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An Interframe Prediction Technique Combining
Template Matching Prediction and Block-Motion
Compensation for High-Efficiency Video Coding

Wen-Hsiao Peng and Chun-Chi Chen

Abstract—This paper introduces an interframe prediction
technique that combines two motion vectors (MVs) derived
respectively from template and block matching for overlapped
block motion compensation (OBMC). It has a salient feature of
not having to signal the template MV, while achieving a prediction
performance close to that of bi-prediction. We begin by studying
template matching prediction (TMP) from a theoretical perspec-
tive. Based on two signal models, the template MV is shown to
approximate the pixel true motion around the template centroid,
through which we explain why TMP generally outperforms SKIP
prediction but is inferior to block-based motion compensation in
terms of prediction performance. We then approach the problem
of finding another MV to best complement the template MV
from both deterministic and statistical viewpoints, the latter
leading to the search of its optimal sampling location in the
motion field. The result is a search criterion with OBMC window
functions forming a geometry-like motion partitioning when
the template area is straddled on the top and to the left of
a target block. Generalizations to adaptive template design,
multihypothesis prediction and motion merging are made to
explore the complexity and performance trade-offs. Extensive
experiments based on the HM-6.0 software show that the best
of them, in terms of compression performance, achieves 1.7–
2.0% BD-rate reductions at a cost of 26% and 39% increases in
encoding and decoding times, respectively.

Index Terms—Adaptive OBMC window design, high efficiency
video coding, motion field sampling, overlapped block motion
compensation, template matching prediction.

I. Introduction

A key issue in video coders with motion-compensated
prediction is how to trade off effectively between the ac-
curacy of the motion field representation and the required
overhead. Often a rough representation of the motion field
is sufficient to provide good temporal prediction in terms of
rate-distortion (R-D) performance. Obvious evidences are the
frequent occurrence of motion estimation and compensation
with a large block size in typical H.264/AVC-coded sequences,
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and of SKIP mode, for which motion information for a target
block is even inferred completely from that for nearby coded
blocks without being communicated to the decoder.

With the realization that the motion field representation
does not have to be accurate in order to be R-D effective,
active works began on the investigation of decoder-side motion
vector (MV) derivation techniques, hoping to leverage the
ever-increasing processing capability of the decoder to save
motion overhead. One prominent class of approaches borrows
the notion of texture synthesis to perform motion estimation
at the decoder [16]. In its initial form, the method, also known
as template matching prediction (TMP), obtains the MV at a
current pixel by finding, in the reference frames, the best match
for a template region composed of its surrounding recon-
structed pixels [16]. The recent research [11] further extended
the basic unit for TMP from a pixel to a block, resulting in a
scheme very similar to the conventional block-based motion
compensation (BMC), except that the MV (referred hereafter
to as the template MV) is estimated identically at both the
encoder and decoder based on minimizing the prediction
error accumulated over an inverse-L-shaped template region,
which is straddled on the top and to the left of the target
block. Despite the increased decoding complexity, this form
of TMP has drawn much attention of the video standards
community, due in large part to its promising performance and
compatibility with the state-of-the-art coding architectures.

Over the years many improvements to TMP have been
proposed. For instance, coding the target block at a lower
spatial resolution followed by an interpolation was found
more R-D efficient in flat areas of an image, where template
matching does not always give a physically meaningful MV
[18]. In fact, even in nonflat areas, the template MV, by its very
nature, is merely a rough estimate of the target block’s motion.
Hence, the use of multihypothesis prediction to improve the
motion compensation accuracy of TMP is very common [7],
[10], [17]. Other alternatives include giving higher weight to
pixels spatially closer to the target block when calculating
the template matching error [9], and adapting the template
shape and location to local signal characteristics at the expense
of extra side information [9], [14]. Without referring to the
content of the target block, these approaches usually cost more
computational complexity in order to show a clear R-D benefit.

In view of this, another school of thought strives to form
a better prediction at a similar motion cost to BMC. This
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is again accomplished by performing TMP in the context
of multihypothesis prediction, but now requires one of the
hypotheses to be derived through a coded MV. Apparently,
how to determine and make the most of this MV is the key to
its effectiveness. In [17] and [20], it is obtained by carrying out
block matching at the encoder as for BMC and then utilized
as an initial estimate to confine template matching search.
This scheme, however, is not guaranteed to yield a minimal
prediction residual, for it neglects to consider the combined
effect of the resulting predictors. To overcome this problem,
our prior works [4], [6], and [13] proceed in reverse order,
starting with template matching (at the encoder) to obtain
one predictor, followed by block matching, to estimate a MV,
with a criterion that minimizes the difference between the
combined prediction signal and the target block. It turns out
that these schemes result in much less residual than TMP-
only implementations (as well as BMC). Furthermore, this is
often achieved with only two hypotheses, forming a particular
bi-prediction scheme that features only one coded MV.

One critical step in the above bi-prediction method is the
combination of predictors. A simple yet heuristic approach,
as adopted in [21], is to compute their weighted average.
One limitation of this approach, however, is that pixels in a
predictor must be weighted equally, which is superfluous from
the theoretical point of view. In order to seek the optimal
solution, we turn to the more general weighting scheme of
overlapped block motion compensation (OBMC) [15], where
the weighting can be pixel adaptive. With this background,
the problem is to determine the OBMC weights so that the
resulting predictor would produce a minimal residual.

In the paper, we propose two approaches to solve the prob-
lem. The first one is the least-squares approach, which relies
on an iterative algorithm to solve for the optimal weights.
Although straightforward, its procedure is less instructive. By
introducing statistical signal models, our least mean-square ap-
proach, on the other hand, provides many useful insights into
the solution. For example, based on the underpinnings in [19]
and [24], we first obtain that the template MV approximates
the pixel true motion at the template centroid, which usually
locates near the top-left corner of the target block. Because
it can better compensate for the movement of the top-left
region, it then follows that the optimal choice for the other
MV is given by the true motion of a pixel in the bottom-
right quadrant. These facts together lead naturally to unequal
OBMC weights, forming a geometry-like motion partitioning
[8]. The result not only refutes the simple weighted averaging
to be optimal, but also justifies the use of OBMC.

Experiments based on the HM-6.0 software [2] have con-
firmed our theoretical predictions and the performance of this
bi-prediction concept. Several variants of the algorithm, which
implement adaptive template configuration with a varying
number of hypotheses or extend the notion to motion merging
[23], were studied to explore the performance and complexity
trade-offs. The best of them, in terms of compression per-
formance, achieves 1.7–2.0% BD-rate reductions (relative to
the HM anchor [2]) at a cost of 26% and 39% increases
in encoding and decoding times, respectively. Using motion
merging to replace template matching for MV inference brings

down the time increases to 21% and 2%, respectively, with rate
reductions dropping to 0.9–1.5% as a result. While this is by
no means an ideal operating point, our work demonstrates the
potential of having the encoder and decoder work coopera-
tively to deliver better performance.

The rest of this paper is organized as follows. Section II an-
alyzes TMP in a motion sampling framework and explains its
superiority over SKIP prediction. Within the same framework,
Section III formulates the combination of TMP and BMC
based on OBMC as an optimization of the motion sampling
structure. Optimal OBMC weights are solved using both a
deterministic and a statistical approach, with the distinctions
between the two solutions compared from various aspects.
Section IV evaluates the performance and computational com-
plexity of this bi-prediction method and its variants under
common test conditions. Section V concludes this paper with
a summary of observations and a list of future works.

II. Template Matching Prediction (TMP): A

Theoretical Perspective

In this section, we study TMP from a theoretical viewpoint.
Our goals are: 1) to reveal the factors that determine its
prediction performance and 2) to understand its relationship to
BMC and SKIP prediction. Some early results were published
in our prior work [22], but a more thorough treatment of the
topic is given in this paper. We adopt two signal models, [19]
and [24], while doing the theoretical analysis. To proceed, we
begin by reviewing these models.

A. Review of Signal Models

To analyze residuals of BMC, Tao et al. [19] modeled the
autocorrelation functions of the intensity and motion fields by

E[Ik(s1)Ik(s2)]= max(σ2
I (1−||s1−s2||22

K
), 0) (1a)

E[vx(s1)vx(s2)]=E[vy(s1)vy(s2)]=σ2
mρ‖s1−s2‖1

m (1b)

respectively, where Ik(s) represents the intensity value of pixel
s=(x(s), y(s))T of frame k; v(s)=(vx(s), vy(s))T denotes its true
MV;1 {σ2

I , K} and {σ2
m, ρm} are parameters related to their

respective variances and correlation coefficients. Equations
(1a) and (1b) suggest that the intensity and motion correlations
between any two pixels decrease with the distance in between
them.

Similarly, Zheng et al. [24] introduced a motion model
assuming that the difference between the true MVs of any
two pixels obeys the normal distribution

vx(s1)−vx(s2) or vy(s1)−vy(s2) ∼ N (0, αr̂2(s1, s2)) (2)

where α is a constant indicating the degree of motion variation
in the horizontal or vertical direction, and r(s1, s2)=||s1 − s2||2
is the �2 distance between pixels s1 and s2. The "hat" in
(2) indicates that its value will be clipped when exceeding

1Under the constant intensity assumption, the true motion (or, interchange-
ably, the true MV) v(s) of a pixel s in frame k satisfies Ik(s) = Ik−1(s + v(s)),
where Ik−1 denotes the reference frame of frame k.
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Fig. 1. (a) Coordinate system and definitions of symbols. (b) An assumed true motion field for frame k, and the reconstructed motion fields resulting from
compensating a target block in frame k with (c) the least-squares-based block MV and (d) the template MV.

a maximum threshold, which, as has been shown in [5], is
essential for the model to be proper. Equation (2) leads to the
following autocorrelation function:

E[vx(s1)vx(s2)]=E[vy(s1)vy(s2)]=σ2
m−α

2
r̂2(s1, s2) (3)

assuming the motion field is (wide-sense) stationary and zero-
mean.

With these models, a closed-form expression for the
mean-sqaured prediction error, E[d2(s; v(q))], d(s; v(q)) ≡
Ik(s)-Ik−1(s+v(q)), of pixel s based on the true MV of pixel
q can be obtained. This result will be useful for analyzing
various prediction schemes, as we shall see later. In [19], the
derivation is done by a direct application of (1a) and (1b) in
evaluating E[(Ik−1(s+v(s))–Ik−1(s+v(q)))2], where under the
constant intensity assumption, Ik−1(s+v(s)) has been substi-
tuted for Ik(s). This gives

E[d2(s; v(q))]=
8σ2

I σ
2
m

K

(
1−ρ||s−q||1

m

)
. (4)

Zheng et al. [24] take a different approach to find
E[d2(s; v(q))] without requiring the use of an intensity
model. They approximate the prediction error by Tay-
lor expansion, d(s; v(q)) ≈ I

′(x)
k−1(s+v(q))(vx(s) − vx(q))+

I
′(y)
k−1(s+v(q))

(
vy(s)−vy(q)

)
, take expectation of the square of

both sides, and assume the x, y components of I ′
k−1(s+v(q))

and (v(s)-v(q)) are all independent of each other, to get

E[d2(s; v(q))] ≈ ε̂r2(s, q)= min(ε||s−q||22, ετ2) (5)

where (2) has been put into use, ε=αE[(I ′(x)
k−1(s+v(q)))2+

(I ′(y)
k−1(s+v(q)))2] and τ=

√
2σ2

m/α is a clipping threshold [5].

B. Sampling the Motion Field

Based on (5), a block MV, vb, found from least-squares-
based block matching was shown in [24] to approximate the
true motion, v(sc), associated with the block center, sc, in the
sense that the sum of prediction error variances over the target
block is minimized when vb is chosen to be v(sc) :

sc= arg min
q

∑
s∈B

E[d2(s; v(q))]=

⎛⎝
∑
s∈B

x(s)

|B| ,

∑
s∈B

y(s)

|B|

⎞⎠T

(6)

where B is a set consisting of coordinates of every pixel
in the block. This can be easily verified by substituting (5)
in (6) and setting the derivatives with respect to the x, y

components of q equal to zero.2 Together these observations
lead to an insightful interpretation of BMC: its operation may
be viewed as a two-step process, in which block-based motion
estimation acts as a motion sampler taking samples at block
centers, while block-based motion compensation reconstructs
the motion field by interpolating between motion samples
using the nearest-neighbor rule (Fig. 1).

Following the same line of derivation with B replaced by
T , the pixel coordinates set for the template region, and
using (5), it is straightforward to show that the template
MV, vt , approximates the true motion, v(st), associated with
the template centroid, st=

(∑
s∈T x(s)/ |T | , ∑s∈T y(s)/ |T |)T

.
This, in fact, holds more generally for any matching area of
arbitrary shape. Repeating the same computation with (4) gives
a somewhat different result, but the trend remains similar. As
an illustration, Table II shows the locations of st predicted
by the two models for various template configurations, with
parameters Wb, Hb, and Wt defined in Fig. 2(a). From the
table, both predict st to be at some point near the top-left
corner of the target block. A closer look at the data reveals
that it always falls in the template area, when computed based
on (4), but may lie outside when (5) is in use. We also note that
for fixed Wb, Hb, the resulting st departs further from the block
center as the template width Wt increases; the phenomenon is
common to both models.

Reviewing the above results suggests that: 1) the difference
between vt and vb can be seen to be their sampling locations
in the motion field (Fig. 1) and that 2) a change to the template
configuration amounts to a variation of vt’s sampling location.

C. Prediction Error Surfaces of BMC and TMP

With the background developed so far, we now proceed to
explore the distribution of prediction error variances over the
target block B, termed the prediction error surface, for BMC
and TMP. To do so, the block and template MVs, vb and vt ,
are modeled by v(sc) and v(st), respectively, and substituted
for v(q) in (4) or (5) to compute the error variance for every
pixel s in B. The results are visualized in Fig. 2 and compared
with the empirical data generated by encoding 50 frames of
the BasketballDrill sequence [2].

From Fig. 2, we see a close relationship between the shape
of a prediction error surface and the sampling location of the

2A similar result also can be observed with (4). In the case, the optimal q
is the one that minimizes

∑
s∈B 8σ2

I σ2
m(1 − ρ

‖s−q‖1
m )/K. Obviously, it cannot

be found by differentiation because of the presence of the �1 norm. We thus
find its coordinates by evaluating the expression

∑
s∈B 8σ2

I σ2
m(1−ρ

‖s−q‖1
m )/K

for all permissible locations of q in quarter-pel precision.



PENG AND CHEN: INTERFRAME PREDICTION TECHNIQUE 1435

Fig. 2. Mean-squared prediction error surfaces of block B produced with BMC, TMP, SKIP, and Merge-SKIP. The second and third rows show the theoretical
predictions made by Tao’s (σ2

I σ2
m/K = 29, ρm = 0.99, �Tao = 18) and Zheng’s (ε = 0.12, τ = 22.6, �Zheng = 28) models, respectively. The empirical data are

based on encoding 50 frames of the BasketballDrill sequence [2] with QP=22 and Wb = Hb = 32, Wt = 4.

MV based on which it is computed. For instance, both models
predict the error surface of BMC has a convex shape. The
error variance tends to be larger at the block boundaries and
smaller around the center, which is understandable if we recall
that vb approximates v(sc), the true motion associated with
the block center. Following the same argument, it is intuitive
to expect the residual of TMP has a large variance at the
bottom-right quarter of the target block. This is because the
template MV, when viewed as v(st), generally has a weaker
correlation to pixels’ true motion there, thereby accounting
for the poorer prediction. Comparing these results with their
empirical counterparts confirms the accuracy of our theoretical
predictions.

Further numerical evaluation indicates that TMP actu-
ally performs worse than BMC, in terms of the sum,∑

s∈B E[d2(s; v(q))], of prediction error variances. This is
also evident from (6), which says that the minimum of∑

s∈B E[d2(s; v(q))] is reached when q is right at the block
center. In this sense, the sampling structure of BMC is optimal.
The performance gap, however, can be insignificant if the
intensity and motion fields are less random or have a high
spatial correlation—that is, in Tao’s model, σ2

I , σ
2
m are small or

ρm, K tend to be large, or in Zheng’s model, α is small. Under
these circumstances, the scaling factors 8σ2

I σ
2
m/K and ε in (4)

and (5) become very small, implying that the resulting sum of
error variances is less sensitive to where the MV is sampled,
i.e., the choice of q. In this case, TMP is at an advantage
because it need not additionally signal motion information.

D. Prediction Error Surface of SKIP Prediction

In this section, we study another decoder-side motion infer-
ence technique, which is widely known as SKIP. We start with
the SKIP method in H.264/AVC [1] and establish a closed-
form formula for estimating its prediction error variance over
a target block. The result will then be extended to the more

recently proposed Merge-SKIP in the High Efficiency Video
Coding (HEVC) standard [3].

1) SKIP in H.264/AVC: In H.264/AVC [1], when an
inter macroblock is coded in SKIP mode, its MV is inferred
by computing the median of previously coded MVs in a
causal neighborhood. For example, in Fig. 3, the inferred MV,
v̂=(v̂x, v̂y)T , for block B is

v̂x=Median{vx(s1), vx(s2), vx(s3)}
v̂y=Median{vy(s1), vy(s2), vy(s3)} (7)

where (vx(si), vy(si))T , i = 1, 2, 3 are MVs associated with
blocks Bi, which have been approximated by the true MVs
of their respective centers si. In this case, the prediction error
variance at pixel s, s ∈B is given by

E
[
d2(s;v̂)

]
=E

[(
Ik(s)−Ik−1(s+v̂)

)2
]

(8)

=E
[(

Ik−1(s+v(s))−Ik−1(s+v̂)
)2

]
.

Computing (8), which involves order statistics, is a difficult
task. To circumvent the difficulties, we take a simpler approach
by assuming that (v̂x, v̂y) is equally likely to be any of the
ordered pairs (vx(si), vy(sj)), i, j = 1, 2, 3. Using the notation
v̂ij ≡ (vx(si), vy(sj)), we can then express (8) as

E
[
d2(s;v̂)

]
=

1

9

3∑
i=1

3∑
j=1

E
[(

Ik−1(s+v(s))−Ik−1(s+v̂ij)
)2

]
(9)

which can readily be evaluated by incorporating Tao’s model
[19]. The result is

E[d2(s;v̂)]=
1

3

3∑
i=1

E[d2(s; v(si))]=
8σ2

I σ
2
m

3K

3∑
i=1

(1−ρ‖s-si‖1
m ) (10)
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Fig. 3. Geometry of MVs used for SKIP, Merge-SKIP, TMP.

and the result for Zheng’s model can be shown to be

E
[
d2(s;v̂)

] ≈ 1

3

3∑
i=1

E[d2(s; v(si))]=
ε

3

3∑
i=1

r̂2(s, si). (11)

It is interesting to see that both (10) and (11) are merely
a weighted sum of the mean-squared prediction errors when
v(si),i = 1, 2, 3 are applied individually to the motion compen-
sation of pixel s, which is a direct consequence of assuming
that all possible outcomes of (v̂x, v̂y) are equally probable. The
validity of this assumption is justified by the data in Fig. 2,
where the error surfaces predicted by (10) and (11) resemble
closely the empirical one. As expected, with the introduction
of v(s3), the error variance becomes smaller in the upper half
of the target block.

2) Merge-SKIP in HEVC: While taking the median of
neighboring MVs helps to ensure the motion smoothness, the
resulting MV is somehow artificial and may be unlike any
of those found in the neighborhood. To avoid this problem, a
Merge-SKIP method was recently proposed in the latest HEVC
standard [3]. The idea is to reuse the MV(s) from one of the
neighboring prediction blocks (prediction units) by sending
extra bits to signal the choice. For example, in Fig. 3, the
target block can choose any MV from blocks Bi, i = 1, 2, ..., 7
for motion compensation. To save bits, those associated with
Bi, i = 1, 2, 3, 4, 6 are the first candidates for reuse, and only
if any of the MVs from Bi, i = 1, 2, 3, 4 (respectively, B6) is
not available will that of B5 (respectively, B7) be considered.

Following the notions developed earlier, it is easy to show
that in this case, the mean-squared prediction error for a pixel
s in the target block B can be modeled as a weighted sum∑

wiE[d2(s; v(si))] of the error squares produced by applying
the true motion v(si) of pixels si,i = 1, 2, ..., 7 for motion
compensation. In other words, it has exactly the same form
as (10) and (11), except that the weighting factors wi’s now
represent the probabilities of choosing the respective MV
candidates, which are generally nonuniform. With some degree
of approximation, we have regarded the two temporally co-
located MVs from B6 and B7 as v(s6) and v(s7), respectively,
both, as shown in the figure, are pixel true motion corre-
sponding to the current frame rather than the reference frame.
Clearly, this requires that their motion fields be very similar.
Although it is not always the case, we shall assume so to
proceed with the analysis.

With the above results, the right most column of Fig. 2
shows the error surfaces of the Merge-SKIP method. The

TABLE I

Mean-Squared Prediction Errors

BasketballDrill QP22 Johnny QP22
(Wb=Hb=32) Emp. Tao Zheng Bits Emp. Tao Zheng Bits
BMC 49 49 49 7.5 5 5 5 6.3
SKIP 152 98 182 – 9 5 6 –
Merge-SKIP 68 90 163 1.8 5 5 6 2.1
TMP (W t=4) 114 77 72 – 7 5 5 –
TMP (W t=8) 117 80 80 – 6 5 5 –
TMP (W t=16) 130 87 101 – 6 5 5 –

BasketballDrill—(σ2
I σ2

m/K = 29, ρm = 0.99, �Tao = 18), (ε = 0.12, τ = 22.6,
�Zheng = 28), Johnny—(σ2

I σ2
m/K = 0.2, ρm = 0.99, �Tao = 5), (ε = 0.01,

τ = 22.6, �Zheng = 5)

theoretical ones have been generated by setting (w1,w2,
...,w7)=(0.52, 0.22, 0.08, 0.02, 0.05, 0.03, 0.09), which are
the relative frequencies that different candidates are selected
in the empirical experiment. In terms of waveforms, we see
that the theoretical predictions match the empirical result; the
higher weighting toward block B1 explains why the surfaces
incline to the left.

From the relative frequencies, one fact that may seem
paradoxical is the rare use of the temporally co-located MV
from B7. Ideally, it should be the most selected one, provided
that its approximation to the true motion of the target block’s
center is sufficiently accurate. This seeming paradox has to
do with the priority-based candidate selection. As stated at
the outset, the MV of B7 is only selectable when that of B6

is not available. In a side experiment where this restriction is
removed, we do observe a dramatic increase in its use.

E. Prediction Performance Comparison

To see how BMC, TMP, SKIP, and Merge-SKIP perform
relative to each other, Table I compares their mean-squared
prediction errors both empirically and theoretically. The em-
pirical results are based on encoding 50 frames of two standard
sequences, BasketballDrill and Johnny [2]. The former has
complex motion, while the latter is of video-conferencing type
and has less detail.

In comparing their empirical performance, we note that the
computation of prediction error would vary with the choice
of target blocks and their reference frames. To ensure that the
same target blocks are used and the reference frames from
which they are predicted are identical, the test sequences are
first coded using the HM-6.0 software [2]. Then, from the
reconstructed images, a predictor is created for every source
frame by performing motion compensation on a block-by-
block basis. In this way, every source block is a target block
and different methods of forming its predictor are performed
on exactly the same references.

Accordingly, to evaluate the theoretical models, we obtain
the model parameters (σ2

I σ
2
m/K, ρm, �Tao)3 and (ε, τ, �Zheng)

for each sequence by fitting the theoretical error surface of
BMC to the empirical one. That is, we choose these parameters
so that the misfit, measured by the squared errors, between the
theoretical and empirical surfaces is minimized. We then use

3For a reason that will become clear in §III-E1, all prediction error models
must be amended by including a positive offset �. For example, (5) will
become ε̂r2(s, q) + �.
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these same parameters in the models for the other prediction
schemes. Admittedly, there are better and more practical ways
for estimating parameters, but we will not pursue them further
since obtaining accurate estimates is not our main focus here.
All model parameters throughout the paper have been gener-
ated following the same procedure, unless otherwise stated.

With reference to the table, we see that: 1) in the Johnny
sequence, all four schemes perform about the same, and 2) in
the BasketballDrill sequence, their relationships, in terms of
the magnitude of mean-squared error, are as follows.

1) (Theoretically) SKIP > Merge-SKIP > TMP (Wt=4) >

BMC.
2) (Empirically) SKIP > TMP (Wt=4) > Merge-SKIP >

BMC.
Most of these observations can have a simple explanation

if we examine the motion sampling structure behind these
prediction schemes. For instance, the first corroborates an
earlier finding that the motion sampling structure will be less
critical to prediction performance if the intensity and motion
fields are less random or have a high spatial correlation. BMC
performs the best because the MV used approximates the true
motion of the block center. Similarly, TMP is superior to SKIP
since, from Fig. 3, st is normally closer to the block center
than any of the si, i = 1, 2, 3. Both (4) and (5) suggest that the
further the motion sampling point (the location of q) is away
from the block center, the larger the sum,

∑
s∈B E[d2(s; v(q))],

of error variances would be. The same argument also explains
why increasing Wt (which causes st to deviate more from
the block center) usually has a negative performance impact
on TMP. Interestingly, these results together justify the TMP-
SKIP [10] and the typically small-sized template width.

One exception, however, occurs when TMP is compared
with Merge-SKIP. The latter performs much better in practice
than it is expected theoretically. This may be attributed to the
fact that the intensity and motion fields are likely nonstationary
and under which case, the flexibility of Merge-SKIP in choos-
ing MV candidate makes it possible to become easily adjusted
to the varying statistics. This benefit, of course, comes at the
expense of a higher rate cost. For comparison, provided in the
column “Bits” of Table I is the average number of bits per
prediction block (computed from the empirical experiment)
that is required for different schemes to represent their motion
parameters, e.g., MV in the case of BMC or merge index for
Merge-SKIP. Here uni-prediction is assumed, and the cost for
signaling the prediction mode is neglected as it depends highly
on the syntax format.

III. Bi-prediction Combining TMP and BMC

This section introduces a novel bi-prediction scheme, in
which the predictor is computed as a weighted average of
two reference blocks, one pointed to by a template MV, vt—
obtained through performing an identical template matching
operation at both the encoder and decoder—and the other
by a block MV, vb—signaled via regular MV coding. We
have shown that the former can better compensate for the
movement of the top-left area of a prediction block. The latter
is thus aimed at reducing further the prediction residual in

Fig. 4. Bi-prediction combining TMP and BMC: vt is the template MV
inferred implicitly, vb is the block MV coded in the bit-stream, and wb (̃s)
and 1−wb (̃s) specify the weighting coefficients (namely, the OBMC window
functions) for prediction with vb and vt , respectively.

the remaining area. The spatially-varying contribution of these
MVs to motion compensating a prediction block motivates the
use of OBMC for combining their reference blocks. This leads
to a pixel-adaptive bi-prediction method (see Fig. 4) with a
motion cost just as that for uni-prediction.

A. Basics of OBMC

The notion of OBMC is to provide an estimate of a pixel’s
intensity value Ik(s) based on linearly combining multiple
motion-compensated signals

∑L
i=1 wiIk−1(s+vi), where {vi}Li=1

is a MV set composed normally of the MV of the prediction
block where pixel s belongs and those of its neighboring
blocks. As an example, if s was a pixel in the target block
B shown in Fig. 3, then one possible composition of {vi}
may include v(si),i = 1, ..., 7. From an estimation-theoretic
perspective, these MVs are probable hypotheses for its true
motion v(s), with wi’s indicating their likelihood. Usually, the
values of wi’s are estimated by minimizing the squared pre-
diction error (Ik(s)−∑L

i=1 wiIk−1(s+vi))2 subject to
∑L

i=1 wi=1
in either a statistical or a deterministic sense, and under fairly
mild conditions, they were shown to be a function of pixel
position within a target block [15], [19], [24]. This suggests
that the contribution of each MV to estimating pixel values
across the target block is spatially varying and that prediction
with OBMC is pixel adaptive. Hereafter, we will use OBMC
weights and window functions interchangeably when referring
to wi’s. The latter is used when the stress is on viewing each wi

as a separate function (of relative pixel position) characterizing
the contribution of a MV.

B. Problem Formulation

The proposed bi-prediction method is a particular appli-
cation of OBMC, which distinguishes from the conventional
approach in using the template MV as a substitute for MVs
from neighboring blocks. Since the template MV has to be
produced identically at both the encoder and decoder, its
values cannot be specified discretionarily. As a result, how
to minimize the prediction residual by a suitable choice of the
block MV and OBMC weights (refer to Fig. 4) is central to
this application.

To define the problem more specifically, we assume that this
bi-prediction method is just one of the options the encoder
can use for predicting a target block and that, for the sake of
illustrative convenience, all prediction blocks have the same
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size of Wb × Hb. With these in mind, our objective is to

minimize
vb,i,wb(s̃),wt(s̃)

ξ=
∑
i∈I

∑
s∈Bi

(Ik (s) −wt

(̃
s
)
Ik−1

(
s+vt,i

)
−wb

(̃
s
)
Ik−1(s+vb,i))2

subject to wt

(̃
s
)

+wb

(̃
s
)

=1 (12)

where s=(x(s),y(s))T , as defined previously, refers to a pixel’s
absolute position relative to the picture origin, with

s̃=(x(̃s),y(̃s))T =(x(s) modulo Wb, y(s) modulo Hb)T (13)

indicating its relative position within a prediction block;
Bi, i ∈ I are labels of prediction blocks (in a picture) that
adopt this bi-prediction method, each further serving as a set
collecting absolute coordinates for all pixels in one such block;
and wt

(̃
s
)

and wb

(̃
s
)

are OBMC weights associated with
the template and block MVs, respectively. Like the weighting
factors for regular OBMC, both wt

(̃
s
)

and wb

(̃
s
)

are a
function of (relative) pixel position within a target block. By
substituting 1−wb

(̃
s
)

for wt

(̃
s
)

in the objective function, we
further arrive at an unconstrained formulation:

minimize
vb,i,wb(s̃)

ξ=
∑
i∈I

∑
s∈Bi

(Ik (s) − (
1−wb

(̃
s
))

Ik−1
(
s+vt,i

)
−wb

(̃
s
)
Ik−1(s+vb,i))2

(14)
for which the unknowns to be found are the block MVs, vb,i,

i ∈ I, and the corresponding OBMC weights, wb (̃s)’s, for
all the values taken by s̃—namely, all pairs of (m, n)T , m =
0, 1, ..., Wb − 1 and n = 0, 1, ..., Hb − 1.

C. Iterative Least-Squares (LS) Solution

This section introduces an iterative algorithm for solving
the problem in (14). Its procedure involves finding a block
MV for all the prediction blocks Bi, i ∈ I in raster-scan order
using the current best estimates w

(k)
b (̃s)’s of OBMC weights

and the associated template MVs v(k)
t,i ’s. Then, the resulting

block MVs v(k)
b,i’s, along with the template MVs v(k)

t,i ’s, will
be utilized to improve the estimates w

(k)
b (̃s)’s to w

(k+1)
b (̃s)’s.

These steps will be repeated until the change in the value
of ξ between successive iterations is below a threshold. The
following elaborates on each of these steps.

1) Estimating Block MVs: Assume that we are at the
kth iteration and the current estimates of OBMC weights are
w

(k)
b (̃s)’s. Using these estimates in (14), we minimize ξ by

finding, for each prediction block Bi, i ∈ I, a MV v(k)
b,i that

minimizes its OBMC prediction error

v(k)
b,i= arg min

vb,i

∑
s∈Bi

(Ik (s) −(1−w
(k)
b

(̃
s
)
)Ik−1(s+v(k)

t,i

−w
(k)
b

(̃
s
)
Ik−1(s+vb,i))2

(15)

where the template MV v(k)
t,i is obtained, right before the search

of the block MV v(k)
b,i , via template matching.

2) Adapting OBMC Weights: To obtain new estimates of
OBMC weights, we substitute the resulting v(k)

b,i’s and v(k)
t,i ’s

for vb,i’s and vt,i’s in (14), respectively, and solve for wb (̃s)’s
for all the values taken by s̃. In doing so, it is convenient to
consider an alternative expression for ξ as follows:

ξ=
Wb−1∑
m=0

Hb−1∑
n=0

∑
i∈I

(Ik(smn,i)−
(
1−wb(s̃mn,i)

)
Ik−1(smn,i+vt,i)

−wb(s̃mn,i)Ik−1(smn,i+vb,i))2

which is obtained from (14) by first summing over the s’s
(which we denote as smn,i’s) with the same relative pixel
position (m, n)T in their respective blocks Bi, i ∈ I and
then adding up the results for all pairs of (m, n)T , m =
0, 1, ..., Wb − 1 and n = 0, 1, ..., Hb − 1. In this form, ξ is
a sum of Wb × Hb functions, the value of each represents
the sum of OBMC prediction errors at a certain relative pixel
position and is governed solely by the variable wb

(
s̃mn,i

)
. Note

that in the present case, vt,i and vb,i assume the values of
v(k)

t,i and v(k)
b,i , respectively. Furthermore, according to (13), the

coordinates of s̃mn,i will be fixed at (m, n)T regardless of what
the value of i is, suggesting that wb(s̃mn,i) is a distinct variable
for each pair of (m, n). It then follows that the minimization of
ξ can be achieved through minimizing each of these functions
separately;4 that is,

minimize
wb(s̃mn,i)

∑
i∈I

(Ik(smn,i)−(1−wb(s̃mn,i))Ik−1(smn,i+v(k)
t,i )

−wb(s̃mn,i)Ik−1(smn,i+v(k)
b,i))

2
(16)

for every pair of (m, n)T . A little algebra gives (17), shown at
the bottom of the page, which forms a new estimate w

(k+1)
b (̃s)

of the OBMC weight wb (̃s) at s̃=(m, n)T .
In general, the ξ in (14) is a rather complicated function

of vb,i’s, vt,i’s and wb (̃s)’s, in which case, there is hardly any
guarantee that the above algorithm will always converge. In
practice, however, its convergence to a possibly local minimum
is found to be rapid (usually between 5 and 10 iterations).
This might be explained by an observation that our initializing
wb (̃s)’s to 1/2 often finds a set of block MVs, vb,i’s, that are
close to their optimal values. We will explain the phenomenon
from a theoretical viewpoint in the next section.

D. Least Mean-Square (LMS) Solution

The above iterative algorithm, although straightforward, is
less instructive. We do not know what mechanisms cause the
result, nor can we justify it. As an alternative, this section
introduces a statistical approach for determining the block
MVs, vb,i, i ∈ I, and the OBMC weights, wb (̃s)’s. It has
the advantages of more clearly revealing the essence of the
proposed bi-prediction scheme and providing many useful
insights into its design.

4The solution that minimizes a function f (x1, x2) of the form f (x1, x2) =
f1(x1) + f2(x2) can be found by minimizing f1(x1) and f2(x2) separately.

wb

(
s̃mn,i

)
=

∑
i∈I

(
Ik

(
smn,i

) −Ik−1(smn,i+v(k)
t,i )

) (
Ik−1(smn,i+v(k)

b,i)−Ik−1(smn,i+v(k)
t,i )

)
∑

i∈I
(
Ik−1(smn,i+v(k)

b,i)−Ik−1(smn,i+v(k)
t,i )

)2 (17)
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In order to bring into use the signal models given in §II, we
transform the problem of minimizing ξ into that of minimizing
its expected value E[ξ]. This produces

minimize
wb(s̃),sb,i

∑
i∈I

∑
s∈Bi

E[(Ik (s) − (
1−wb

(̃
s
))

Ik−1(s+v(st,i))

−wb

(̃
s
)
Ik−1(s+v(sb,i)))

2]
(18)

where, to allow for tractable calculations, we have tacitly
substituted v(st,i) for vt,i and v(sb,i) for vb,i [see (14)], with
v(st,i) denoting the true MV at the template centroid st,i next
to block Bi, which has proved a good approximation to the
template MV vt,i, and v(sb,i) representing the true MV at an
unknown position sb,i in Bi, which we shall use to model the
block MV vb,i to be estimated–that is, we regard vb,i as v(sb,i)
and consider the determination of its values to be a problem
of deciding its sampling location sb,i in the motion field. With
reference to Fig. 1, the problem in (18) can be understood as
follows. Given that every block Bi, i ∈ I is to be predicted
using OBMC based on two MVs, one of which defaulting to
the true MV v(st,i), we wish to find the other MV v(sb,i) by
sampling the motion field at some point sb,i in block Bi and
to determine a set of OBMC weights wb

(̃
s
)
’s, so that the sum

of mean-squared prediction errors evaluated over all Bi, i ∈ I
will be minimized. Here the locations of st,i, i ∈ I (which can
be obtained according to how the template region is defined
for each Bi) are assumed known.

To find the solution to (18), it is convenient to simplify
the problem by assuming that both the intensity and motion
fields are stationary and that a uniformly sized and shaped
template region is defined for all Bi, i ∈ I. We thus only
have to determine the wb

(̃
s
)
’s and sb,i for one specific block;

the result will extend automatically to the other blocks by
stationarity. In this case, we may just as well eliminate the
block index i and the summation over I in (18), arriving at
the simpler problem of minimizing the sum of prediction error
variances for one single block:

minimize
wb(s̃),sb

∑
s∈B E[(Ik (s) − (

1−wb

(̃
s
))

Ik−1(s+v(st))

−wb

(̃
s
)
Ik−1 (s+v(sb)))2].

(19)

To proceed further, we break up the joint optimization of
wb

(̃
s
)
’s and sb into two subproblems:

1) Fixing sb, Determine the wb

(̃
s
)
: Observe that every

term E[·] in the sum above is a function of two variables, the
location of sb and one of the OBMC weights wb

(̃
s
)
’s to be

determined. The summation adds together a total of Wb × Hb

such functions when s ranges over all pixels in B. Since the
indices s’s are distinct (so are the s̃’s), there is no duplicate
wb

(̃
s
)
’s involved in these functions. Thus, fixing sb, we can

find the wb

(̃
s
)
’s that minimize (19), through minimizing each

of them separately. Setting their derivatives with respect to the
corresponding wb

(̃
s
)

to zero yields, for all s ∈ B (and thus

all the values of s̃),

wb

(̃
s
)

=
E[(Ik (s)−Ik−1(s+v(st)))(Ik−1 (s+v(sb))−Ik−1(s+v(st)))]

E[(Ik−1 (s+v(sb)) −Ik−1(s+v(st)))2]

=
E[d(s; v(st))(d(s; v(st))−d(s; v(sb)))]

E[(d(s; v(st))−d(s; v(sb))2]
(20)

where for brevity we have made the substitution Ik(s)-
Ik−1(s+v(q))=d(s; v(q)), q=st or sb. Equation (20) gives the
best OBMC weights wb

(̃
s
)
’s for a specific choice of sb.

2) Find the Optimal sb that Yields the Global Minimum:
Substituting (20) into (19) establishes (21) , shown at the
bottom of the page which provides a means to find the optimal
sb (denoted hereafter by s∗

b) that yields the global minimum.
Now we evaluate the various expectations, such as

E
[
d(s; v(st))

2
]
, E

[
d(s; v(sb))2

]
and E[d(s; v(st)) d(s; v(sb))],

involved in (21). To this end, the signal models in §II-A are
applied. The results of E

[
d(s; v(st))

2
]

and E
[
d(s; v(sb))2

]
are

immediate from (4) or (5), but it takes some work to compute
E

[
d(s; v(st))d(s; v(sb))

]
as

E[d(s; v(st))d(s; v(sb))]

= 4σ2
I σ2

m

K

(
1−ρ||s-st ||1

m +1−ρ||s-sb||1
m −1+ρ||st−sb||1

m

) (22)

with Tao’s model, and as

E[d(s; v(st))d(s; v(sb))]=
1

2
ε(̂r2(s, st)+r̂2(s, sb)−r̂2(st , sb))

(23)
with Zhang’s model. Using these results in (21) yields an
expression that allows us to find s∗

b numerically.
As an example, Fig. 5 plots the sum of prediction error

variances over the target block B as a function of sb (in
quarter-pel precision), with the origin (0, 0) located directly at
the top-left pixel of B. We see that the sum becomes smaller
when sb sits in the bottom-right quarter. This is not surprising
because, as was noted before, the template MV is less efficient
for motion compensating pixels in the bottom-right area. It
is natural to expect the block MV to be so sampled as to
compensate for its inefficiency. The fact that s∗

b is not at
the block center (see Table II for the numerical results of
s∗
b’s computed according to the st’s given in the same Table)

also proves the suboptimality of estimating {vb,i}i∈I by simply
minimizing the conventional block matching error.

Once we know the optimal location for sb, the correspond-
ing window function wb (̃s) (and hence wt (̃s)=1 − wb (̃s)) is
immediately obvious by (20). Shown in Fig. 6(a) and (b) are
the results computed using different models. Both suggest that
the template MV should exert a greater influence on pixels
in the top-left quarter, while the block MV should affect
more heavily the others, particularly those in the bottom-right
quarter. In some sense, this is equivalent to performing a
geometry-like motion partitioning [12]. From Fig. 6(c), the
same observation also holds for the LS solution, obtained

minimize
sb

∑
s∈B

(
E

[
d(s; v(st))

2
]− (E[d(s; v(st))(d(s; v(st))−d(s; v(sb)))])2

E[(d(s; v(st))−d(s; v(sb))2]

)
(21)
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TABLE II

Sampling Locations of st and s∗
b

Wt = 4 Wt = 8
Wb Hb Tao’s st Zheng’s st Tao’s st Zheng’s st

16 16 (−1, −1) (2, 2) (−2, −2) (0.25, 0.25)
32 32 (−1, −1) (6, 6) (−2, −2) (4.25, 4.25)
16 32 (−2, 4) (0.5, 8.5) (−3, 0) (−1, 7)
32 64 (−2, 9) (3.25, 19.25) (−2, −1) (1.75, 17.75)
Wb Hb Tao’s s∗

b Zheng’s s∗
b Tao’s s∗

b Zheng’s s∗
b

16 16 (10, 10) (9.5, 9.5) (10, 10) (9, 9)
32 32 (19, 19) (20, 20) (19, 19) (19.5, 19.5)
16 32 (9, 22) (8.5, 22) (9, 21) (8.5, 21.5)
32 64 (18, 42) (17.5, 45.5) (17, 40) (17.5, 45)

Fig. 5. Error surfaces showing how the sum of prediction error variances
over the target block varies with sb. (a) Tao’s model. (b) Zheng’s model.

by carrying out the procedure in §III-C on the Class B
source video sequences (see §IV) and applying uniformly the
proposed scheme to every fixed-size prediction block.

In reality, knowing the location of s∗
b is of limited value since

its true motion can be difficult to acquire. According to (20),
there however exists a one-to-one correspondence between
the location of sb and the resulting window function wb

(̃
s
)
,

assuming that st is given (as is the case currently). In other
words, if we have the optimal window function (denoted by
w∗

b

(̃
s
)
) computed based on s∗

b, we can find as follows a MV
that approximates its true motion:

v∗
b,i= arg minvb,i

∑
s∈Bi

(Ik(s)−(1−w∗
b (̃s))Ik−1(s+vt,i)

−w∗
b (̃s)Ik−1(s+vb,i))2.

(24)

∀i ∈ I. Recall that the expected value of the sum above is
minimized when vt,i is assumed implicitly to be equal to v(st)
and vb,i is set equal to v(s∗

b). Here we consider v∗
b,i only an

approximation of v(s∗
b) mainly because the expected value is

now replaced by its instantaneous value.
We conclude this section with an interesting numerical

accident obtained by fixing wb (̃s)’s in (19) at 1/2. Clearly, these
OBMC weights are not optimal, but the resulting sb is found
in most cases either identical or very close to its theoretical
values. This implies that in (24), if we let w∗

b

(̃
s
)
=1/2, the

resulting block MVs would approximate their optimal values,
which corroborates an earlier finding that our iterative LS
algorithm often shows very fast convergence when it is started
with the initial value of wb

(̃
s
)
=1/2 [see (15)].

E. Analyses of the LS and LMS Solutions

In this section, we will examine in greater detail the window
functions, wb

(̃
s
)

and wt

(̃
s
)
, of the LS and LMS solutions.

1) Window Function Comparison: Fig. 7(a) displays the
cross sections of wt

(̃
s
)
’s in Fig. 6 along the diagonal (running

from the upper left to the lower right), in order to gain a better
appreciation of their differences. As shown, the wt

(̃
s
)

of the
LS solution, although showing a similar trend, differs from
those of the LMS solutions in several aspects. For instance, it
is seen to be smaller in magnitude at low Didx values (which
correspond to the top-left area of the target block), while
appearing to be larger elsewhere. This implies that, on one
hand, the template MV is not as reliable for compensating
pixels in the upper left area as predicted by the theoretical
results, and on the other hand, its effect on distant pixels
is not negligible. Another observation is that the wt

(̃
s
)
’s

of both LMS solutions have a minimum equal to zero and
occurring roughly at Didx=19 and 22, respectively–i.e., where
their respective s∗

b’s are located–whereas the minimum of the
LS scheme is nonzero and is achieved at a larger Didx value.
Recall that wt

(̃
s
)

indicates the likelihood of vt being the
ture motion of a pixel at s relative to the other hypothesis
vb. Intuitively, we would expect wt

(̃
s
)

to drop to zero (or,
equivalently, wb

(̃
s
)

to increase to unity) at s∗
b, provided that

the approximation of vb as v(s∗
b) and vt as v(st) is exact, which

has been the basis for our derivation of the LMS solutions.
However, the obvious mismatch between the LS and LMS
results has proved this only a mathematical idealization.

To alleviate the mismatch, the modeling of vt and vb needs
to be amended. One way of doing so is to model them
probabilistically as the true motion associated with pixels
around st and sb, respectively. We let vt = v(st +



n t) and

vb = v(sb+


nb),



n t and



nb being two zero-mean random vectors

utilized to reflect the uncertainty nature of their sampling
locations.5 Such approach was justified in our prior work [5],
where we showed, using Zheng’s model [24], that

E[d(s; v(st+


n t))

2] ≈ E[d(s; v(st))
2]+εδt=ε̂r2(s, st)+εδt

E[d(s; v(sb+


nb))2] ≈ E[d(s; v(sb))2]+εδb=ε̂r2(s, sb)+εδb.

E[d(s; v(st+


n t))d(s; v(sb+



nb))]=E[d(s; v(st))d(s; v(sb))].

(25)

The δt (respectively, δb) denotes the trace of the covariance
matrix of



n t (respectively,



nb), indicating the dispersion of

vt’s (respectively, vb’s) sampling location around its mean
st (respectively, sb). From (25), this uncertainty causes the
mean-squared prediction error to increase [see (5)], but does
not influence the cross term E[d(s; v(st+



n t))d(s; v(sb+



nb))].

Substituting these results into (20) and (21) arrives at another
set of s∗

b, w∗
b

(̃
s
)

and w∗
t

(̃
s
)
, which compares well with the LS

result, as shown in Fig. 7(b). Repeating the same computation
with Tao’s model [19] results in a similar effect (see the black
curve with dots in the same plot).6

5Here the locations of st and sb are deterministic.
6The evaluation of E[d(s; v(st +



n t))2] and E[d(s; v(st +



nb))2] using Tao’s

model becomes cumbersome, since it requires assuming the distributions of


n t and



nb. We thus settle for a computation expedient that uses the analogy

between Tao’s and Zheng’s models to similarly add an offset term to each of
E
[
d(s; v(st))

2
]

and E
[
d(s; v(sb))2

]
as estimates for E[d(s; v(st +



n t))2] and

E[d(s; v(sb+


nb))2], respectively.
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Fig. 6. Comparison of window functions wt (̃s) computed based on (a) Tao’s model, (b) Zheng’s model, and (c) the LS solution. The target block is of size
32x32, along with an inverse-L-shaped template region of width 4. The LS solution is optimized for the Class B test sequences [2].

Fig. 7. Cross sections of wt

(̃
s
)
’s in Fig. 6 along the main diagonal running from the upper-left to the lower-right. Results in (a) and (b) correspond

respectively to the cases without and with the amendment of vt and vb’s modeling produced by Tao’s (ρm = 0.95, δt = 0.18, δb = 0.06) and Zheng’s
(τ = 22.6, δt = 405, δb = 127) models, respectively. Results in (c) effects of quantization and multiple reference frames. In the example, the reference frames
are composed of one future frame and one past frame.

In order to apply the amended models above, we need to
determine the parameters δt and δb. Obtaining their exact val-
ues, however, turns out to be difficult as it requires knowledge
of the true motion field. For this, they are selected empirically
by fitting the model predictions to the empirical results.

2) Effects of Quantization and Multiple Reference Frames:
Up to here, our theoretical derivations (and experimental
results) have been based on the assumptions that 1) both the
predictors Ik−1 (s+vt) and Ik−1 (s+vb) come from the same
single reference frame and that 2) motion estimation for vt

and vb relies on original source frames. These assumptions
are mainly for mathematical tractability. There, however, is no
difficulty for our scheme to accommodate multiple reference
frames and lossy compression. In the same way as before, the
encoder first estimates vt through template matching and then
optimizes the choice of vb according to vt’s values, except
that the best match for a template region or a target block
now has to be searched in multiple reference frames, which
may have distortion due to residual quantization. The pixel-
adaptive OBMC weighting still applies regardless of what
reference frames vt and vb may refer to. A rigorous analysis
for this more general case becomes difficult as it calls for
the cross-correlation function between two motion fields and
that between two intensity fields. We thus rely on simulations
to verify whether our previous results can carry over to the
present context.

Fig. 7(c) presents the wt

(̃
s
)
’s (of the LS solution) corre-

sponding to a separate or a joint application of quantization
and multiple reference frames. At first glance, they all have a
similar waveform as before. A closer look at the figure indi-
cates that using coded frames as references causes wt

(̃
s
)

to
taper more along the diagonal, while allowing multiple refer-
ence frames exerts an opposite effect. The former is attributed

to the increased noise level in both the reference frame and the
template region of a current frame, which makes the estimation
of vt less accurate. The latter arises because the predictor
quality improves and the improvement is more prominent
when the predictor is determined via template matching.
Unlike the case with explicit MV coding, there is no need
to trade off between predictor quality and motion overhead.

To conclude, this experiment shows that our theoretical pre-
dictions still remain valid (to a large extent) when there is more
than one reference frame involved and when these reference
frames undergo some distortion due to lossy compression.

F. Prediction Performance Comparison

This section compares the prediction performance of the
LS and LMS solutions based on encoding the Class B test
sequences [2]. Shown in Table III are their reductions (in
percentage) in mean-squared prediction error relative to uni-
predicted BMC, which has been chosen as the baseline to
emphasize the gain due to the additional use of the tem-
plate MV, vt . In particular, three heuristic variants of the
proposed scheme (referred hereafter to as the TB-mode for
convenience), demonstrating the effects when vb is estimated
independently or dependently of vt and/or when a simple
averaging of predictors is used in place of OBMC, are tested
(see Section �2 of the table). Results are given for various
combinations of block size (16, 32, 64) and QP (22, 37),
with one or two reference frames. For a fair comparison of
different algorithms, the procedure introduced in §II-E has
been followed to ensure that the measurement of prediction
error is carried out with respect to the same target blocks and
that their reference frames are identical.

From Section �1 of the table, the superiority of our TB-
mode over uni-predicted BMC is observed, when the LS or
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TABLE III

Prediction Performance of TB-Modes and Bi-Prediction Relative to BMC

Number of Reference Frames = 1 Number of Reference Frames = 2

QP22 QP37 QP22 QP37
Sec Mode Weighting ME Opt. 16 32 64 16 32 64 16 32 64 16 32 64

TB LS o 10.4 11.0 12.1 4.5 4.6 5.9 17.0 22.3 27.5 4.1 6.5 11.6
TB LMS-Tao o 9.7 10.0 9.0 3.8 3.6 3.1 15.4 21.1 25.9 3.4 5.7 10.1

�1 TB LMS-Zheng o 6.0 6.3 7.4 1.6 1.1 2.0 10.4 13.7 17.6 0.9 2.1 5.9
TB LMS-Tao-Rev o 10.1 10.7 10.4 4.3 4.2 4.6 16.8 22.0 26.8 4.0 6.3 11.1
TB LMS-Zheng-Rev o 9.8 10.6 11.5 4.3 4.3 5.5 16.3 21.4 26.7 3.9 6.1 11.1
TB 1/2 −14.1 −9.6 −5.6 −9.5 −8.3 −7.1 −10.1 −3.9 2.3 −9.3 −6.8 −3.5

�2 TB LS 4.1 5.8 6.9 1.3 2.2 2.8 7.1 10.8 14.0 1.3 3.1 5.9
TB 1/2 o 2.6 2.7 3.5 0.0 −1.1 −0.9 10.6 15.7 21.3 0.1 1.6 6.5

�3 Bi 1/2 o 15.2 12.8 11.6 7.9 6.6 6.7 25.1 30.2 35.4 8.4 11.0 17.8

o—vb is optimized based on vt , or in the case of bi-prediction, the second MV is optimized according to the first MV found. In the case of single
reference frame, both reference blocks of vt and vb come from the same reference frame. Negative values mean an increase in mean-squared prediction
error.

LMS solutions are used. As might be predicted from Fig. 7(a),
Tao’s model [19] works better than Zheng’s model [24], and
those involving the amended modeling of vt and vb (indicated
by the "-Rev" suffix) perform much closer to the LS solution.

Performance loss, however, may occur if we simply average
the predictors derived from the independently found vt and
vb to form a bi-prediction (see TB, 1/2, w/o ME Opt. in
Section �2). In this case, further optimizing vb based on vt (TB,
1/2, w/ ME Opt.) or simply applying OBMC (TB, LS, w/o
ME Opt.) helps to improve the performance, but is far from
being ideal. Essentially, for the best prediction to be achieved,
both the OBMC weights wb

(̃
s
)
’s and vb must be set right

simultaneously. This is evident from the better performance
of the LS and LMS solutions as compared to those heuristic
variants.

In Table III, another comparison of interest is that between
the TB-mode (of the LS version) and the traditional bi-
prediction. The latter (Section �3 of the table) is found to out-
perform the former in almost every case, which is intuitively
sound considering that two explicit MVs are used. There,
however, are also situations where this increased overhead
for MVs may not be justified. For instance, with one single
reference frame, the TB-mode can perform very close to
the bi-prediction. A similar phenomenon occurred in a side
experiment that allows multiple decoded frames in the past to
be referenced.

To summarize, the TB-mode can offer a superior prediction
performance to uni-predicted BMC at almost the same motion
cost, but its merit over the bi-prediction seems less obvious.
Although, generally, it performs worse than the bi-prediction,
the motion overhead incurred is also less. To see how this
trade-off impacts the performance of a real codec, we will
present simulation results based on the HM-6.0 software [2].

IV. Experimental Results

This section reports experimental results on the performance
of various TB-modes and their extensions to 1) adaptive
template design, 2) multi-hypothesis prediction and 3) motion
merging [23], when implemented with the HM-6.0 software
[2]. To switch them on and off adaptively, one flag is sent
for each non-skipped, 2N × 2N Prediction Unit (PU) [3].
Further implementation details include: a) the search range

for TMP is ±4 pixels, with the central point given by the MV
predictor and Wt=4; b) the OBMC weights for the LS solution
are computed off-line based on several training sequences,
while the model parameters of the LMS solutions are chosen
empirically;7 c) the OBMC weights are stored in tables at
the encoder and decoder and thus need not be signaled; d)
In the interest of space, the LMS results presented here are
all without the amendment of MV modeling because the
amended versions perform nearly the same as the LS solution.

Experiments were conducted following the common test
conditions [2] defined for the development of HEVC [3].
This means, for each scheme tested, an encoding of 18 test
sequences (which are grouped into five classes, Class A to E,
with video resolution ranging from 416×240 to 2560×1600)
at 4 QP values (22, 27, 32, and 37) for the 4 encoder
configurations—Random Access High Efficiency (RA-HE10),
Random Access Main (RA-Main), Low-Delay B High Effi-
ciency (LB-HE10), and Low-Delay B Main (LB-Main). The
coding gain over the HM-6.0 anchor was measured by the BD-
rate saving. Note that negative values mean a rate reduction.

During the experiments, the encoding and decoding time
increases relative to the anchor were also recorded to provide
a rough indication of how the tested schemes may affect the
codec’s complexity. The decoding runtimes were measured se-
quentially on a single machine equipped with Intel Core i7-860
CPU, 16 GB RAM and Windows 7 64-bit, but to save time, the
encoding runtimes were collected, while multiple encodings
were executed simultaneously on a cluster of machines. Thus
the encoding times may be unreliable. Anyhow, excessive
interpretation of software runtimes should be avoided, as they
can depend highly on the implementation quality.

A. Coding Performance

Table IV shows the coding performance of these schemes.
Their results parallel the trend we observe from their pre-
diction performance. As expected, those simple heuristics
(Section �2 of the table) perform worse than the LS and LMS
solutions (Section �1). In this circumstance, incorporating
OBMC (TB, LS) seems more beneficial than optimizing the
block MV (TB, 1/2, ME opt.). But, neither approach comes

7For Tao’s model, ρm = 0.95; for Zheng’s model, the clipping threshold τ

is selected empirically to be (2N)2 /2 with 2N denoting the PU size.
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TABLE IV

BD-Rate and Runtime Comparisons of TB-Modes and TMP

Sec Mode Weighting ME Opt. RA-HE10 RA-Main LB-HE10 LB-Main All Enc. Dec.
TB LS o −0.5 −0.6 −0.6 −0.7 −0.6 107% 112%

�1 TB LMS-Tao o −0.5 −0.6 −0.6 −0.7 −0.6 107% 112%
TB LMS-Zheng o −0.4 −0.5 −0.8 −0.8 −0.6 107% 110%
TB 1/2 −0.1 −0.1 0.0 0.0 0.0 103% 107%

�2 TB LS −0.2 −0.3 −0.2 −0.3 −0.3 103% 108%
TB 1/2 o −0.2 −0.2 −0.1 −0.1 −0.2 106% 112%

�3 TMP 1/2 o 0.0 0.0 −0.1 0.0 0.0 103% 112%

o—vb is optimized based on vt , or in the case of TMP, the second vt is optimized according to the first vt found.

TABLE V

BD-Rate and Runtime Comparisons of TB-Modes with Fixed or Variable Template Pattern

(a) Fixed Template Pattern (Inverse-L) (b) Variable Template Pattern
RA-HE10 RA-Main LB-HE10 LB-Main All RA-HE10 RA-Main LB-HE10 LB-Main All

Class A −0.3 −0.4 – – −0.7 −0.9 – –
Class B −0.3 −0.4 −0.5 −0.5 −0.7 −0.9 −0.9 −1.0
Class C −0.6 −0.7 −0.8 −0.8 −1.2 −1.5 −1.5 −1.6
Class D −0.6 −0.7 −0.8 −0.8 −1.2 −1.4 −1.7 −1.7
Class E – – −0.5 −0.7 – - −1.1 −1.2
Avg. −0.5 −0.6 −0.6 −0.7 −0.6 −0.9 −1.1 −1.3 −1.4 −1.2
Enc. 106% 108% 107% 108% 107% 119% 121% 120% 123% 121%
Dec. 107% 112% 111% 117% 112% 108% 114% 114% 119% 113%

Results shown are with Tao’s model and 2 hypotheses.

close to the LS and LMS schemes, which deliver, on average,
an identical BD-rate saving of 0.6%. Without intra refresh, the
gain is more noticeable in LB-Main, with the highest occurring
in Class E (1.3%, on average) and achieved with Zheng’s
model. The latter arises because the associated window func-
tion happens to weight more heavily the template predictor
[see Fig. 7(a)], while the high spatial and motion correlations
inherent in the Class E sequences make the template MV more
reliable for motion compensation. Surprisingly, performing
TMP (TMP, 1/2, ME opt.) does not seem to provide any gain
(see Section �3). This may be because of the poor prediction
performance and the fact that its benefit in reducing motion
cost diminishes as the MV coding becomes more efficient in
the current HM. Another cause is the way it is implemented.
For a fair comparison, TMP is currently made selectable only
for nonskipped, 2N ×2N PUs, just like the TB-mode, and the
number of hypotheses used is limited to two. Both are expected
to offer better performance when applied to the other PUs of
different sizes.

From the right most columns, all the TB schemes cause
about the same level of encoding and decoding time increases,
and so does TMP. Essentially, the amount and type of compu-
tation conducted are similar. Their impact on encoding time
(a 3–7% increase) is relatively modest, the reasons probably
being that the template matching has a small search range
and that the Enhanced Predictive Zonal Search algorithm has
been implemented for speeding up the estimation of both the
template and block MVs. But even so, the decoding time
increase (7–12%) is still considerable. This does not come
as a surprise, considering that template matching involves
more data access and computation than motion compensation,
which is one of the most computationally intensive parts in
the decoding process.

Fig. 8. Adaptive template switching.

B. Adaptive Template Switching

The coding performance of the TB-mode can improve if
we are willing to pay extra computational cost and signaling
overhead. For instance, to adapt to time-varying signal char-
acteristics, the encoder can be provided with the flexibility to
switch between different template designs (as shown in Fig. 8)
at the 2N×2N-PU level. Of course, the choice of the template
needs to be coded in the bit-stream, and the block MV and
OBMC weights must be optimized according to the procedure
described in §III.

From Table V, this adaptive template switching further
improves the rate saving by 0.4–0.7%, adding up to an average
BD-rate saving of 1.2%, while elevating the encoding and
decoding time ratios to 121% and 113%, respectively. The
encoding time increases significantly due to the additional
computation necessary for mode decision; the decoding time,
on the other hand, has not changed much since the decoding
process remains mostly the same as before. It, however, should
be noted that extra tables may be needed at both the encoder
and decoder for storing more OBMC weights.8

C. Multihypothesis Extension

So far, all the experimental results have been generated by
limiting the predictor (hypothesis) number to two. We now

8With the LMS solutions, it is possible to compute OBMC weights on the
fly, in which case tables are needless.
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TABLE VI

BD-Rate and Runtime Comparisons of TB-Modes with Multi-hypothesis Prediction

(a) 2 Hypotheses (1 vt + 1 vb) (b) 3 Hypotheses (1 vt + 2vb’s)
RA-HE10 RA-Main LB-HE10 LB-Main All RA-HE10 RA-Main LB-HE10 LB-Main All

Class A −0.7 −0.9 – – −1.1 −1.6 – –
Class B −0.7 −0.9 −0.9 −1.0 −1.1 −1.4 −1.4 −1.6
Class C −1.2 −1.5 −1.5 −1.6 −1.5 −1.7 −1.8 −1.9
Class D −1.2 −1.4 −1.7 −1.7 −1.5 −1.6 −2.1 −2.0
Class E – – −1.1 −1.2 – – −1.4 −1.6
Avg. −0.9 −1.1 −1.3 −1.4 −1.2 −1.3 −1.5 −1.7 −1.8 −1.6
Enc. 119% 121% 120% 123% 121% 123% 126% 126% 129% 126%
Dec. 108% 114% 114% 119% 113% 112% 119% 119% 127% 119%

(c) 3 Hypotheses (2 vt’s + 1 vb) (d) 4 Hypotheses (2 vt’s + 2vb’s)
Class A −0.9 −1.3 – – −1.8 −2.5 – –
Class B −1.0 −1.2 −1.1 −1.2 −1.4 −1.7 −1.7 −2.0
Class C −1.5 −1.7 −1.7 −1.8 −1.8 −1.9 −2.1 −2.1
Class D −1.4 −1.6 −1.9 −1.9 −1.8 −1.7 −2.5 −2.2
Class E – – −1.2 −1.3 – – −1.5 −1.7
Avg. −1.2 −1.4 −1.5 −1.6 −1.4 −1.7 −2.0 −2.0 −2.0 −1.9
Enc. 115% 117% 127% 124% 121% 123% 126% 126% 128% 126%
Dec. 122% 132% 133% 145% 133% 127% 140% 139% 153% 139%

Results shown are with adaptive template switching.
TABLE VII

BD-Rate and Runtime Comparisons of TB-Modes with Motion Merging

(a) 2 Hypotheses (1 MRG vt + 1vb) (b) 3 Hypotheses (1 MRGvt + 2 vb’s)
RA-HE10 RA-Main LB-HE10 LB-Main All RA-HE10 RA-Main LB-HE10 LB-Main All

Class A −0.3 −0.5 – – −0.5 −0.6 – –
Class B −0.4 −1.5 −0.5 −0.7 −0.5 −0.7 −0.6 −0.9
Class C −0.7 −1.0 −0.9 −1.2 −0.9 −1.1 −1.1 −1.3
Class D −0.8 −1.0 −1.1 −1.4 −0.9 −1.1 −1.3 −1.5
Class E – – −1.0 −1.7 – – −1.1 −1.7
Avg. −0.5 −0.7 −0.8 −1.2 −0.8 −0.7 −0.9 −1.0 −1.3 −1.0
Enc. 117% 119% 118% 120% 118% 119% 121% 122% 124% 122%
Dec. 100% 101% 100% 101% 101% 99% 101% 100% 101% 100%

(c) 3 Hypotheses (2 MRG vt’s + 1 vb) (d) 4 Hypotheses (2 MRGvt’s + 2 vb’s)
Class A –0.4 −0.6 – – −0.7 −1.0 – –
Class B −0.4 −0.6 −0.6 −0.8 −0.7 −0.9 −0.8 −1.1
Class C −0.9 −1.1 −1.1 −1.3 −1.0 −1.3 −1.3 −1.6
Class D −0.9 −1.1 −1.3 −1.5 −1.1 −1.3 −1.5 −1.8
Class E – – −1.1 −1.7 – – −1.3 −1.9
Avg. −0.6 −0.8 −1.0 −1.3 −0.9 −0.9 −1.1 −1.2 −1.5 −1.2
Enc. 116% 118% 117% 120% 118% 119% 121% 122% 124% 121%
Dec. 100% 102% 101% 102% 101% 101% 103% 102% 103% 102%

Results shown are with OBMC weight values rounded into power-of-two numbers.

relax this condition to explore the performance trade-offs.
The extension to a hypothesis number greater than two is
straightforward. When there is more than one template, or
block, MV involved for motion compensation, their referred
prediction blocks are simply averaged before the result is
further weighted by OBMC. This avoids the need to create
more window functions. For motion estimation, a greedy
heuristic is implemented to estimate both the template and
block MVs in a successive manner; the search criterion is
to minimize the matching or prediction error when the MV
in question is applied jointly with all the preceding MVs for
template matching or temporal prediction. As an example, if
two block MVs, vb1 and vb2, were to be estimated based on one
template MV, vt , they would be searched sequentially using
the following criteria:

v∗
b1= arg min

vb1

∑
s∈B

(
Ik(s)−(1−w∗

b (̃s))Ik−1(s+vt)−w∗
b (̃s)Ik−1(s+vb1)

)2

v∗
b2= arg min

vb1

∑
s∈B(Ik(s)− (1−w∗

b (̃s)
)
Ik−1 (s+vt)

− 1
2 w∗

b (̃s)
(
Ik−1
(
s+v∗

b1

)
+Ik−1 (s+vb2)

)
)2.

Table VI compares the results of four experiments con-
ducted with TB-modes that vary in hypothesis number. The
legend to each experiment specifies the maximally allowed
numbers of vt’s and vb’s for a 2N × 2N PU coded in TB-
mode. For instance, Experiment (b) (1vt+2vb’s) means that the
encoder can choose adaptively the TB-mode with (1vt+1vb)
or (1vt+2vb’s). To save bits, the signaling of vb (or vb’s)
reuses the syntax for representing the motion parameters of
the ordinary inter prediction modes, while, in the present case,
to indicate the number of vt’s used, one additional flag may
be sent at the 2N × 2N PU level.

From the table, increasing the maximum hypothesis number
from 2 to 4 achieves an average BD-rate reduction of 1.9%,
with a minimum of 1.4% and a maximum of 2.5%. The price
paid, however, is a 39% increase in decoding time, which is
about 20% higher than the two-hypothesis case, (1vt+1vb).
Moreover, a doubling or more of memory access bandwidth
solely for motion compensation can be expected in the worst
case. As it stands, the setting (1vt+2vb’s) seems to offer
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a better compromise between performance and the codec’s
runtime, with a comparable encoding/decoding time increase
to (1vt+1vb), yet a moderate rate saving (1.6%, on average).
The same observation does not apply to the other 3-hypothesis
scheme, (2vt’s+1vb), which differs in using more vt’s. For
this reason, its decoding time increase is as considerable as
(2vt’s+2vb’s). Unlike the ordinary multihypothesis TMP [10],
[18], which simply keeps the best N results in search of vt ,
ours estimates vt’s in a dependent manner; hence, the more
the vt’s are used, the higher the codec’s runtime, especially
the decoder’s.

D. Generalization to Motion Merging

In the TB-mode, there is no difficulty for the template
MV vt to be inferred by other techniques. In this section,
we experiment with one particular generalization that borrows
the notion of Motion Merging [23] to reuse MV(s) from
a previously decoded neighboring PU as vt . When viewed
from our framework, it is similar to deriving vt from the
motion sample taken at the center of the referred PU, in which
case selecting adaptively from a range of candidate PUs is
assimilated to switching between different template designs.
Noting this analogy, we simply carry over the OBMC windows
in §IV-B to the present case, rather than re-computing them
according to the exact sampling location of vt , which is highly
variable. As an example, when vt is copied from the left PU, it
is considered to be a MV as if it was produced by performing
template matching with the configuration given in Fig. 8(b)
and the corresponding OBMC weights are put into use. In
doing so, the weight values are additionally rounded to power-
of-two numbers for further simplification [4].

Comparing the results in Table VII with those in Table VI,
we observe a 0.4–0.7% performance decline across different
experiments, along with a significant decrease in decoding
time. The former follows mainly from the fact that vt now
has a sampling location generally further away from the target
block when compared with the case where it is obtained
by template matching—a result that has also been noted in
§II-E—and the latter arises as a consequence of removing
template matching and rounding the weight values.

The above experiments demonstrate that the way how vt

is inferred in the TB-mode is capable of generalization. The
high encoding and decoding times resulting from TMP can
be resolved by using motion merging. Performance loss is
inevitable; it, however, can be mitigated without significantly
complicating the decoder [4].

V. Conclusion

In this paper, we proposed a biprediction scheme that
combines BMC and TMP predictors through OBMC. We first
examined TMP in the context of motion field sampling and
showed that the template MV may be viewed as the pixel true
motion around the template centroid. It was thus concluded
that in terms of prediction performance, TMP is inferior to
BMC, but is, in general, superior to SKIP prediction. We
then formulated, following a similar argument, the problem
of finding another MV to best complement the template MV

as the search of its sampling location in the motion field. This
formulation has the advantage of allowing the problem to be
solved analytically and leading to many useful insights into the
solution, which would otherwise be difficult to see. We found
that when sampled optimally, this MV, along with the template
MV, forms a geometry-like motion partitioning. The notion
of our scheme is capable of tremendous generalization. The
template pattern need not be fixed, the number of hypotheses
used can be more than two, and template matching can even
be replaced with other decoder-side MV inference techniques,
such as Motion Merging.

Our scheme had some drawbacks when it comes to
hardware implementation. For TMP to work properly, pixels
in the template region must be reconstructed prior to the
motion estimation and compensation of a current PU. This
data dependency complicated the pipeline design and hinders
parallel processing. It was also the main reason why we
restricted the use of TB-mode to 2N × 2N PUs only.
Although the problem can be alleviated further by using
motion merging for MV inference, the sequential manner in
which the template/merged and block MVs must be found is
another obstacle. These open issues need further investigation,
and we plan to address them in the future work.
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