6.8879e+00 7.6504e−04 20 2.7e−01 5.5e−01
10 2.8211e+03 3.8554e−01 4.3282e+00 2.9564e−04 20 4.6e−01 1.0e+00
11 2.8947e+03 2.8363e−01 1.7230e+00 8.4400e−05 20 8.0e−01 1.8e+00
12 1.6213e+03 1.3723e−01 2.7881e−01 1.1799e−05 20 1.4e+00 3.2e+00
13 3.0741e+02 2.5373e−02 7.5611e−03 3.1203e−07 20 2.8e+00 6.0e+00
14 8.6100e+00 7.1019e−04 5.7341e−06 2.3647e−10 20 5.6e+00 1.2e+01
15 6.5471e−03 5.4003e−07 1.3829e−11 5.7032e−16 20
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Table 7 Example B1 (Lyapunov equation, with n = 1357, l = 6; γ = 0.1, τ = 10−15, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.4975e+01 1.2626e−01 2.2429e+00 9.3598e−03 6 3.0e−02 5.0e−02
2 2.5823e+00 2.1325e−02 5.1696e−02 2.1317e−04 12 2.0e−02 8.0e−02
3 6.0953e−02 5.0311e−04 3.3931e−04 1.3987e−06 18 2.0e−02 1.0e−01
4 5.3255e−04 4.3956e−06 1.1995e−07 4.9448e−10 19 3.0e−02 1.3e−01
5 1.9190e−07 1.5840e−09 5.1290e−14 2.1143e−16 20

indicating that the Lyapunov equation is slightly more difficult to solve than
the Stein equation, most likely because of the inversion of A involved. As
each iteration roughly requires twice the amount of work or memory as the
previous one, the number of iterations required for convergence dictates the
final amount of CPU time consumed. Note that the speed of convergence
of the SM is influenced by the minimum distance between σ(A) and the
unit circle. Somehow, indicated by the faster convergence for the Lyapunov
equation in Table 7, this distance for the Stein equation (from the discrete-
time system approximating the original continuous-time system; dashed arrows
in Fig. 1) is greater than that for the analogous Lyapunov equation (from the
original continuous-time system, and then transformed to an equivalent Stein
equation; solid arrows in Fig. 1).

7.2.2 Example B2 (n = 5177, l = 6)

From Tables 8 and 9, the machine accuracy of O(10−16) is achieved within 14
iterations and 25 s for the Stein equation, and five iterations and less than 0.23 s
for the Lyapunov equation.

Table 8 Example B2 (Stein equation, with n = 5177, l = 6; τ = 10−10, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.1815e+01 4.9612e−01 1.1634e+01 1.9630e−01 12 4.0e−02 4.0e−02
2 2.3089e+01 4.9227e−01 1.1281e+01 1.0735e−01 17 6.0e−02 1.0e−01
3 4.4104e+01 4.8464e−01 1.0682e+01 5.5456e−02 19 7.0e−02 1.7e−01
4 8.4369e+01 4.9180e−01 1.0373e+01 2.9288e−02 20 9.0e−02 2.6e−01
5 1.6149e+02 4.8535e−01 9.7827e+00 1.4466e−02 20 1.0e−01 3.6e−01
6 2.9595e+02 4.7075e−01 8.7022e+00 6.8680e−03 20 2.2e−01 5.8e−01
7 4.9760e+02 4.4183e−01 6.8910e+00 3.0487e−03 20 2.4e−01 8.2e−01
8 7.0670e+02 3.8564e−01 4.3320e+00 1.1803e−03 20 4.8e−01 1.3e+00
9 7.2560e+02 2.8381e−01 1.7260e+00 3.3738e−04 20 8.6e−01 2.2e+00
10 4.0680e+02 1.3742e−01 2.7974e−01 4.7239e−05 20 1.6e+00 3.8e+00
11 7.7268e+01 2.5452e−02 7.6087e−03 1.2529e−06 20 3.2e+00 7.0e+00
12 2.1706e+00 7.1451e−04 5.8014e−06 9.5467e−10 20 6.1e+00 1.3e+01
13 1.6593e−03 5.4621e−07 1.4475e−11 2.3820e−15 20 1.2e+01 2.5e+01
14 4.8032e−09 1.5811e−12 2.8131e−12 4.6293e−16 20
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Table 9 Example B2 (Lyapunov equation, with n = 5177, l = 6; γ = 0.5, τ = 10−8, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 5.2151e+00 1.8108e−01 1.1806e+00 2.0074e−02 6 2.0000e−02 3.0000e−02
2 1.4505e+00 4.8000e−02 6.2186e−02 1.0268e−03 12 2.0000e−02 5.0000e−02
3 8.0593e−02 2.6602e−03 1.7679e−04 2.9145e−06 17 7.0000e−02 1.2000e−01
4 2.2995e−04 7.5900e−06 4.2083e−09 6.9377e−11 17 1.1000e−01 2.3000e−01
5 5.8696e−09 1.9374e−10 2.5362e−14 4.1810e−16 17

7.2.3 Example B3 (n = 20209, l = 6)

From Tables 10 and 11, the machine accuracy of O(10−16) is achieved within
12 iterations and 41 s for the Stein equation, and seven iterations and less than
3.3 s for the Lyapunov equation.

7.2.4 Example B4 (n = 79841, l = 6)

From Table 12 for the Stein equation, the machine accuracy of O(10−16) is
achieved within ten iterations and 47 s for the Stein equation.

For the Lyapunov equation, the 4 GB RAM of our MacBook Pro could
not cope with the memory requirement. A Dell PowerEdge R910 computer,
with 4 × 8-core Intel Xeon 2.26 GHz CPUs and 1024 GB RAM, was used
instead for the equation. From Table 13, the machine accuracy of O(10−16)

is achieved within five iterations and 12.3 s for the Lyapunov equation. As
in the previous examples, the cost for the final iteration is negligible, as no
preparation is required for the next iteration. The results in Table 13 confirm
the afore-mentioned comments that the Lyapunov equation is easier than the
analogous Stein equation, and the larger Stein equations are easier in the sense
that less iterations are required, possibly because of the fixed value of l relative
to the varying n.

Table 10 Example B3 (Stein equation, with n = 20209, l = 6; τ = 10−12, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.1290e+01 4.8477e−01 1.0683e+01 1.8674e−01 12 2.0e−02 2.0e−02
2 2.1211e+01 4.8291e−01 1.0375e+01 1.0549e−01 17 1.2e−01 1.5e−01
3 4.0605e+01 4.8539e−01 9.7860e+00 5.4947e−02 20 2.5e−01 4.0e−01
4 7.4431e+01 4.7083e−01 8.7081e+00 2.6722e−02 20 3.1e−01 7.3e−01
5 1.2520e+02 4.4199e−01 6.9003e+00 1.2012e−02 20 3.9e−01 1.1e+00
6 1.7798e+02 3.8594e−01 4.3435e+00 4.6822e−03 20 8.3e−01 1.9e+00
7 1.8305e+02 2.8432e−01 1.7349e+00 1.3445e−03 20 1.3e+00 3.2e+00
8 1.0295e+02 1.3801e−01 2.8256e−01 1.8922e−04 20 2.6e+00 5.9e+00
9 1.9662e+01 2.5695e−02 7.7597e−03 5.0667e−06 20 5.1e+00 1.1e+01
10 5.5780e−01 7.2843e−04 6.0303e−06 3.9348e−09 20 1.0e+01 2.1e+01
11 4.3460e−04 5.6755e−07 1.6740e−11 1.0923e−14 20 2.0e+01 4.1e+01
12 1.3854e−09 1.8092e−12 2.1117e−13 1.3779e−16 20
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Table 11 Example B3 (Lyapunov equation, with n = 20209, l = 6; γ = 0.5, τ = 10−12, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 5.9351e−02 8.6069e−02 2.0645e−02 1.4435e−02 6 8.0e−02 9.0e−02
2 2.9967e−02 4.3408e−02 4.3733e−03 3.0386e−03 12 1.8e−01 2.7e−01
3 8.0773e−03 1.1700e−02 3.3262e−04 2.3054e−04 17 3.8e−01 6.5e−01
4 8.5182e−04 1.2339e−03 1.2312e−05 8.5326e−06 18 5.5e−01 1.2e+00
5 4.2250e−05 6.1199e−05 6.7101e−08 4.6501e−08 19 7.3e−01 1.9e+00
6 2.5289e−07 3.6631e−07 4.1645e−12 2.8860e−12 20 1.4e+00 3.3e+00
7 1.6079e−11 2.3291e−11 4.8006e−16 3.3268e−16 20

7.3 Example from [29]

Lastly, we apply our SM to the Lyapunov equations from a 3D example
in [28, Example 5.2]. The matrices B ∈ R

n×l were generated randomly, with
n = 10648 and l = 1, 2, 4, 7. We controlled the truncation and compression
process solely with lmax and choose τ = 10−30, thus putting it out of play. We
experimented on the choice of γ using the easiest l = 1 case and settle on
an acceptable γ = 8 after a few trials. The examples turn out to be amongst
the easiest we have tried, producing much more accurate results (in terms
of relative residuals) in less CPU times and using smaller Krylov subspaces,
when compared to [28, Table 5.1]. Note a similar computer to that in [28] has
been used for the numerical experiments. Still, it will unwise to place too much
importance in the comparison of CPU times from difference computers.

7.3.1 Example M1

From Table 14, we achieve the near-machine accuracy of O(10−15) within five
iterations and 42 s. Comparing with the similar results in [28, Table 5.1], we
achieve an accuracy of O(10−9) in 19 s with rankHk = 16, against an accuracy
of 10−8 in 39 s with rankHk = 68. It is difficult to compare the CPU times from
different computers but the differences in the accuracy and rankHk indicate
that the SM is competitive against the Krylov subspaces method in [28]. Similar
comments can be made from Examples M2, M4 and M7 in the rest of this
subsection.

Table 12 Example B4 (Stein equation, with n = 79841, l = 6; τ = 10−10, lk ≤ 20)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.0382e+01 4.8212e−01 9.7986e+00 1.8242e−01 12 1.0e−01 1.0e−01
2 1.9047e+01 4.7114e−01 8.7305e+00 9.6376e−02 17 3.5e−01 4.5e−01
3 3.2098e+01 4.4259e−01 6.9354e+00 4.5336e−02 17 5.7e−01 1.0e+00
4 4.5787e+01 3.8709e−01 4.3871e+00 1.8132e−02 17 8.7e−01 1.9e+00
5 4.7401e+01 2.8625e−01 1.7691e+00 5.2974e−03 17 1.7e+00 3.6e+00
6 2.6978e+01 1.4024e−01 2.9350e−01 7.6025e−04 17 3.0e+00 6.6e+00
7 5.2605e+00 2.6633e−02 8.3604e−03 2.1108e−05 17 5.9e+00 1.3e+01
8 1.5495e−01 7.8390e−04 6.9933e−06 1.7643e−08 17 1.2e+01 2.5e+01
9 1.2996e−04 6.5745e−07 2.1694e−11 5.4732e−14 17 2.3e+01 4.7e+01
10 4.6240e−10 2.3393e−12 1.2494e−13 3.1522e−16 17
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Table 13 Example B4 (Lyapunov equation, with n = 79841, l = 6; γ = 7.5, τ = 10−16, lk ≤ 30)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 3.0078e−01 1.6538e−01 6.1199e−02 1.6535e−02 12 8.70e−01 1.22e+00
2 7.3776e−02 3.9019e−02 2.6045e−03 6.8754e−04 17 9.50e−01 2.17e+00
3 3.2790e−03 1.7314e−03 4.8226e−06 1.2718e−06 20 2.46e+00 4.63e+00
4 6.0867e−06 3.2139e−06 1.2950e−10 3.4152e−11 23 7.65e+00 1.23e+01
5 1.8938e−10 9.9994e−11 5.7269e−16 1.5103e−16 27

Table 14 Example M1 (l = 1; γ = 8, τ = 10−30, lk ≤ 30)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.5176e+02 2.3356e−01 5.7489e+01 3.9665e−02 2 2.4e+00 3.7e+00
2 6.5779e+01 1.0097e−01 9.5881e+00 6.5956e−03 4 4.9e+00 8.6e+00
3 1.2199e+01 1.8725e−02 1.4969e−01 1.0297e−04 8 1.0e+01 1.9e+01
4 1.8102e−01 2.7786e−04 3.9757e−06 2.7348e−09 16 2.4e+01 4.2e+01
5 5.7914e−06 8.8897e−09 3.2807e−36 2.2568e−15 30

Table 15 Example M2 (l = 2; γ = 8, τ = 10−30, lk ≤ 55)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.5275e+02 2.3344e−01 5.7522e+01 3.9405e−02 4 2.6e+00 3.9e+00
2 6.5923e+01 1.0049e−01 1.0604e+01 7.2431e−03 8 5.5e+00 9.4e+00
3 1.3551e+01 2.0656e−02 1.5176e−01 1.0365e−04 16 1.3e+01 2.2e+01
4 1.8326e−01 2.7934e−04 3.9889e−06 2.7245e−09 32 2.9e+01 5.1e+01
5 5.8074e−06 8.8521e−09 5.2529e−12 3.5879e−15 55

Table 16 Example M4 (l = 4; γ = 8, τ = 10−30, lk ≤ 110)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.6237e+02 2.3602e−01 5.8122e+01 3.7884e−02 8 2.8e+00 4.1e+00
2 6.6759e+01 9.6784e−02 1.0791e+01 7.0125e−03 16 5.7e+00 9.8e+00
3 1.3867e+01 2.0103e−02 1.9250e−01 1.2508e−04 32 1.3e+01 2.3e+01
4 2.3801e−01 3.4504e−04 4.1615e−06 2.7040e−09 64 3.6e+01 5.9e+01
5 5.9636e−06 8.6453e−09 8.9324e−12 5.8041e−15 110
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Table 17 Example M7 (l = 7; γ = 8, τ = 10−30, lk ≤ 190)

k ‖dHk‖ ‖dHk‖/‖Hk‖ rk r̃k lk δtk tk
1 1.6879e+02 2.4126e−01 6.5418e+01 4.1782e−02 14 2.9e+00 4.2e+00
2 7.6560e+01 1.0917e−01 1.2438e+01 7.9193e−03 28 6.5e+00 1.1e+01
3 1.5695e+01 2.2379e−02 2.0510e−01 1.3058e−04 56 1.6e+01 2.7e+01
4 2.5823e−01 3.6821e−04 4.2151e−06 2.6836e−09 112 4.7e+01 7.4e+01
5 6.0372e−06 8.6082e−09 1.0092e−11 6.4252e−15 190

7.3.2 Example M2

From Table 15, we achieve the near-machine accuracy of O(10−15) within five
iterations and 51 s. Comparing with the similar results in [28, Table 5.1], we
achieve an accuracy of O(10−9) in 22 s with rankHk = 32, against an accuracy
of 10−8 in 51 s with rankHk = 132.

7.3.3 Example M4

From Table 16, we achieve the near-machine accuracy of O(10−15) within five
iterations and 59 s. Comparing with the similar results in [28, Table 5.1], we
achieve an accuracy of O(10−9) in 23 s with rankHk = 64, against an accuracy
of 10−8 in 91 s with rankHk = 264.

7.3.4 Example M7

From Table 17, we achieve the near-machine accuracy of O(10−15) within five
iterations and 74 s. Comparing with the similar results in [28, Table 5.1], we
achieve an accuracy of O(10−9) in 27 s with rankHk = 112, against an accuracy
of 10−8 in 205 s with rankHk = 448. From Tables 14–17, there seems to be
only a minor increase in difficulty from the increasing values of l. From the
numerical results, the (rational) Krylov subspaces in our SM seem to be more
effective than those in [28].

8 Conclusions

We have adapted or modified the Smith method for the large-scale Stein equa-
tion (1), with A being large and sparse(-like), and C being low-ranked. Similar
Lyapunov equations (2) can be treated after Cayley transforms. One possibility
is not to form Ak = A2k

0 explicitly, and compress and truncate Ck to control
its growth in rank. For well-behaved Stein (or Lyapunov) equations, with the
eigenvalues of the stable A not on the unit circle (or the imaginary axis),
low-ranked approximations to the solutions X can be obtained efficiently.
(For examples with eigenvalues almost touching the unit circle or imaginary
axis, see Section 7.1.) The convergence of the SM is quadratic (ignoring the
compression and truncation of Ck), as shown in [29]. The computational
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complexity and memory requirement are both O(n) per iteration, provided
that the growth of Ck is not fast or controlled.

In comparison to the techniques proposed previously, e.g. the ADI-type
methods in [5, 23], there is no need to estimate parameters to accelerate
convergence. Our parameters τ and lmax are comparatively straight-forward
to set. The Krylov subspaces generated by the SM seem to be more effective
than those in [28], producing more accurate numerical approximations using
smaller Krylov subspaces. Note that the SM also benefits from the diminishing
Ak in (16), in addition to the power of approximation of the Krylov subspaces.
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