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Short Notes 

Testing the Dynamic Full Access Property of a 
Class of Multistage Interconnection Networks 

Tsern-Huei Lee and Jin-Jye Chou 

Abstract-A banyan network and its topologically equivalent ones have 
recently been adopted as the interconnection networks in a multiprocessor 
system. Often a multiprocessor system is reconfigured when the banyan 
network becomes faulty. It is possible to avoid a complicated reconfig- 
uration process as long as the faulty banyan network still possesses the 
dynamic full access (DFA) property. In this short note, we determine 
a necessary and sufficient condition for a faulty banyan network to 
possess the DFA property and design a testing procedure based on the 
condition. The testing procedure can be used to decompose a faulty 
banyan network into subsystems possessing the DFA property. We also 
evaluate the probability that a banyan network loses the DFA property, 
given the number of faulty switching elements. I t  is found that as long 
as faults do not occur in switching elements located in the first and the 
last stages, this probability is very small, even when there are quite a few 
faulty switching elements. 

Zndex Terms-Multiprocessor system, multistage interconnection net- 
works, fault tolerance, dynamic full access 

I. INTRODUCTION 
Multistage interconnection networks (MIN's) have recently 

been adopted to interconnect processors in a multiprocessor 
system. Various MIN's, such as the omega network, the flip network, 
the indirect binary n -cube network, and the baseline network, had 
been proposed for different applications. However, these networks 
were proved [2] to be topologically equivalent to the regular SW 
banyan network [l] with spread and fan-out of 2. Therefore, we do 
not distinguish these terms in this short note, and simply use "banyan 
network" to represent this topologically equivalent class of MIN's. 

In a multiprocessor system interconnected by a banyan network, 
there is a unique path from any processor to any other one. This 
property makes routing very simple. Unfortunately, it also makes a 
banyan network lack fault tolerance capability. Often a multiprocessor 
system is reconfigured when the banyan network becomes faulty. 
However, it is possible to avoid a complicated reconfiguration process 
as long as the faulty banyan network still possesses the dynamic full 
access (DFA) property; i.e., any processor can be connected to any 
other processor in a finite number of passes through the faulty banyan 
network [SI. Therefore, if a faulty banyan network still possesses 
the DFA property, then a packet can be routed through it several 
times, if necessary, until the packet reaches its proper destination. 
For convenience, we say that processor i can reach processor j in k 
passes if it can be connected to processor j in k passes through the 
faulty banyan network. 
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The collection of all faults is called the fault set. A fault set is said 
to be critical if it destroys the DFA property of a banyan network. 
In other words, a fault set is critical if there exists a processor that 
cannot reach some other processors in a finite number of passes. 
There exist excellent and efficient algorithms [6]-[9] to detect and 
locate faulty switching elements. However, to date, whether a fault set 
is critical has not efficiently been determined. Agrawal and Leu [IO]  
proposed to test the DFA property of a banyan network by examining 
the power of the reachability matrix R .  The ( i . j ) t h  element of I? is 
equal to 1 if processor i can reach processor . j  in a single pass. 
Otherwise, it is equal to 0. A faulty banyan network possesses the 
DFA property if and only if (iff) there exists a finite pmitive integer k 
such that none of the elements in Rk is 0. The complexity of matrix 
multiplication makes this approach infeasible for large networks. 
Varma and Raghavendra [ l l ]  and Kumar and Wang [ 121 determined 
some sufficient conditions for a fault set to be noncritical. In [ I  I ] ,  a 
necessary and sufficient condition was derived for a banyan network 
with 16 inputs/outputs (1-0's). Unfortunately, that criterion is not 
valid for banyan networks having more than 16 1 - 0 ' s .  

The purpose of this short note is to present a procedure for testing 
the DFA property of banyan networks of any size. We assume that 
faults had been detected and located. The fault model adopted here 
is identical to that used in [ I  I ] ;  i.e., only switching elements can 
fail, and the failure brings down that component. A necessary and 
sufficient condition for a banyan network to possess the DFA property 
is determined in Section 11. In Section 111, a testing procedure based on 
the necessary and sufficient condition is first presented and then used 
to decompose a faulty banyan network into suhsystems possessing 
the DFA property. Two examples are studied in Section IV. The 
probability of being critical, given the size of a fault set, is also 
evaluated in this section. Some conclusions are finally drawn in 
Section V. 

11. A NECESSARY AND SUFFICIENT CONDITION 
FOR A FAULT SET TO BE CRITICAL 

Consider an n-stage banyan network. The 1-0's can be numbered, 
respectively, from the top by 0 to 2'' - 1, and can be represented 
by binary sequences of length 71, say, ( i t , - 1 ( i , , - 2 . .  . ( I O .  In stage 
k.0 < IC < T I ,  there are 2"-' remaining subnetworks. It can 
be verified that a switching element in stage k can be uniquely 
represented by ( f l l L . . . ( i k . b l  . . .  h r - l ) ,  where n,, . . . ( I A  denotes the 
label of the switching element numbered from the top within the 
subnetwork, and h l  . . . h k -  I represents the label of the subnetwork 
numbered. Such a numbering scheme was proposed by Beckmann 141. 
Fig. 1 illustrates an example of a four-stage banyan network with the 
numbering scheme. In this short note, we assume that output i is 
paired with input i for all i .  Furthermore, we shall use d and Ll to 
denote, respectively, a set of inputs and a set of outputs for the rest 
of the short note. 

It is clear that a switching element in fault disconnccts an input set 
-4 from an output set B in the sense that ( I  cannot reach h in a single 
pass for any CI E A and h E L1. Let 12 denote the set of all binary 
sequences of length 1 1 .  Also, let ( ( I?:  - I . . ( I L  ) denote a subset of 
12 such that .r E (a,, - I . . . (I c ) n  iff the leftmost u - k bits of .I' are 
o n - ,  . . . a k .  It is not hard to see that a faulty switching element in 
stage k represented by (n n-  . . . ( I ) , ,  h ,  . ' . h k  - 1 ) disconnects .4 = 
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Stage 1 Stage 2 Stage 3 Stage 4 
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001 1 0011 
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0110 01 10 

0111 0111 

1000 1000 

1001 1001 

1010 1010 

1011 1011 

1100 
1101 #qqG-jJ/pqA 11o.g 0.11 g m  
1110 

1111 
1.11 8.111 

Subnetwork  1 - Subnetwork  11 

Fig. 1. Beckmann's numbering scheme for a four-stage banyan network. 

(nn--l...nk)n from B = ( h l . . . b k - - l ) n .  Notice that in the above 
discussion, the two sets A and B are chosen to be as large as possible. 
In fact, any subset of A is disconnected from any subset of B by the 
faulty switching element. To generalize, an input set A is said to be 
disconnected from an output set B by a fault set F if a cannot reach 
h in a single pass for any n E ;I and h E B. The following theorem 
states a necessary and sufficient condition for a fault set to be critical. 

Theorem I: A fault set F is critical iff there exist nonempty input 
set A and output set B ,  so that A and B are disconnected by F and 
satisfy A U B = 12. Here .4 and B are simply considered as sets of 
binary sequences when performing set union. 

Suppose .4 and B are both nonempty, disconnected by 
F, and satisfy A U L3 = 1 2 .  If A C B,  then B = (2, meaning that 
inputs in A are isolated. In other words, if a E A, then a cannot reach 
any output in a finite number of passes. Therefore, the fault set F is 
critical. Similarly, if B C A4, then A = (2, and F is critical. Consider 
the case where A (7 I3 and B A. Let A '  = .4 n B', where B" 
is the complement of set B .  It is not hard to see that A' # 0 is 
disconnected from B,  and satisfies .A' U B = C!. 

Because output i is paired with input i for all i ,  any input n E A' 
can reach only those outputs paired with the inputs in A'. As a result, 
any input (I E A' cannot reach any output h E B in a finite number 
of passes. This implies that F is critical. 

Conversely, suppose the fault set F is critical. Since F is critical, 
there exist an input a' and an output h' such that n' cannot reach 
h' in a finite number of passes. Let L3 denote the maximal set of 
outputs that cannot be reached by 0' in a finite number of passes. 
B is obviously nonempty, because h' E B. If B = a, then one can 
select A = { n ' }  to complete the proof. 

Suppose B # 12. Let '4 be the set of inputs paired with those 
outputs in B'. Such a selection satisfies -4 # 0 and A U B = f l .  
Besides, any element a E A cannot reach any element b E B in a 
finite number of passes. Otherwise, suppose there exist some n E A 
and b E B so that a can reach b in a finite number of passes. As a 
result, a' can reach n in a finite number of passes, and (L can reach 
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Fig. 2. The noncritical fault set for Example 1. 

b also in a finite number of passes, implying that (1' can reach h in a 
finite number of passes, a contradiction to the selection of B .  Since 
a cannot reach h in a finite number of passes, it is implied that they 
are disconnected (in a single pass). Therefore, we conclude that if F 
is critical, then there exist nonempty input set A and output set B 
such that A and B are disconnected by F and satisfy A U B = S1. 
This completes the proof of Theorem 1. 

It follows from Theorem 1 that a fault set is critical if it contains 
an element in the first or the last stage. Further, the two sets A and 
B can be chosen to be disjoint; i.e., A n B = 0. 

111. A TESTING PROCEDURE 
In this section, we provide a procedure based on Theorem 1 for 

testing the DFA property of faulty banyan networks. To avoid trivial 
cases, we assume faults do not occur in switching elements located 
in the first and last stages. 

Suppose the fault set F ={fl, f 2 , . . .  , fk} is given, where fj,  

1 5 j 5 k, represents a faulty switching element. Let R, denote 
the maximal input set disconnected from output set ( i } .  Also, let 
Qz denote the maximal output set disconnected from input set { i } .  
According to Theorem 1, if F is critical, then either input 0 is in 
set .4 or output 0 is in set B .  To expedite the testing procedure, one 
can partition the inputs into equivalent classes so that two inputs, i 
and j, are in a same class iff Qz = Ql .  Similarly, the outputs can 
be partitioned into equivalent classes so that outputs k and 2 are in 
a same class iff Rk = RI. 

Since, by assumption, faults do not occur in switching elements 
located in the first and last stages, each equivalent class consists of at 
least four elements. The partition, of course, depends on the particular 
fault set. To make the partition useful, we require two inputs (outputs) 
to be in a same class iff Q L  = Q, (R, = R,) for any fault set. Under 
this definition, each equivalent class contains exactly four elements. 
For the type of networks illustrated in Fig. 1, two inputs (outputs) 
are in a same class iff their binary representations differ only in the 
rightmost two bits. For example, if Cl(i) represents the equivalent 
class containing input or output i, then W O )  = Cl(2) = {0,1,2,3}.  
Obviously, to check the DFA property, inputs or outputs in a same 
equivalent class can be considered together. 

Let As3 and Bf3  denote, respectively, the largest input set and 
output set disconnected by the fault set { f,}. As a result, R, is 
equal to UfjECAfj ,  where G is a subset of F, so that f, E G iff 
i E B f j .  Similarly, we have Q; = U r J ~ ~ B f i ,  where H is a subset 
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content of A content of B 
0 1 2 3  

0 1 2 3 28 29 30 31 
0 1 2 3 28 29 30 31 8 9 10 11 
0 1 2 3  28 29 3031 8 9 10 11 12 13 
14 15 
0 1 2 3 28 29 30 31 8 9 10 11 12 13 

0 1 2 3 4  5 6  7 8 9  10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 
0 1 2 3 4 5 6 7 12 13 14 15 20 21 22 23 
0 1 2  3 4 5 6 7 20 21 22 23 
0 1 2 3  4 5 6  7 

0 

I 22 23 24 25 26 27 28 29 30,31 

I14 15 16 17 18 19 
I O  1 2 3 8 9  10 11 12 13 14 15 2021 11 0 1 2 3  6 

9 
10 

11 

12 

22 23 24 25 26 27 28 29 30 31 
7 10 1 2  3 8 9 10 11 12 13 14 15 20 21 11 0 1 2  3 4 5 6  7 

22 23 24 25 26 27 
8 9 10 11 12 13 14 15 24 25 26 27 
8 9 10 11 24 25 26 27 

24 25 26 27 

0 

0 1 2 3 4 5 6 7 16 17 18 19 28 29 30 31 
0 1 2 3 4  5 6  7 16 17 18 19 28 29 
30 31 20 21 22 23 
0 1 2  3 4 5 6  7 16 17 18 19 2829 
30 31 20 21 22 23 12 13 14 15 
0 1 2 3 4 5 6 7 16 17 18 19 28 29 
30 31 20 21 22 23 12 13 14 15 8 9 10 11 

of F, so that f, E H iff i E A f , .  Therefore, R, and Qt can be 
determined as long as the fault set is given. 

The following testing procedure named CHECKDFA receives a 
system 0 as its input, and returns a subsystem A as its output. The 
system 61 possesses the DFA property iff A = 8. In this procedure, 
the set Temp is used to store the binary sequences that have not been 
assigned to A or B. 

CHECKDFA(0,  A) 
Select the least numbered element i E I2 

Set A = Cl(i), B = Qt f l  0, Temp = 0 - A - B 

{if ( A  U B = S2), then retum A 

I* check if input 0 E A *I 

while (B # 8) do 

else 
select the least numbered element j E Temp 
A = A U Cl(j)  
> Temp = (Temp - Cl( j ) )  U (B n Qf) 
B = B n Q,) 

* check if output 0 E B when input 0 
Set A = R, n0, B = Cl(i) ,Temp = C2 - A - B 
while ( A  # 8) do 

A * I  

{if (A U B = [I), then retum A 
else 
select the least numbered element j E Temp 
Set B = B U Cl( j )  
Temp = (Temp - Cl(j))  U (A n R;)  
A = A n R , }  

retum A 

Notice that before the first while-do loop, B is set to be equal to 
Q, n C2 rather than Q., because the CHECKDFA procedure will be 
called by another procedure presented below, and when it is called, 
61 can be a subsystem of the given faulty banyan network. For the 
same reason, A is set to be equal to R,  n Sl rather than to R, before 
the second while-do loop. 

When a fault set destroys the DFA property of a banyan network, 
one may be interested in finding subsystems of the faulty banyan 
network that still possess the DFA property. It is possible that the 

Fig. 3. The critical fault set for Example 2. 

DFA property is maintained if a small number of processors are 
excluded. Usually, the efficiency of a subsystem containing most of 
the processors is still much higher than that of a single-processor 
system. In the following, we use the CHECKDFA procedure to 
decompose a faulty banyan network into subsystems possessing the 
DFA property. Suppose F is critical and input set A and output set 
B are found, so that A is disconnected from B,  A U 13 = 12, and 
A n B  = 8. It should be clear that processors in A and processors in B 
must belong to different subsystems. Therefore, one can decompose 
a faulty banyan network by the following recursive procedure named 
DECOMPOSE( 0). 

DECOMPOSE(62) 
CHECKDFA(62, A) 
if (.4 = 8), then 

else 
List R as a subsystem 

DECOMPOSE (A) 
DECOMPOSE(I1- A) 
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iteration I content of A 

I209 

content of I3 

TABLE I1 
TESTING RESULTS FOR EXAMPLE 2 

First call of CIIECLDFA 

3 
20 21 22 23 28 29 30 31 
6 9 I O  11 12 13 14 15 16 17 16 19 
20 21 22 23 26 29 30 31 

0 1 2  3 4 5 6 7 24 25 26 27 

I] 20 21 22 23 28 29 30 31 
11 8 9 10 11 12 13 14 15 16 17 18 19 2 1 0 1 2 3 4 5 6 7  

content of A iteration I content of B 

iteration I content of A 

I1 - 
2 10 1 1 0 1 2 3  

content of 13 

2 
3 
4 

28 29 30 31 
8 9 IO 11 26 29 30 31 
0 
S 9 I O  11 

6 9 10 11 12 13 14 15 
6 9 10 11 12 13 14 1.5 16 17 18 19 
8 9 10 11 12 13 14 15 28 29 30 31 

iteration 
1 
2 

content of A contcrit of I3 
26 29 30 31 0 
0 26 29 30 31 

It is clear that the DECOMPOSE procedure can be used to check 
the DFA property. A faulty banyan network possesses the DFA 
property iff there is only one subsystem listed by the DECOMPOSE 
procedure when it terminates. 

itcration 
1 

:1 
4 
.5 

> 

IV. ILLUSTRATIVE EXAMPLES 
In this section, we apply the DECOMPOSE procedure to examine 

the DFA property for some faulty banyan networks. If the DFA 
property is destroyed, the faulty banyan network is decomposed 
into subsystems possessing the DFA property. We also evaluate the 
probability that a fault set is critical given the number of faulty 
switching elements. In this section, faulty switching elements are 
represented by shaded squares. 

Example 1: Consider the fault set shown in Fig. 2. After perform- 
ing the DECOMPOSE procedure, we found that F is noncritical. The 
contents of A and B (inside the CHECK-DFA procedure) after each 
iteration are shown in Table I. 

Example 2: Consider the fault set shown in Fig. 3. Again, 
the DECOMPOSE procedure is performed to check whether 
F is critical. The results are shown in Table 11. Since there 

content of A content of 13 
8 9 10 I 1  
6 9 I O  I 1  I2 13 14 I 5  8 9 I O  11 
S 9 10 11 1% 13 11 15 I 6  17 IS 19 
8 9 10 I I  12 13 1.1 1.5 8 9 I O  I 1  
0 8 9 I O  I 1  16 17 16 19 

8 9 I O  II 16 17 IS 19 20 21 22 23 

0 

are three subsystems, namely, {0 ,1 ,2 ,3 .4 ,5 ,6 .7 ,24 ,25 ,26 ,  
27}, {8,9,10,11,12,13.14,15,16,17,18,19,20,21,22,23},  and 
{ 28,29,30,31}, that are listed by the DECOMPOSE procedure, the 
fault set F is critical. However, each of the listed subsystems does 
possess the DFA property. 

We now evaluate the probability that a fault set is critical, given 
the number of faulty switching elements. Consider an n-stage banyan 
network, and denote this probability by p p ( i )  when there are i 
faulty switching elements. Again, we assume that no faults occur in 
switching elements located in the first and the last stages. To evaluate 
p c ( i ) ,  we further assume that each switching element is equally likely 
to be faulty. The number of switching elements in stages 2 to n - 1 
is given by M = (n  - 2)2”-’. 

Let Nz = ( y )  denote the total number of possible locations of 
i faulty switching elements. The probability p ~ - ( i )  is defined as 
C ( i ) / N , ,  where C ( i )  is the number of distinct critical fault sets 
having i elements. The value C ( i )  is determined by performing the 
DECOMPOSE procedure for all the N ,  possible fault patterns. Fig. 
4 illustrates the probability p c (  i) against i for n = G ,  7, and 8. It can 
be seen that the probability is very small up to five faulty switching 
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elements. For example, given that there are five faulty switching 
elements, this probability is roughly equal to 0.039, 0.012, or 0.004 
for n = 6, 7 ,  or 8, respectively. Therefore, it is very likely that a 
complicated reconfiguration process can be avoided, as long as the 

RH: A Versatile Family of Reduced Hypercube 
Interconnection Networks 

Sotirios G. Ziavras 
switching elements in the first and the last stages can be kept fault- 
free. In real implementations, the switching elements located in the 
first and the last stages can be well protected by adding redundant 
circuits. 

V. CONCLUSION 
In this short note, we determined a necessary and sufficient 

condition for a faulty banyan network to possess the DFA property, 
and designed a testing procedure based on the condition. The testing 
procedure was used to decompose a faulty banyan network into 
subnetworks possessing the DFA property. We showed that banyan 
networks can tolerate quite a few faulty switching elements without 
losing the DFA property. As a consequence, a complicated recon- 
figuration process can often be avoided if the switching elements 

Abstract-The binary hypercube has been one of the most frequently 
chosen interconnection networks for parallel computers because it pro- 
vides low diameter and is so robust that it can very efficiently emulate 
a wide variety of other frequently used networks. However, the major 
drawback of the hypercube is the increase in the number of communi- 
cation channels for each processor with an increase in the total number 
of processors in the system. This drawback has a direct effect on the 
very large scale integration complexity of the hypercube network. This 
short note proposes a new topology that is produced from the hypercube 
by a uniform reduction in the number of edges for each node. This 
edge reduction technique produces networks with lower complexity than 
hypercubes while maintaining, to a high extent, the powerful hypercube 
properties. An extensive comparison of the proposed reduced hypercube 
(RH) topology with the conventional hypercube is included. It is also 
shown that several copies of the popular cube-connected cycles network 
can be emulated simultaneouslv bv an RH with dilation 1. - -  

in the first and the last stages can be kept fault-free. There are 
several interesting topics in this area that can be further studied. 
For example, sufficient conditions for a fault set to be noncritical, 

Zndex Terms-Emulation, hypercube, hypercube-like systems, intercon- 
nection networks, cube-connected cycles, processing 

other than those determined previously, can be searched to expedite 
the testing. Another topic that is currently under investigation is to 
design and evaluate the performance of rerouting schemes. 

I. INTRODUCTION 
A wide variety of interconnection networks have been proposed 
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