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Generation of Two-Dimensional Optical Reference
Signals Based on Parametric Minimum Cross Entropy

Yi-Sheng Su, Tsung-Cheng Wu, Chung-Hsuan Wang, and Min-Kuan Chang

Abstract—In this letter, a novel design of two-dimensional (2-D)
zero reference codes (ZRCs) based on parametric minimum cross
entropy (PMCE) is proposed to generate 2-D optical zero reference
signals (ZRSs) with low second maximum for grating alignment
systems. An optical ZRS is necessary to obtain an absolute mea-
surement in grating alignment systems. A method to acquire an op-
tical ZRS is by means of illuminating two identical superimposed
ZRCs. Because the movement between the two ZRCs is in two-axis,
2-D ZRCs are required. However, they are hard to design due to
the high computational complexity, especially for large codes. The
proposed PMCE method not only reduces the second maximum
of 2-D optical ZRSs, but also decreases the computational com-
plexity. Simulation results indicate that there are 8.33%~22.22%
reductions in the second maximum of several 2-D optical ZRSs, as
compared with those of the recently proposed cross-entropy (CE)
method. The PMCE method proves to be a powerful tool for the
design of 2-D ZRCs.

Index Terms—Autocorrelation function, combinatorial opti-
mization, optical position measurement, optimization method,
parametric minimum cross entropy (PMCE), two-dimensional
(2-D) optical zero reference signal (ZRS), two-dimensional (2-D)
zero reference code (ZRC).

I. INTRODUCTION

N precision engineering and microtechnology, there is

an increasing demand for achieving absolute position,
an origin of a coordinate, or a machine home position. To
meet the demand, grating alignment systems are widely used.
An important component of grating alignment systems is the
optical zero reference signal (ZRS). The optical ZRSs are
normally obtained by illuminating two identical superimposed
zero reference codes (ZRCs). As one ZRC moves with respect
to the other, the two codes overlap and the optical ZRS is the
autocorrelation of the ZRC transmittance. Because the move-
ment is in two-axis, two-dimensional (2-D) ZRCs are required.
Based on the properties of autocorrelation, the design of good
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Fig. 1. System for generating 2-D optical ZRSs. Note that it is black outside
the 2-D ZRCs.

2-D ZRCs can be modeled as an optimization problem of
minimizing the second maximum of the autocorrelation. This
problem is related to combinatorial optimization, for which
exhaustive search is not feasible due to the high computational
complexity.

In recent years, several results have been reported for the de-
sign of good 2-D ZRCs [1]-[4]. In [1], a2-D ZRC with 16 x 16
elements was presented. In [2], besides calculating a theoret-
ical lower bound (LB) for the second maximum, Sadez—Landete
et al. proposed a systematic design method for 2-D ZRCs based
on the DIRECT search algorithm. The algorithm obtains the op-
timal solutions only for codes with up to 10 x 10 elements. To
cope with the limitations of [2], a genetic algorithm (GA) with a
restricted search operator was proposed in [3]. In [4], motivated
by the success of the cross-entropy (CE) method in solving com-
plicated, large-scale combinatorial optimization problems, the
CE method was proposed to improve upon the design of [3].

In this letter, we propose a novel method to design 2-D ZRCs
based on parametric minimum cross entropy (PMCE). The pro-
posed method can search for good 2-D ZRCs used for gener-
ation of 2-D optical ZRSs. Simulation results show that this
method reduces the second maximum of 2-D optical ZRSs more
than the existing schemes, while requiring less computational
complexity.

II. PROBLEM FORMULATION

The studied system for generating 2-D optical ZRSs is shown
in Fig. 1. The system consists of two opposite identical 2-D
ZRCs, at least one of which is set in an 2y movable stage. The
2-D ZRC is a group of unequally spaced transparent and opaque
pixels. To acquire a 2-D optical ZRS, a parallel ray beam prop-
agates through both codes in the perpendicular direction. The
optical output signal (to be registered by means of a photode-
tector) is the 2-D optical ZRS and is the correlation between the
two 2-D ZRCs, which is a function of the relative displacements
along the z and y directions of the 2-D ZRC. In this letter, as
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assumed in [2]-[4], we do not consider other imperfect factors
such as diffraction.!
In general, a 2-D ZRC with » x n elements can be described

by a square matrix C of binary data, C = [¢;j]1<i<nii<j<n,
cij € {0,1}, with the constraint >, ZJ 1 Cij = n1, where
n1 is the number of transparent pixels, ¢;; = 1 if a trans-

parent pixel is located at the (¢, j) position, and ¢;; = 0 else-
where. The design of a good 2-D ZRC C generally depends
on the properties of autocorrelation signal, which is defined as
su(C) = 20, an CijCivkjtl, —m+1 < kil <n-—1,
where %k and [ are the relative displacement units in the  and y
directions, respectively. Clearly, soo(C) = 37—, D7 ¢
Yy o1 Gij = M is the signal obtained when the relative
displacement between 2-D ZRCs is zero, and is the maximum
value of the autocorrelation signal among all combinations of
k and [. On the other hand, the second maximum of the auto-
correlation signal is 0(C) = maxg2 ;2 20{s1(C)}. Ideally, a
good 2-D optical ZRS must be a single and well-distinct peak.
Accordingly, we can use the ratio 7 between the first and second
maxima, 7 = $go(C)/o(C) = n1/0(C), to characterize ZRSs.
The higher the value of 1), the better the ZRS.

Typically, the diameter of the light beam propagating through
both codes limits the number of pixels in a 2-D ZRC, while the
sensitivity of the photodetection optoelectronics determines the
minimum value for the first maximum of the signal. Therefore,
in accord with these working requirements, we have n and n4
predetermined. It turns out that, in order to generate 2-D optical
ZRSs with higher 1, we have to minimize the second maximum
of the autocorrelation signal. Thus, the problem of designing
good 2-D optical ZRSs is stated as follows:

minimize o(C) = max {5“(C)}7
K2 4122
subject to Ce {0, 1}n><n7
$00(C) = nq. (1)

III. DESIGN METHODOLOGY

In this section, the PMCE method, which was first proposed
by Rubinstein and Dolgin [6] for solving rare event probability
estimation and counting problems, is used to design 2-D ZRCs.
It is a parametric method for solving the well known Kullback
Minimum Cross-Entropy problem. Similar to CE method, the
PMCE algorithm first associates the original deterministic opti-
mization problem with a relevant rare-event probability estima-
tion, and then, in order to estimate efficiently the desired quan-
tity, it finds the optimal parameters of the importance sampling
distribution. For a more thorough discussion of PMCE method,
the reader is referred to [6].

As mentioned, in order to solve (1) by using PMCE, we first
randomize (1) into an associate rare-event probability estima-
tion. To this end, the (¢, j) element of C is modeled as an in-
dependent Bernoulli random variable with the probability mass

IThe diffraction effect may become non-negligible as the number of pixels in
a 2-D ZRC increases. This is because an increase in the number of pixels will
make pixels shrink into a smaller size, in which case the pixel size is no longer
large compared to the gap between codes and the wavelength of the illuminating
light [5]. The focus of our work is to introduce an efficient PMCE method to
minimize the second maximum of 2-D optical ZRS under the same scenario as
previous work. The design to include diffraction goes beyond the scope of this
work.
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function PI’{C.,jj = 1} = Pij» PI‘{C,,jj = 0} =1- Pijs 1 S
i,7 < n. Then the probability distribution of C is f(C,P) =
[T [T 0 (1 = pig)t =9, where P = [pilicicnaci<n.
We then associate (1) with the problem of estimating the proba-
bility Pr{c(C) < ~} for a given second maximum threshold .

The basic idea of PMCE algorithm is to iteratively generate
the sequences v' and P* (¢ denotes the iteration index), which
converge, respectively, to the optimal v* and P* in the sense of
minimum cross entropy. The optimal C* can then be obtained
from P* by f(C,P*). Next, we elaborate the step-by-step pro-
cedure of the proposed PMCE algorithm as follows:

1) Set £ = 1 and initialize the probability matrix P’ =

Phlicicniacj<n Withply = 1/2.

2) Randomly generate M samples CY,...,CY, from
f(Cc,pi—hy,
3) Compute second maxima o (C?,) form = 1,..., M and

sort them in an increasing order so that o [ C? ) < <

U(C(’M)) Sety! = (1/[pM]) 1711 & ( (m )> where

p € (0,1) and [-] is the ceiling function.
4) Evaluate P = [p;]i<i<ni1<j<n With

M
Z I]{c*;" 7,.:1} CXp ( (Cfn) )‘f)
t _ m=1 o
. exp (=0 (C)AY)
m=1
where [ e 1 is the indicator of the event that the (4, 7)

element of Ct , denoted by ¢/, ;. is equal to 1 and the
parameter A* can be obtained from the solution of the fol-
lowing equation

M
> o(C) exp (—a(Cp)A)
"Yt — m=1 — (3)
>, exp(=a(CL,)A)

m=1

5) Update P* smoothly via P* = aP! + (1 — a)P*~! where
« € (0,1) is called a smoothing parameter.

6) Output the optimal C* if the predefined number of itera-
tions is reached. Otherwise, increase ¢ by 1 and return to
Step 2.

Remarks

1) In Step 2, we may need to randomly add/remove the neces-
sary 1’s to/from the generated samples in order to meet the con-
straint on the number of transparent pixels in (1). 2) In Step 4,
the entire sample size is used, which is in contrast to CE method,
where only the “elite” sample is used. Moreover, we note that
(2) is similar to the standard CE heuristic [4, formula (9)] with
only one difference: the indicator function H{U(Ct )<t} in the
CE update formula is replaced here by exp (—o(Cf, )Af). 3) In
Step 5, P? is updated in a smoothed procedure in order to pre-
vent a fast convergence to a local optimum.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, some simulated performance of the proposed
PMCE algorithm is presented and compared with that of several
other methods [1]-[4]. In the PMCE algorithm, the total number
of samples is M = 100, p = 0.1, & = 0.7, and the algorithm
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TABLE 1
COMPARISON OF SECOND MAXIMA ¢ OBTAINED BY DIFFERENT METHODS AND
THE CORRESPONDING RATIO 13 BETWEEN THE FIRST AND SECOND MAXIMA
SHOWN IN PARENTHESIS. DATA IS REPRESENTED IN THE FORM OF & (7). A
DASH MEANS THAT THE CORRESPONDING DATA 1S NOT AVAILABLE

System || LB[2] [ Chen[l] | GA[3] | CE[4] | PMCE
1 777 823) | 16 (4.00) | 13 492) | 11 (582) | 10 (640)
2 4.46 (67.26) — 14 2142) | 12 (25.00) | 11 (2727)
3 477 (20.96) — - 9 (1L.11) | 7 (14.29)
4 7.90 (2532) — - 15 (13.33) | 13 (15.38)
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Fig. 2. 2-D ZRCs: (a) System 1; (b) System 2; (¢) System 3; (d) System 4.

TABLE 11
COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN CE AND PMCE
METHODS FOR SEARCHING A 2-D ZRC WITH A GIVEN SECOND MAXIMUM
THRESHOLD. HERE, AVERAGE TIME = AVERAGE TIME PER ITERATION X
AVERAGE NUMBER OF ITERATIONS

|| Avg. Time/lter. (s) ]| Avg. No.Iter. [ Avg. Time (s)
Sysem ]| CE | PMCE || CE [ PMCE ]| CE [ PMCE
1 0.0092 0.0115 154.76 52.73 1.42 0.61
2 4.1809 4.3391 70.33 40.35 294.04 | 175.08
3 0.0822 0.0921 137.43 51.65 11.30 4.76
4 0.3714 0.3902 140.12 62.21 52.04 24.27

is stopped when the iteration number exceeds 500. For compar-
ison with [4], four grating alignment systems with different 2-D
ZRCs are considered: System 1 (n = 16, n1 = 64), System
2 (n = 100, ny = 300), System 3 (n = 32, n; = 100), and
System 4 (n. = 50, n; = 200).2

Table I shows the second maxima o obtained by different
methods and the corresponding ratio # between the first and
second maxima. As seen from Table I, the proposed PMCE
method has the smallest second maximum, hence, the largest
ratio between the first and second maxima, indicating that the

2Another reason for choosing to generate known 2-D ZRCs is explained as
follows: First, recall that 12, determines the first maximum of a 2-D ZRS. Then,
given fixed n and n;, one would desire a system employing a 2-D ZRS with
lower second maximum, as the robustness and sensitivity of a system depend
on the difference between the first and second maxima [3].
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PMCE method is superior to existing methods. More specif-
ically, we can observe that there are 9.09%, 8.33%, 22.22%,
and 13.33% reductions in the second maximum for System 1,
System 2, System 3, and System 4, respectively, as compared to
that of the CE method. The 2-D ZRCs obtained by the PMCE
method for the four systems are depicted in Fig. 2, where each
black square represents a transparent pixel. At the present time,
because random search cannot possibly yield a 2-D ZRC with
second maximum of 11 for System 2, our method would play
an important role in the design of good 2-D ZRCs for industrial
applications.?

Table II compares computational complexity between CE
and PMCE methods for searching a 2-D ZRC with a given
second maximum threshold. For each system under considera-
tion, the threshold is chosen as the second maximum obtained
by the CE method shown in Table I. The search was carried out
on an Intel Core 2 Duo CPU clocked at 3.0 GHz, with 4 GB
of physical memory. The results presented are mean values of
100 simulation runs. Table II reveals that, for all four systems,
the PMCE method has longer average time per iteration than
the CE method due both to using the entire sample size to
update (2) and to the need of solving (3). However, the average
(searching) time of the PMCE method is still lower than that
of the CE method. This is because the PMCE method requires
much fewer iterations compared to the CE method.

V. CONCLUSION

In this letter, we proposed a PMCE-based algorithm that was
used to minimize the second maximum of the autocorrelation
signal of 2-D ZRCs. Simulation results showed that our method
outperforms the existing methods, while requiring less com-
putational complexity. More specifically, it was observed that
there are 8.33%~22.22% reductions in the second maximum
of several 2-D optical ZRSs, as compared with those of the CE
method. The PMCE method has been demonstrated to be a suit-
able technique to the design of 2-D ZRCs.
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