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ABSTRACT   

In this paper, we demonstrate a non-contact magnetic/piezoelectric-based thermal energy harvester utilizing an optimized 
thermal-convection mechanism to enhance the heat transfer in the energy harvesting/converting process in order to 
increase the power output. The harvester consists of a CuBe spring, Gadolinium soft magnet, NdFeB hard magnets, 
frame, and piezoelectric PZT cantilever beams. According to the configuration, the energy harvesting/converting process 
under a temperature-difference is cyclic. Thus, the piezoelectric beams continuously oscillate and subsequently produce 
voltage responses due to the piezoelectric effect. The maximum voltage response of the harvester under a temperature-
difference of 25°C is 16.6 mV with a cycling frequency of 0.58 Hz. In addition, we compare the testing result of the 
harvester utilizing the new thermal-convection mechanism reported in this paper and using previous thermal-convection 
mechanism reported elsewhere. According to the comparison, the results show the harvester utilizing the new thermal-
convection mechanism has a higher cycling frequency resulting in a higher power output than the previous mechanism. 

 

Keywords: Energy Harvester, Power Generator, Piezoelectric, Magnetic, Thermomagnetic, Temperature, Thermal  
 
 

1. INTRODUCTION  
To date, wireless sensors network is comprehensively used in all kinds of environmental sensing and monitoring 
applications [1, 2]. The sensors are used in remote areas where the importance is given towards the use of energy source 
abundant in nature rather than using batter as the energy source [3]. Some potential energy sources are available and 
easily harnessed, such as vibrational energy, strain energy, fluidic energy, solar energy, thermal energy. Among these 
energy sources, the thermal energy source exists in everywhere. Therefore, harnessing the thermal energy becomes an 
important issue for the wireless sensors network. Recently, researchers utilize thermoelectric generators, one kind of the 
thermal energy harvesters, to harness the thermal energy to power the wireless sensors [4, 5]. Thermoelectric generators 
utilizing seebeck effect possesses a high potential for thermal-energy harvesting. However, in general, lots of 
thermoelectric generators have to be used together in order to have sufficient energy to power a wireless sensor of a 
wireless sensors network. Thus, utilizing the other energy sources together with the thermal energy source, if possible, 
would be the best energy solution for the wireless sensors network. More recently, researchers demonstrated novel 
thermomagneto-mechanical energy harvesters capable of converting a thermal energy to a mechanical energy [6-9]. 
Chung, et al, modified the thermomagneto-mechanical energy harvesters as a hybrid energy harvester demonstrating 
thermal, magnetic, and mechanical energy-harvesting approaches [10]. Therefore, Chung’s harvester is able to be a 
candidate as the best energy solution for the wireless sensors network. However, Chung’s harvester utilizes a non-
optimized thermal convection mechanism as the heat transfer mode for the energy harvesting process. Due to this, the 
harvester has a low and limited cycling frequency resulting in a low power output. Hence, to address this issue, we 
present a new thermal convection mechanism for the harvester in this paper.  
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Figure 2. (a) and (b) is the B-B and A-A cross-sectional view of the energy harvester in figure 1, respectively. Both (a) and 
(b) are the first step (i.e., initial state) in the thermal-energy harvesting process. (c) and (d) is the B-B and A-A cross-
sectional view of the energy harvester in figure 1, respectively. Both (c) and (d) are the second step (i.e., second state) in the 
thermal-energy harvesting process. 

 

3. FABRICATION   
According to the design, the energy harvester we fabricated is shown in figure 3. The harvester consists five parts: CuBe 
spring, NdFeB hard magnets, Gd soft magnet (Curie temperature is approximate 21˚C), PZT piezoelectric cantilever 
beams, and glass frames. The spring with a width and thickness of 2 mm and 100 μm is altered from a thin sheet CuBe. 
The Gd soft magnet with a length x width x height of 16 mm x 3.5 mm x 127 μm is altered from a thin Gd sheet. After 
the CuBe spring and Gd soft magnet are fabricated, the Gd soft magnet is bound on the CuBe spring. The PZT 
piezoelectric cantilever beam is altered from a strip of PZT-5H plate. After altered, the PZT cantilever beams are 
assembled with the CuBe spring and glass frame. Finally, the NdFeB magnet with a length x width x height of 12 mm x 
4 mm x 8 mm is fixed on the frame. After this, the energy harvest is fabricated.  

 

4. TESTING 
The magnetic moment of the Gd soft magnet at difference temperature is measured by Superconducting Quantum 
Interference Device (SQUID). Through analyzing the magnetic moment at different temperature, the Curie temperature 
of the Gd soft magnet is estimated. After the Curie temperature is estimated, the temperature difference we applied to the 
harvester to drive the energy harvesting process is defined.  

Figure 4(a) and 4(b) is an illustration of the testing for the energy harvester utilizing the vertical and horizontal 
configuration, respectively. Through the testing, the voltage response produced by the harvester under the temperature 
difference is obtained. As shown in figure 4(a) and 4(b), the heater and ice cube separated by a certain gap is used as the 
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6. CONCLUSION 
Under the same temperature-difference, we successfully demonstrated the energy harvester utilizing a vertical 
configuration has a better efficiency in the thermal convection than using the horizontal configuration. The better 
efficiency in the thermal convection produces a higher cyclic frequency of the piezoelectric beams resulting in a higher 
power output of the harvester. The maximum voltage response of the harvester under the temperature-difference of 25°C 
is 16.6 mV with a cycling frequency of 0.58 Hz. 
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