JOURNAL OF DIFFERENTIAL EQUATIONS 114, 57-76 (1994)

Positive Singular Solutions for Semilinear
Elliptic Equations with Supercritical Growth

SONG-SuN LIN*

Department of Applied Mathematics, National Chiao Tung University,
Hsin-Chu, Taiwan, Republic of China

Received January 13, 1992; revised July 29, 1992

1. INTRODUCTION

In this paper we are mainly interested in the existence of positive
singular solutions of semilinear elliptic equations on finite balls or R” when
the growth of the nonlinear function is supercritical in the sense of Sobolev
embedding theorems. Namely, we study the existence of positive singular
and radially symmetric solutions of the equation

Adu+ fu)=0 in 2 {0}, (1.1)
lim u(x)= oo, (1.2)
x—0

where Q=Bg={xeR":|x| <R} is a finite ball or Q=8_=R", n=3.
The nonlinear function fe C'(R') (or f is in general locally Lipschitz
continuous) satisfies the supercritical condition as u — co; that is, f satisfies
that following condition:

(H-1) Thereis a ¢ > (n+ 2)/(n—2) such that (¢ + 1) F(u) < uf(u) for
u= A, where F(u)zfgf(u)dv and A is a positive constant
with F(4)> 0.

Under the assumption that f satisfies the supercritical condition, we
have the following general existence result.

THEOREM 1.1.  Assume [ satisfies (H-1). Then (1.1) and (1.2) have a
positive singular solution on By for some Re (0, 20 ].
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Furthermore, if f satisfies a certain subcritical condition at =0, then
the singular solution obtained in Theorem 1.1 satisfies the zero boundary
condition,

u=0  on dQ, (1.3)

ie, u(R)=0 if R<oo or lim,_  u(r)=0 if u(r)>0 in (0, «c). More
precisely, we have the following result.

THEOREM 1.2. [n addition to (H-1), assume f satisfies

(H-2) f(u)>0 for u>0;

(H-3) (i) f(0)>0;

(i) f(u)=0and f'(0)>0;

(i) f(0)=f'(0)=0 and there is a pe (1, n/(n—2)] such that
Sf(u)= Cu” for ue (0, B), where B and C are positive constants.

Then the positive singular solution U of (1.1) and (1.2) obtained in
Theorem 1.1 satisfies U(R)=0 for some R < oc.

The existence problems of (1.1)-(1.3) have been studied by several
authors in the past. When f(0)=0 and the growth of f is subcritical, the
existence of positive singular solutions on finite balls has been shown by
P. Lions [21], Ni and Sack [26], and the author [20]; see Remark 2.9
below for details. On the other hand, if f is supercritical in (0, o0), ie.,
A=0in (H-1), Ni and Serrin [27] have shown that there is no positive
singular solution on a finite ball. Moreover, if f(«) <0 in (0, ¢), for some
£>0, then there is no singular solution on R” which satisfies (1.3).
Therefore, the singular solution obtained in Theorem 1.1 is positive in
(0, o) when 4 =0 in (H-1) and does not tend to zero when f(u)<0 in
(0, £). Recently, Pan [30] studied the critical case, f(u)=u”+u? g=
(n+2)/(n—2)>p>n/(n—2), and showed that there is a positive singular
solution for (1.1)—(1.3) on R". Furthermore, in [14], Johnson et al. studied
the positive solutions of Au+ K(|x|)u” =0, for p>(n+2)/(n—2), and
n=3. Using the invariant manifold theory of dynamical systems, they
proved the asymptotic behavior of ground states and the uniqueness of
singular ground states provided that K(]x|) satisfies some monotonicity
conditions.

To prove Theorem 1.1, we consider the initial value problems:

n—1

u'(r)+ w(r)+ flu(r))=0, r>0, (1.4)

.
u(0, a)=a>0, (1.5)
w'(0, 2)=0. (1.6)
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For a> B, let R(x, B) be the first r such that u(r,x)=B. By using
Pohozaev identity and some comparison arguments, we can show that the
supercritical condition (H-1) implies there are positive constants R, (B)
and R*(B) such that R, (B)< R(a, B)< R*(B) for any B> A and suf-
ficiently large «. From these estimates Theorems 1.1 and 1.2 can be proved.

The estimations of R(a, B) in the study of the existence of singular solu-
tions can also be applied to study the structure of sets of positive regular
solutions on finite balls. Consider the solution set of equations

Au+ Af(u)=0 in £, (1.7)
u=0 on 0%, (1.8)

where Q = B, is the unit ball and A>0 is a parameter. Note that by the
well-known symmetry theorem of Gidas et al. [13], positive solutions on
balls are necessarily radially symmetric. Tt is also easy to see that (u(-), 1)
is a positive radial solution of (1.7) and (1.8) if and only if u(-, 2) is a
positive solution of (1.4)-(1.6) with u(r)=u(ri'? o) and A= R*(x)< oo,
where R(x) is the first zero of u(-, «).

Equations (1.7) and (1.8) arise from many branches of mathematics and
applied mathematics. They have been studied by many authors, such
as Gelfand [12], Keller and Cohen [16], Amann [1], Crandall and
Rabinowitz [9], P. Lions [22], Brezis and Nirenberg [3], and Ni and
Serrin [27], to name just a few.

In the case where f(u)>0 in R’, u,=0 is a subsolution of (1.7) and
(1.8). A well-developed monotone iteration scheme can be applied to
obtain a solution; see [1, 16, 317]. Therefore, it is known that the existence
of positive solutions of (1.7) and (1.8) is equivalent to the existence of an
upper bound for iterative solutions that are generated by subsolution u,.
The positive solution obtained by the iterative procedure is a minimum.
Moreover, there exists a critical number A* < oo such that (1.7) and (1.8)
have a positive minimum solution for each A€ (0, A*) and no positive
solution if 4> A*. Note that 2* < oc if the growth of f(u) is linear or super-
linear, ie., if im,,_, . inf f(u)/u>0.

Apart from the study of positive minimum solutions, one of the main
problems of studying (1.7) and (1.8) is the existence of positive non-
minimum solutions for Ae (0, A*). Indeed, by using the Mountain Pass
Lemma, Crandall and Rabinowitz [9] proved that when the growth of f
is subcritical, there is at least one positive nonminimum solution for each
A€(0, A¥). However, there may fail to be a second positive solution when
the growth of f is supercritical. A well-known example, f(u)=e", can be
used to illuminate the dependence of the solution set on the topological
and geometrical properties of the domain £2. In this case, the solution set
S={(u, 4):u is a positive solution of (1.7) and (1.8) on B,} is a smooth
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connected 1-manifold; see, e.g., [10,12,15]. For n=1, 2, there exist
exactly two positive solutions for each A€ (0, 2), exactly one for A =2, and
none for A>2. However, for n=3, .., 9, there exist 0 <A, <2(n—2)<Ai*
such that there is no positive nonminimum solution for 1 € (0, 4,). Further-
more, there are infinitely many positive solutions at A, =2(n—2) and a
large number of positive solutions when 4 is close to A, . Finally, for
n>210, there is no positive solution for 2> A* =2(n~ 2) and exactly one
positive solution for Ae (0, A*). Note that the growth of ¢ is subcritical
when n =1, 2 and supercritical when » > 3. One of the main results in this
paper is a partial generation of the above facts.

THEOREM 1.3. Assume [ satisfies (H-1). If f(0)>0, then there exists
4y >0 such that there is no positive nonminimum solution for any 7.€(0, 4,,).
If f(0)<0, then there exists A, >0 such that there is no positive solution for
any e (0, 4,).

It is worth remarking that the validity of Theorem 1.3 relies on the
topology of the domain 2. Indeed, when f(u)>0 on [0, o) and Q is an
annular domain, ie., Q= {xeR":a<|x| <b}, n=22, there is at least one
positive nonminimum solution for each A€ (0, A*) provided the growth of
f is superlinear, i.e., lim, _, ., f(u)/u=o0; see [19].

It is known that positive regular solutions have finite energy in the
supercritical case; see [11]. In this paper, we will also prove that every
positive singular solution of (1.7) and (1.8) has finite energy and then
demonstrate that if a sequence of positive regular solutions converges to a
positive singular solution pointwise in (0, 1), then the convergence obtains
in H'(B,) and L?*'(B,) as well. A combination of previous results and
Theorems 1.1-1.3 enables us to give a description of the structure of the set
of positive regular solutions of (1.7) and (1.8):

THEOREM 1.4. Assume [ satisfies (H-1), (H-2), and (H-3). Then the
solution set S= {(u, A):u is a positive solution of (1.7) and (1.8)} is a
connected C'-smooth 1-manifold. One end of S is connected by

(i) (0, 0) if (H-3)(1) holds;

(i) (0, 4, £1(0)~ "y if (H-3(ii) holds, where A, is the first eigenvalue of
— 4 with zero Dirichlet boundary conditions on B ;

(iii) (0, o0) if (H-3)(iii) holds.

The other end of S is connected, in the sense of H(B,), by the singular
solutions obtained in Theorem 1.2

For related problems:
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(1) For flu)=v"+u’, (n+2)/(n—2)<gand 1 <p<n/(n—2): The
uniqueness of the singular solution and the asymptotic behaviour of large
regular solutions have been studied by Budd and Norbury [7], Budd
[5, 6], and Merle and Peletier [23].

(1) For f(u)=e": (1.7) and (1.8) have been studied by Bandle [2],
Suzuki and Nagasaki [32], Lin [18], Mignot et al. [24], Veron and
Veron [33], Gallouet er al. [11], and Bellout [47], to name just a few.

(i) The critical case f(u)=u"*"?"""2 4 ju was first studied by
Brezis and Nirenberg (3] and has since been studied extensively by many
authors.

The remainder of this paper is organized as follows: In Section 2, using
Pohozaev identity, we estimatre R(a) for large « and prove Theorems
1.1-1.3. In Section 3, we establish that every positive singular solution has
finite energy and prove that if positive regular solutions converge to a
singular solution pointwise in (0, 1), then the convergences obtain in L7*'
and H' as well. Finally, we prove Theorem 1.4.

2. EXISTENCE OF SINGULAR SOLUTIONS

We first recall a Pohozaev identity which was obtained by Ni and Serrin

[27].

LEMMA 2.1.  Let u(r) be a solution of (1.4) in (r,, r,)=(0, o) and let a
be an arbitrary constant. Then, for each re(ry, ry) we have
d | B
— " {— W' (r)+ Fu(r)) +£‘ u(r) u'(r)
dr 2 r

! {nF(u(r))_au(r)f(u(r))—l— <a+ | —g) ll/z(r)}. (2.1)

DerFmNITION 2.2. For each ae(0, oc) and B=0, let R(x, B) be the first
r such that u(r, o) = B. If there is no such r, we shall adopt the convention
that R(a, B)= . We also stipulate that R(a)= R(a, 0) and R,(a)=
R(a, A).

DerFINtTION 2.3, For ¢g>(n+2)/(n—2), let y=n—-2-2n/(g+1)=
(1/(g+1p{(n—2)g—(n+2)} >0. Define two positive functions R_(B)
and R*(B) on [4, «c) by

R (BY =yBM(B)""
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and

re@y=2(-"8) KB~
where
2(n—2)
Y

B= B and  M(B)=max{f(u):ue[0, B]}.

In the following theorem, we prove that for a fixed B> A4, we can obtain
an upper bound and a lower bound for R(x, B). This is crucial in proving
Theorem 1.1 and also in later developments.

THEOREM 2.4. Assume [ satisfies (H-1). Then for any B> A and
ae (B, o), we have

R (B)< R(x, B)< R¥(B), (2.2)
and

1 F(B 2
4+1 2B) g (B)< —u(R(x, B), 1) <=

n B

~—

D BR(B) L (23)

Proof. Letting u(r)=u(r, o) and a=n/(g+1) in (2.1) and integrating
(2.1) from O to r, by (H-1) we have

n o oulr, o) u'(r, x
(ro @) w(r,2)

LR
- F
5 U )+ (u(r,at))+q+l r

0 (2.4)

if u(s, o) > A for all se [0, r]. It is clear that (H-1) implies F(u) > 0 for all
u>A. Hence, for any ae(A4, ), by (2.4) we have u'(r, x)<0 in
(0, R,(«)). Furthermore, we have R,(2) < oo for all xe (A, oc). Indeed, by
(H-1) there is a positive constant m such that

fuy=zm for all uz= A. (2.5)

By (1.4)-(1.6) and (2.5), for re (0, R,(«)) and « > A, we have

o (r a)= _jr 5" (s, a)) ds

m

< ——1r (2.6)
n
which implies that

2
R,(a)2<—rz (x— A).
m
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Therefore, by (H-1) and (2.4) we obtain

L) n R
Eu (R{a, B), az)<q+1 Rix B)( u'(R(a, B), o)), (2.7)
and
F(B)<—2 B "(R(x, B 2.8
( )<q+] R, B)(—u( (a, B), a)). (2.8)

Now, (2.7) implies

2n
g+ 1

—~u'(R)a, B), a) R(z, B)< B, (29)

or
—u'(R(a, B), %) R(a, B)<(n—2—7)B. (2.10)

From (2.8) and (2.9), we obtain an upper bound for R{a, B),
n 2
R(a, B)*<2 (—- B) /F(B) (2.11)
q+1

for all x€ (B, oc). This proves the second inequality of (2.2).

To prove the first inequality of (2.2), there are two cases to consider: (i)
R(a, B)>R,(B) and (ii) R(x, B)< R, (B). In case (i), since R(x, B)>
R(2, B), we have R(a, B)> R, (B). In case (ii), we need the following
comparison argument.

Let v,(r)=uv(r, 2, B) be the solution of the initial value problem

n—1

v (r)+ - v(r)+C=0  for r>R(x, B), (2.12)
v(R(x, B))=B, (2.13)
v'(R(a, B))=u'(R(a, B), a), (2.14)

where €= M(B).

Then v,(r) can be solved explicitly as

- 1 < C 1 ~ < (ol
v, (ry=B+— {Ru’(R, x)+— R2}——~— {R"'u’(R, o)+ — R”} r2on
n—2 n n—2 n

_ = il 2.1
2nr +2nR, (2.15)
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where R = R(x, B). By (2.10) and (2.15), we have

T c C
wW{r)=B Ru'(R, a)— Rop2—m—— 2
v,(r) +n—2 u'(R, o) nn—2) r 5"
1 ~ 1 5
> yB—5 Cr?
n—Z{') ZCr}
c <~ =
=B 'M‘B— 2
+2(n—2){' Cr?}
=B (2.16)

for all re [R(2, B), R, (B)].
Therefore, (2.2) follows if we can prove that w(r,x)=v,(r) on
[R(x, B), R,(B)]. Let w(r)=u(r, «) —v,(r). Then

(W)Y =" N C ~ flulr, 2))} =0 (2.17)
as long as u(r, 2)>0. By (2.13) and (2.14), we have
w(R(x, B))=0=w'(R(x, B)). (2.18)

Integrating (2.17) twice and using (2.18), we obtain u(r,a)=v,(r) on
[R(x, B), R, (B)]. This proves the first inequality of (2.2).
Finaly, (2.3) follows by (2.2), (2.8), and (2.9). The proof is complete.

Remark 2.5. 1f the growth of f is critical, then R{x) may tend to 0 as
a — oo, Indeed, let us consider

C(nn—2)utrren iy
f(u)_{n(n—?.) it u<l.

Then it is well known for any ¢e (0, 1) that

e (n—2),/2
U,(r)= {m}

is a solution of (1.6)-(1.8) for U.(r)>1. Note that U (0)=¢ " 2=y
which tends to oo as e—»0"*. Let A=1 in (H-1). Then it is easy to verify
that

Rl(a)2=£~£23
and
—u'(R(a), a)=(n—2)(e—&>)"? & !,
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and so lim, _, , —u'(R(a), o) R,(x)=n— 2, which is the contrary of (2.10).
Using (2.15), it is easy to see that R(«) behaves like o', which tends to
0asa— +oc.

An immediate consequence of the estimates of (2.2) and (2.3) is the
following existence result for positive singular solutions of (1.1) and (1.2).

LemMa 2.6. Assume f satisfies (H-1). If {o,} is a sequence with
lim, ,, 2, =90 and lim, _, , R(a,)=R < o0, then there is a subsequence
fo.} of {a,} and a nonnegative singular solution U such that u(-, o)
converges to U pointwise in (0, R) and also in C*([a, b]) on every compact
set [a, b in (0, R). Moreover, if f(0)=0 then U is positive in (0, R), and
if f satisfies (H-2) then U satisfies (1.3).

Proof. We first claim that for any compact subinterval [a, 5] < (0, R),
uY'(-, a;) are uniformly bounded on [a, ], for j=0, 1, 2, 3. Since f is
superlinear at u = o0, it is easy to see that

lim R*(B)=0. (2.19)

B — o
Therefore, there is a B> A such that R*(B) <a. Hence, R(x,, B)<a and
u(a, 2, )< B (2.20)
for large k. On the other hand, by the assumption that R(a,) — Rask —
we have b < R(a,) for large k, ie., u(r, 2,) =0 in [a, b] for large k. We
now claim that

u(r, 2, )< B on [a, b] (2.21)

for large k. Consider the energy function V,(-) along the solution u(-, «) by

Vo(r)=su"(r, @) + Flu(r, a)). (2.22)
Then
4 Vury= ol u'*(r, 2) <0, (2.23)
dr

ie., V,(r) is nonincreasing in [a, b]. If u'(r, 2)>0 in [q, ], then (2.20)
implies (2.21). On the other hand, if there is roe(a, b) such that
u'(rg, 2) =0, then by (2.6) we may assume that u(r,, 2) < B. By (2.22) and
(2.23), we have

Flu(r, a)) < Flu(ry, 2)) = F(B) (2.24)
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on [ry, b]. Since F'(u)=f(u)>0 on [A, oc), (2.24) implies that
u(r, x)< B on [ry, b], ie., (2.21) holds on [a, »]. Now for any solution
u(r) of (1.4) and 0 <r, <r, <R, u(r) satisfies

W) = —u(ry) r';"‘+jr: " fu(n)) . (225)

1

Therefore, let r,=R(a,, B), ro=re(R(a,, B), b}, and u=u(-, «,) in
(2.25), and using (2.21), we obtain

R(a,, B)]" "> 1 M(B

Iu,(r’ ak)' < _ul(R(aks B)3 ak) R(aka B){%} ;+'—’(1—) r.

(2.26)

By (2.2), (2.3), and (2.26), there is a positive constant C = C(a, b, B) such
that

[t'(r, ) < C (2.27)

on [a, b] for large k. Hence, by (1.4), (2.21), and (2.27), we have shown
that u"'(, a,) are uniformly bounded on [4, 4], for j=0, 1, 2, 3.

Now, using the Ascoli-Arzela theorem and the diagonal process, there is
a subsequence {a}} of {a,} and a C? nonnegative function U(r) such that
u(-, «) converges to U pointwise in (0, R) and also in C*([a, b]) for any
compact subinterval [a, b] of (0, R).

It is clear that U(r) satisfies (1.4) on (0, R). Now we claim that (2.2)
implies U tends to oo as r—0%. For any B> A, if r<R_(B), then
u(r, a;) > B, which implies that U(r)>= B on [0, R,(B)]. Since R (B)—0
as B— oo, we have U(r) —» oo as r - 0*. Therefore, U(r) is a nonnegative
singular solution on (0, R).

Next, we claim that if f(0)>=0 then U is positive in (0, R). If there is
Fe (0, R) such that U(F)=0, then U'(F)=0 since U is nonnegative in
(0, R). If f(0)=0, then by the uniqueness of the initial value problem of
the od.e., U=0 which is a contradiction. If f(0)>0, then by (1.4),
U"(F) <0, which contradicts our knowledge that U is nonnegative. So we
have proven that U is positive in (0, R).

Finally, if R < oc, then w(R(%;), «,)=0 and R(ox;) — R as k — oo imply
that U(R)=0. If R= oo, then the assumption that f is positive in (0, o0)
will imply that U(r) tends to 0 as r — cc. The details of this part of the
proof are omitted.

The proof is complete.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Let {a,} be a sequence with lim, _, , o, = c0.
Then either lim sup, _, ., R(a,)=cc or R(a,) is bounded above. In the
latter case, we may assume that lim, ., R(x;)=R<oc. Then by an
argument such as that in Lemma 2.6, there is a singular solution U of (1.1)
and (1.2) that is a limit of u(-, «}) for some subsequence {a;} of {«,}, and
U is positive in the neighborhood of r=0. If U(r) has zero in (0, o), let
R be the first zero; then U is a positive singular solution on the finite ball
Br(0). Otherwise, U(r) is a positive singular solution on R”— {0}.

The proof is complete.

Next, let

R=1lim sup R(x). (2.28)

Then Theorem 1.2 is a consequence of the following lemma.

LemMa 2.7. Assume f satisfies (H-1)~(H-3). Then R < .

Proof. We first treat the cases (H-3)(1) and (ii). In these cases, there is
an &> 0 such that

fu)=eu for all u>=0. (2.29)
Consider the linear eigenvalue problem:

A¢+id=0  in B, (2.30)

¢=0 on JB;. (2.31)
Let A,>0 be the first eigenvalue and let ¢, >0 be an associated eigen-
function of (2.30) and (2.31). It is easy to see that R(a) < oo for all > 0.

Let R=R(a) and u=u(-, «). Then by using (1.3), (1.4), (2.30), and (2.31),
we have

J,, #xl/=ieu) =0,
which implies
inf{ f(u(x))— Apu(x): xe Bg} <0.
Therefore, there is an x, € B that satisfies
Su(xo)) < Ag u(xq).

505/114/1-6
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Hence, by (2.29), we obtain
e< Ay

Since A, tends to 0 as R — oo we have R < .

In the case of (H-3)(iii), by Theorem 2.2 of Ni and Serrin [29], (1.4)
cannot have a positive solution in the exterior domain R” — B, for any
R>0. Hence, R(x) < oo for any x> 0. Since the same theorem also rules
out the existence of a positive singular solution on R", by Lemma 2.6 we
have R < .

The proof is complete.

Proof of Theorem 1.2. The theorem follows from Lemmas 2.6 and 2.7.

Remark 2.8. 1In [17], Lin and Ni considered (1.4) with f(u)=u"+ u?,
where (n+2)/(n—2)<qg<(n+6)/(n—2) and p=g/2. In this case,
pe(n/n—2, (n+2)/(n—2)). They obtained an explicit positive entire solu-
tion in R”, and so there is an a € (0, o0 ) such that R(x)= o0. In this case,
it is still unclear whether R < oo (see also Merle and Peletier [23]).

Remark 2.9. Let X, be the set of positive singular solutions of (1.4) on
finite balls obtained by Theorem 1.2, ie., X, ={U(r): U(r) is a limit of
u(-, o) with R(a,)< oo, lim, , o, =oc and lim, , , R(a,)=R< o} We
may also study the initial value problem for backward shooting:

u”(r)+n:1 W(r)+ f(u(r))=0  in (0, R),
u(R, g)=0,
ul(Ra ﬂ): —ﬂ<0

Let Z,(R)={u(-, B):u(0, =00 and u(r, B)>0 in (0, R)} and let
Z,=U{Z.(R): Re(0, )}, the set of all positive singular solutions on
balls. In the case of f(u)=u" with l<p<(n+2)/(n—2), X,=¢ and
ZAR)=1{u(-, B):0< B <B(R)}, for some B(R)>0; see, e.g., Ni and Sack
[26] and Lin [20]. It is clear that X, =X, However, it is not clear
whether 2, = 2, i.e., whether all positive singular solutions on balls can be
obtained as limits of positive regular solutions.

Proof of Theorem 1.3. As mentioned in the Introduction, (u(-), 4) 1s a
solution of (1.7) and (1.8) if and only if u(-, «) is a positive solution of
(1.4)-(1.6) with wu(r)=u(ri'?, a) and A= R*(a) < cc. Therefore, it suffices
to study R(«) for e (0, oc).

It is clear that R(a)>0 for all ae (0, co). It is also easy to see that if
o —>0g€ (0, c0) then R(og)>0. Hence, by Theorem 2.4, the only
possibility for the case where R(2) tends to 0 is « — 0. We shall rule out
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this possibility by considering the following four cases: (i) f(0)=0,
f(0)>0; (ii) f(0)=0=f'(0); (iii) f(0)=0and f’'(0) <Q; and (iv) f(0) <O.
For the case where f(0)>0, it is well known that a positive minimum
solution u; will tend to zero uniformly on Q as A - 0%, ie, R(a)—0 as
a—07; see, e.g.,, [16]. Therefore, u(-, o) is a positive minimum solution if
a is sufficiently small.

Case (i). In this case, we may assume that f'(0)=1, and we shall
prove that lim, , , R(x)?>=4,. By a bifurcation theorem of Crandall and
Rabinowitz [8], there is a unique branch of bifurcation solutions u; >0
bifurcating from the trivial solution u,=0 at A=4, and |u,}},, —0 as
4> 4. Therefore, R(x)— i}> as a > 07,

Case (ii). In this case, we shall prove that lim, ;. R(x)= 0. We
observe that u(-, ) satisfies the following equation:

1
n—>2

u(r, a)=o— jr (27" —r2 ="y s" L f(u(s, o)) ds. (2.32)

Since f(0)= f'(0) =0, for any £> 0 there exists 4 > 0 such that | f(u)| <eu
for ue (0, ). Therefore, if u(r, 2)e (0, 2a) < (0, &) then | f(u(r, 2))| < 2ez.
Now, it is easy to verify that

1
n—2

J.r (827" —r27") 5" U (u(s, a)) ds Sgnf ar? (2.33)
0

as far as u(s, a) e (0, 2x) for all se (0, r). Hence, by (2.32) and (2.33), for
any x€ (0, 6/2) and re (0, (n/2¢)"?), we have u(r, «) € (0, 2a). This implies
lim,  ,. R(2)=cC.

Case (iii). In this case, there are positive constants m and ¢ such that
—mu< f(u) <0 on [0, 8]. Therefore, if u(s, x)e [0, 6] for all se(0, r),
then by (2.32), we have

m r
u(r, a)<a+——f (27" =r?"") 5" luls, o) ds
n—2/

<a+ 2 u(r, a) r. (2.34)
n

Hence, if wu(R(%, 8), ®)=46, then (2.34) implies that R(x, 6)°>
(1/8){(6 —2)(n/m)} and so R(x) has a positive lower bound for a € (0, 5/2).

Case (iv). In this case, there are ¢>0 and >0 Euch that flu)< —¢
on [0,8]. Let C= —¢ in (2.12), R(x, B)=0, and B=« in (2.13), and
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w'(0, 2)=0 in (2.14). Then (2.15) becomes v,(r)=x+ (s/2n)r?, which
implies that

ulr, 2) > 0+~ 12 (2.35)
2n

as long as u(r,2)e[0, 6]. In particular, R(0)>0. The continuous
dependence of u(-, «) in « and (2.35) imply there is a positive lower bound
for R(a) for all ae [0, 6].

The proof is complete.

3. FINITE ENERGY OF SINGULAR SOLUTIONS

In this section we first prove that the energy of positive regular solutions
of (1.7) and (1.8) on the unit ball is uniformly bounded. Since the positive
singular solutions in 2, are obtained as limits of positive regular solutions,
it is reasonable to expect that X',-type positive singular solutions have finite
energy. Indeed, we shall prove that this is true for all positive singular
solutions. Furthermore, we shall show that if u; is a sequence of positive
regular solutions of (1.7) and (1.8) that converges to a positive singular
solution U in (0, 1), then u, converges to U in L?*'(B,) and H}(B,) as
well, which is a generalization of the result in Merle and Peletier [23].

We first give an energy estimate for positive regular solutions of (1.7)
and (1.8) on a star-shaped domain Q; see also [11].

LemMa 3.1. Assume [ satisfies (H-1). Let Q be a star-shaped domain.

Then there is a positive constant M such that for any positive solution (u, A)
of (1.7} and (1.8), we have

j |Vu|2=,if uf () < AM, (3.1)
and
j Flu) < M. (3.2)

Proof. We may assume that Q is a star-shaped domain with respect to
the origin, i.e, x-v >0 for any xe dQ, where v=v(x) is the unit outward
normal at x. If » i1s a solution of (1.7) and (1.8), then the following
Pohozaev identity holds:

"2 =2 [ vy |Vl (3.3)

AL} nF(u) =" =1
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Since €2 is a star-shaped domain, the right-hand side of (3.3) is non-
negative, and so
n—

3 2 uf(u)=0. (34)

L) nF(u) —

Let ,={xeQ:ux)zA4}and Q,=Q—Q,. Letd=(n—2)2—n/(g+1)
> 0. By (H-1), we have

z ; 2 uf(u)—nFlu)> ouf(u) forall us A (3.5)

Let
M, = max {nF(u)—ngzuf(u):ue[O, A]}, (3.6)

and
M, =max{f(u): ue[0, A]}. (3.7)

Note that (3.3) implies that M, >0 if (1.7) and (1.8) have a positive solu-
tion. Hence, by (3.4)-(3.7) we have

n—

2
— ()

8 L, uf (u) <6 fn uf(u)+fg nF(u) —

:J'ﬂ; nF(u)—n;2 uf(u)—fm <n;2—6) uf (u) — nF(u)

n—

2

2
<L‘ nF(u)— uf(u) < M, |2,

and

IO AAR

where |G| is the volume of domain G. The last two inequalities imply that

j W ()< (M, 8 + AM,) |82,. (3.8)
Q

Hence, Lemma 3.1 follows from (3.8) and (3.5). The proof is complete.
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Next we need to recall two results from Ni and Serrin [27]. We first
study the asymptotic behaviour of positive solutions when r ->07.

PrOPOSITION NSI1. Assume [ satisfies (H-1). Then there is a positive
constant C such that for any positive radial solution u; of (1.7) and (1.8) in
(0, 1) with |ju,| . > A, we have

w(r) < CA W= Np-2a- 1 in (0, rgy), (3.9)

where u;(ry)=A
Proof. The proof is a slight modification of Theorem 2.1 in [27]; here

we emphasize that C is independent of u;. Since f satisfies (H-1), it is easy
to check that there is a positive constant n such that

Sw)y=nu? forall wuz=A. (3.10)
Since (3.7) can be written as

(r"~u'(r))' = =4 U (ul(r)), (3.11)
we have

uy(r)<0 in (0, ro). (3.12)

Now, for any re (0, ry) and 7e (0, r), if we integrate (3.11) from 7 to r, we
obtain

P (r) = r)—ij S(u(s)) ds.
Therefore, by (3.12), we have
P < <4 |5 ) ds
for all 7e (0, r). Letting 7 — 0 and using (3.10) and (3.12) we obtain
P usr) < =i [ 57 ) ds< —hnut(r) [ tds = —2Cuuttry

n—1

where C, = p/n. Dividing the last inequality by w{(r) r"~', we have

u;(ryus(r)< —AC,r in (0, ).
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Integrating from 0 to r, we obtain
u' =9iry=1C,r*  in (0, ry),

where C, = (g — 1) C,/2. Hence (3.9) follows, with C= C; ¢~ !}, The proof
is complete.

Next, we need another energy estimate, as follows.

ProPOSITION NS2.  Assume f satisfies (H-1). If U(r) is a positive
singular solution of (1.7) and (1.8), then

L vy iRy + = O U0 g (3.13)
2 g+1 r

as long as U(s)> A in (0, r).

This proposition is essentially proved by Lemmas 3.2, 3.3, and 3.4 of
(27], so its proof is omitted here.

THEOREM 3.2. Assume [ satisfies (H-1). If U is a positive singular solu-
tion of (1.7) and (1.8), then

j |VU|2=AJ Uf(U) < . (3.14)
By B)

Proof. Let R, €(0, 1) such that U(R,)= A. By (3.13), we have

2n U(r)
-U’ _— 3.1
U< (3.15)
in (0, R,). Now, substituting (3.9) into (3.15), we obtain
~U(r)<Cyrm vt (3.16)

in (0, R,), where C,=(2n/(qg +1))C.
Foranyee (0, 1), let @, ={xeR":e<|x}<1}and B,= {xeR":|x| <¢&}.
Then

j | UAUH"f Uf(U)=0

implies

Jun U%]_LE VU [ U =0 (3.17)
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Hence, by (1.3), (3.9), and (3.16), we have
6U_ ' J-2—4/(g—-1)
osfmﬁ U= —LBE UU' < Cye ,

where C,=C,w,. Since n—2—4/(g—1)=(1/(g—1){(n—2)g— (n+2)}
>0, we have

U—-0 as e¢—0t,
82, av

Similarly, (3.16) implies that for all ¢ (0, R)),

j VU< C,  for some C;>0.

&

Hence, (3.14) holds.
The proof is complete.

THEOREM 3.3.  Assume [ satisfies (H-1). If u, is a sequence of positive
regular solutions of (1.7) and (1.8) that converges pointwise to a positive
singular solution U as 1 — da€ (0, o), then u, converges to U in LY*'(B,)
and H(B,) as i — A,.

Proof. Choose ¢ >0 such that u;(¢) = A, which is guaranteed by (2.2).
Then

[ w—v =] vt | - =L 1
B, B, 2,

By the argument in Lemma 2.6, u, converges to U uniformly in [e, 1] as
A— 4, and so I; - 0 as 4 — 4,. On the other hand, by (3.9)

&
I,<C, J- roldr< Chel
O
where

y=n= g+ 1)g — 1= laln=2)= (n+2)} >0

and the C/’s are positive constants dependent on C, #, ¢, and 4,, but not
on A. Therefore

lim sup j lu, — U+ < Csé.
By

A
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Since & can be chosen to be arbitrarily small, we conclude that u, — U as
A= JAoin L4 (B,). To use (2.1), (3.13), and (3.15) to prove that u, —» U
as A— 4, in H'(B,), we proceed in the same manner; the details of the
proof are omitted here.

The proof is complete.

Proof of Theorem 1.4. By Lemma 2.7, we have R(a) < oo for all 2> 0.
Therefore the solution set of (1.7) and (1.8) can be written as
{(u(-, 2), M) :2€(0, o0)} with i(ax)= R*(z). Hence S is a C'-smooth,
connected 1-manifold. (For the case of (H-3)(i), see also Dancer [10].)
The remaining parts of Theorem 1.4 follow easily from Theorems 1.1
and 3.3.

The proof is complete.
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