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For any n-by-n matrix A, we consider the maximum number k =
k(A) for which there is a k-by-k compression of A with all its
diagonal entries in the boundary ∂W (A) of the numerical range
W (A) of A. If A is a normal or a quadratic matrix, then the exact
value of k(A) can be computed. For a matrix A of the form B ⊕ C ,
we show that k(A) = 2 if and only if the numerical range of one
summand, say, B is contained in the interior of the numerical range
of the other summand C and k(C) = 2. For an irreducible matrix A,
we can determine exactly when the value of k(A) equals the size
of A. These are then applied to determine k(A) for a reducible
matrix A of size 4 in terms of the shape of W (A).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n-by-n complex matrix. Its numerical range W (A) is, by definition, the set
{〈Ax, x〉: x ∈ C

n, ‖x‖ = 1}, where 〈·,·〉 and ‖·‖ denote the standard inner product and its associ-
ated norm in C

n , respectively. It is well known that W (A) is a nonempty compact convex subset
of the complex plane. For other properties of the numerical range, we refer the reader to [4, Chap-
ter 1]. Let k(A) be the maximum number k of orthonormal vectors x1, . . . , xn ∈ C

n with 〈Ax j, x j〉 in
the boundary ∂W (A) of W (A) for all j. Note that k(A) is also the maximum size of a compression
of A with all its diagonal entries in ∂W (A). Recall that a k-by-k matrix B is a compression of A if
B = V ∗ AV for some n-by-k matrix V with V ∗V = Ik . In particular, if n equals k, then A and B are said
to be unitarily similar, which we denote by A ∼= B . The number k(A) was introduced in [3] and [7].
It relates properties of the numerical range to the compressions of A. In particular, it was shown in
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[3, Lemma 4.1 and Theorem 4.4] that 2 � k(A) � n for any n-by-n (n � 2) matrix A, and k(A) = 	n/2

for any Sn matrix A (n � 3). Recall that an n-by-n matrix A is of class Sn if it is a contraction, that is,
‖A‖ ≡ max‖x‖=1 ‖Ax‖ � 1, its eigenvalues are all in the open unit disc D ≡ {z ∈ C: |z| � 1}, and the
rank of In − A∗ A equals one. In [7, Theorem 3.1], it was proven that k(A) = n for an n-by-n (n � 2)
weighted shift matrix A with weights w1, . . . , wn if and only if either |w1| = · · · = |wn| or n is even
and |w1| = |w3| = · · · = |wn−1| and |w2| = |w4| = · · · = |wn|. Recall that an n-by-n (n � 2) matrix of
the form

⎡
⎢⎢⎢⎣

0 w1

0
. . .
. . . wn−1

wn 0

⎤
⎥⎥⎥⎦

is called a weighted shift matrix with weights w1, . . . , wn .
In Section 2 below, we first determine the value of k(A) for a normal matrix A (Proposition 2.1).

Then we consider the direct sum A = B ⊕ C , where the numerical ranges W (B) and W (C) are as-
sumed to be disjoint. In this case, we show that the value of k(A) is equal to the sum of k1(B) and
k1(C) (Theorem 2.2), where k1(B) and k1(C) are defined as follows. We define k1(B) to be the max-
imum number k for which there are orthonormal vectors x1, . . . , xk in C

n such that 〈Bxi, xi〉 is in
∂W (A) ∩ ∂W (B) for all i = 1, . . . ,k, and similarly for k1(C). Based on the proof of Theorem 2.2, we
obtain the same formula for k(A) under a slightly weaker condition on B and C (Theorem 2.4). In
Section 3, we give some applications of Theorem 2.4. The first one (Proposition 3.1) shows that the
equality k(A) = k1(B)+k1(C) holds for a matrix A of the form B ⊕ C with normal C . In particular, we
are able to determine the value of k(A) for any 4-by-4 reducible matrix A (Corollary 3.4 and Propo-
sitions 3.7–3.9). Moreover, the number k(A ⊕ (A + aIn)) can be determined for any n-by-n matrix A
and nonzero complex number a (Proposition 3.10). At the end of Section 3, we propose several open
questions on k(B ⊕ C) and give a partial answer for one of them (Proposition 3.11). That is, the equal-
ity k(

⊕m
j=1 A) = m · k(A) holds if the dimension of Hξ (A) equals one for each ξ ∈ ∂W (A), where the

subspace Hξ (A) is defined in the first paragraph of Section 2. By using this, we can determine the
value of k(A) for a quadratic matrix A (Corollary 3.12). Recall that a quadratic matrix A is one which
satisfies A2 + z1 A + z2 I = 0 for some scalars z1 and z2.

We end this section by fixing some notation. For any finite square matrix A, we use Re A =
(A + A∗)/2 and Im A = (A − A∗)/(2i) to denote its real and imaginary parts, respectively. The set
of eigenvalues of A is denoted by σ(A). A is called positive definite, denoted by A > 0, if A is Hermi-
tian and 〈Ax, x〉 > 0 for all x 
= 0. In is the n-by-n identity matrix. The n-by-n diagonal matrix with
diagonals ξ1, . . . , ξn is denoted by diag(ξ1, . . . , ξn). The cardinal number of a set S is #(S). The notation
δi j is the Kronecker delta, i.e., δi j has the value 1 if i = j, and the value 0 if otherwise. The span of a
nonempty subset S of a vector space V , denoted by span(S), is the subspace consisting of all linear
combinations of the vectors in S .

2. Direct sum

We start by reviewing a few basic facts concerning the boundary points of a numerical range. For
an n-by-n matrix A, a point ξ in ∂W (A) and a supporting line L of W (A) which passes through ξ ,
there is a θ in [0,2π) such that the ray from the origin which forms angle θ from the positive
x-axis is perpendicular to L. In this case, Re(e−iθ ξ) is the maximum eigenvalue of Re(e−iθ A) with the
corresponding eigenspace Eξ,L(A) ≡ ker Re(e−iθ (A −ξ In)). Let Kξ (A) denote the set {x ∈C

n: 〈Ax, x〉 =
ξ‖x‖2} and Hξ (A) the subspace spanned by Kξ (A). If the matrix A is clear from the context, we will
abbreviate these to Eξ,L , Kξ and Hξ , respectively. For other related properties, we refer the reader to
[2, Theorem 1] and [7, Proposition 2.2]. The next proposition on the value of k(A) for a normal matrix
A is an easy consequence of [7, Lemma 2.9]. It can be regarded as a motivation for our study of this
topic.
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Proposition 2.1. If A is an n-by-n normal matrix with p eigenvalues (counting multiplicity) in ∂W (A), then
k(A) = p.

Proof. We may assume, after a unitary similarity, that A is a matrix of the form B ⊕ C , where B =
diag(λ1, . . . , λp) and C = diag(λp+1, . . . , λn) with λ1, . . . , λp ∈ ∂W (A) and λp+1, . . . , λn ∈ int W (B). It
follows from [7, Lemma 2.9] that k(A) = k(B ⊕ C) = k(B) = p. �

One of our main results of this section is the following theorem for k(A) when A is a matrix of
the form B ⊕ C with disjoint W (B) and W (C). Recall that the value of k1(B) is the maximum number
k for which there are orthonormal vectors x1, . . . , xk in C

n such that 〈Bxi, xi〉 is in ∂W (A) ∩ ∂W (B)

for all i = 1, . . . ,k. If the subset ∂W (A) ∩ ∂W (B) is empty, then we define k1(B) = 0. The following
theorem provides a formula for determining the value of k(A) by k1(B) and k1(C).

Theorem 2.2. Let A = B ⊕ C, where B and C are n-by-n and m-by-m matrices, respectively. If the numerical
ranges W (B) and W (C) are disjoint, then k(A) = k1(B) + k1(C) � k(B) + k(C). In this case, k(A) = k(B) +
k(C) if and only if k1(B) = k(B) and k1(C) = k(C). In particular, k(A) = m+n if and only if k1(B) = k(B) = m
and k1(C) = k(C) = n.

This will be proven after the following lemma which is the case when C corresponds to a 1-by-1
matrix [c].

Recall that z is an extreme point of the convex subset 	 of C if z belongs to 	 and is not ex-
pressible as a convex combination of two other (distinct) points of 	; otherwise, z is a nonextreme
point. Recall also that a point z is called a corner of a convex set 	 of the complex plane if z is in the
closure of 	 and 	 has two supporting lines passing through z. If ξ = 〈Ax, x〉 and ‖x‖ = 1, then x is
called a unit vector corresponding to ξ .

Lemma 2.3. If A = B ⊕ [c] is an n-by-n matrix, where B is of size n − 1 and c is a scalar, then k(A) =
k1(B) + k1([c]).

Proof. By Proposition 2.1, we may assume that the interior of the numerical range W (B) is nonempty.
If c is in the interior of W (B), then k(A) = k(B) by [7, Lemma 2.9]. Obviously, k(B) = k1(B) and
k1([c]) = 0 in this case. Hence it remains to consider the case when c is outside the interior of W (B).
That is, we will prove that k(A) = k1(B) + 1 for c /∈ int W (B). By the definition of k(A), there exist
ξ j = 〈Az j, z j〉 ∈ ∂W (A), j = 1,2, . . . ,k(A), where z j = x j ⊕ y j , and 〈zi, z j〉 = δi j for i, j = 1, . . . ,k(A).
Clearly, the inequality k(A) � k1(B) + 1 holds. Assume that k(A) � k1(B) + 2. We claim that every
x j is a nonzero vector. Indeed, if x j0 = 0 for some j0, then y j0 
= 0 and 〈z j, z j0 〉 = 〈y j, y j0 〉 = 0 for
all j 
= j0. This implies that y j = 0 for all j 
= j0 and thus k1(B) is at least k1(B) + 1, which is
absurd. Hence the claim has been proven. From ξ j = 〈Az j, z j〉 = ‖x j‖2b j + ‖y j‖2c ∈ ∂W (A), where
b j = 〈B(x j/‖x j‖), x j/‖x j‖〉, it follows that ξ j is in the (possibly degenerate) line segment [c,b j], and
b j is in the boundary of W (B) for each j. We note that there are at least two nonzero y j ’s; this is
because if otherwise, then we obtain the inequality k1(B) � k1(B)+1, which is a contradiction. Hence
we may assume that y1, . . . , yh 
= 0, where h � 2, and that this h is the maximum such number.

If c is not in W (B), then there are exactly two points p and q in the boundary of W (B) such that
the two line segments [c, p] and [c,q] are in the boundary of W (A) and the relative interior of these
two line segments are disjoint from the boundary of W (B) by the fact that W (A) is the convex hull
of the union of W (B) and the singleton {c}. Hence there are three cases to consider: the intersection
of the boundary of W (B) and the supporting line at p (resp., q) containing [c, p] (resp., [c,q]) is (1)
{p} (resp., {q}), (2) a line segment [p, p′] (resp., {q}) or {p} (resp., a line segment [q,q′]), or (3) a
line segment [p, p′] (resp., a line segment [q,q′]) (cf. Fig. 1). We need only prove case (2) since other
cases can be done similarly.

Define three (disjoint) subsets consisting of the corresponding unit vectors, and their cardinal num-
bers, respectively, in the following:
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Fig. 1.

R ≡ {
z j: ξ j ∈ [c, p′)

}
with r ≡ #(R),

S ≡ {
z j: ξ j ∈ (c,q)

}
with s ≡ #(S), and

T ≡ {
z j: ξ j ∈ ∂W (A)\([c, p′) ∪ (c,q))

}
with t ≡ #(T ).

So, k(A) = r + s + t . Obviously, every z j ∈ T is of the form x j ⊕ 0. Moreover, we partition R into two
disjoint subsets R1 ≡ {z j: y j 
= 0} and R2 ≡ {z j: y j = 0}. We call their cardinal numbers r1 and r2, re-
spectively. Without loss of generality, we may assume that R1 = {z1, . . . , zr1 }, R2 = {zr1+1, . . . , zr1+r2 },
S = {zr+1, . . . , zr+s}, and T = {zr+s+1, . . . , zr+s+t}, where r1 + r2 = r. This shows that r1 + s = h � 2.

First assume that s = 0. Then r1 � 2. For clarity of the proof, the following method is called
Method I. Since every y j , j = 1, . . . , r1, is nonzero, we define the vectors z′

j = (x j/y j) ⊕ 1 for these

j’s so that the vectors in M ≡ {(z′
1 − z′

j)/‖z′
1 − z′

j‖}r1
j=2 = {(((x1/y1) − (x j/y j)) ⊕ 0)/‖z′

1 − z′
j‖}r1

j=2 are
linearly independent and are perpendicular to vectors in T ∪ R2. This together with [2, Theorem 1]
shows that span(M) ⊆ ⋃

η∈[c,p′] Kη(A) and thus every unit vector in span(M) is a unit vector corre-

sponding to some η ∈ ∂W (B). Choosing an orthonormal basis {v j ⊕ 0}r1
j=2 for the subspace span(M),

we deduce from the orthonormality of the vectors in T ∪ R2 ∪ {v j ⊕ 0}r1
j=2 that

k1(B) � t + r2 + (r1 − 1) = r + s + t − 1 = k(A) − 1 � k1(B) + 1,

which is impossible. Hence we must have s � 1.
If s = 1, then r1 � 1. A similar argument as above yields that

k1(B) �
{

t + r2 + 1 if r1 = 1, and
t + r2 + (r1 − 1) + 1 if r1 � 2

by considering the orthonormal subsets T ∪ R2 ∪ {(xr+1/‖xr+1‖) ⊕ 0} and T ∪ R2 ∪ {v j ⊕ 0}r1
j=2 ∪

{(xr+1/‖xr+1‖)⊕ 0}, where {v j ⊕ 0}r1
j=2 is an orthonormal subset of span(R1), via Method I on R1. The

above inequalities imply that

k1(B) �
{

r + s + t − 1 � k(A) − 1 � k1(B) + 1 if r1 = 1, and
r + s + t − 1 � k(A) − 1 � k1(B) + 1 if r1 � 2.

This is a contradiction. Hence s � 2.
If r1 = 0, then applying Method I on S , we reach a contradiction since

k1(B) � t + r2 + (s − 1) = r + s + t − 1 = k(A) − 1 � k1(B) + 1.

If r1 = 1, then we obviously have the linear independence of the subset N ≡ {(z′
1 − z′

j)/‖z′
1 −

z′
j‖}r+s

j=r+2 = {(((x1/y1) − (x j/y j)) ⊕ 0)/‖z′
1 − z′

j‖}r+s
j=r+2 by applying Method I on S again. Let

{v j ⊕ 0}r+s
j=r+2 be an orthonormal basis for the subspace span(N). Hence

k1(B) � t + r2 + (s − 1) + 1 = r + s + t − 1 = k(A) − 1 � k1(B) + 1
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by the orthonormality of the vectors in T ∪ R2 ∪ {v j ⊕ 0}r+s
j=r+2 ∪ {(x1/‖x1‖) ⊕ 0}. This is again a

contradiction. If r1 � 2, then applying Method I on S and R1, we have the linear independence of
the subsets P ≡ {(z′

1 − z′
j)/‖z′

1 − z′
j‖}r+s

j=r+2 = {(((x1/y1) − (x j/y j)) ⊕ 0)/‖z′
1 − z′

j‖}r+s
j=r+2 and Q ≡

{(z′
1 − z′

j)/‖z′
1 − z′

j‖}r1
j=2 = {(((x1/y1) − (x j/y j)) ⊕ 0)/‖z′

1 − z′
j‖}r1

j=2, respectively. Let {v j ⊕ 0}r+s
j=r+2

be an orthonormal basis for span(P ). Then span(P ) ⊕ span(x ⊕ y) = span(S) for some unit vector
x ⊕ y orthogonal to span(P ). Clearly, x is a nonzero vector; this is because if otherwise, then 0 ⊕ y(∈
span(S)) is orthogonal to z1 = x1 ⊕ y1(∈ R1), which contradicts the fact that y and y1 are nonzero
scalars. Let {v j ⊕ 0}r1

j=2 be an orthonormal basis for the subspace span(Q ). Then we conclude that

the subset T ∪ R2 ∪ {v j ⊕ 0}r1
j=2 ∪ {v j ⊕ 0}r+s

j=r+2 ∪ {(x/‖x‖) ⊕ 0} is orthonormal so that

k1(B) � t + r2 + (r1 − 1) + (s − 1) + 1 = r + s + t − 1 = k(A) − 1 � k1(B) + 1,

which is a contradiction. This completes the proof of case (2).
In case (1), we define three subsets consisting of the corresponding unit vectors, and their cardinal

numbers, respectively, as follows:

R ≡ {
z j: ξ j ∈ [c, p)

}
with r ≡ #(R),

S ≡ {
z j: ξ j ∈ (c,q)

}
with s ≡ #(S), and

T ≡ {
z j: ξ j ∈ ∂W (A)\([c, p

) ∪ (c,q))
}

with t ≡ #(T ).

As for case (3), we have

R ≡ {
z j: ξ j ∈ [c, p′)

}
with r ≡ #(R),

S ≡ {
z j: ξ j ∈ (

c,q′)} with s ≡ #(S), and

T ≡ {
z j: ξ j ∈ ∂W (A)\([c, p′) ∪ (

c,q′))} with t ≡ #(T ).

As before, we partition R (resp., S) into two disjoint subsets R1 ≡ {z j: y j 
= 0} and R2 ≡ {z j: y j = 0}
(resp., S1 ≡ {z j: y j 
= 0} and S2 ≡ {z j: y j = 0}). Based on the arguments for case (2), we get a series
of contradictions for each individual case. In a similar fashion, we remark that if A = B ⊕ cIm , where
c /∈ W (B), then k(A) = k1(B) + k1(cIm) = k1(B) + m. This remark will be used in the remaining part
of the proof.

To complete the proof, we let c be in the boundary of W (B). Assume that ∂W (B) contains no line
segment. We infer that c = b j = ξ j for j = 1, . . . ,h since these ξ j ’s are in the (possibly degenerate)
line segment [c,b j] contained in the boundary of W (B). Define a new vector z′

j = (x j/y j)⊕1 for each

j = 1, . . . ,h. Then the subset S ≡ {(z′
1 − z′

j)/‖z′
1 − z′

j‖}h
j=2 = {(((x1/y1)− (x j/y j))⊕ 0)/‖z′

1 − z′
j‖}h

j=2 is
linearly independent. Since c is an extreme point of W (A), we have Hc(A) = Kc(A) by [2, Theorem 1]
and span(S) is a subspace of Hc(A). Let {v j ⊕ 0}h

j=2 be an orthonormal basis for span(S). Then c =
〈A(v j ⊕ 0), v j ⊕ 0〉 = 〈B v j, v j〉 is in ∂W (B) for j = 2, . . . ,h. Hence

k(B) � (h − 1) + (
k(A) − h

) = k(A) − 1 � k(B) + 1.

This is a contradiction. So, we may assume that ∂W (B) contains a line segment l such that c be-
longs to l. If c is not an extreme point of l, then we infer that c = b j = ξ j or ξ j ∈ (c,b j) for
j = 1, . . . ,h since x j and y j are nonzero vectors for these j’s. Hence z j ∈ Hc(A) for j = 1, . . . ,h
by [2, Theorem 1]. Similar arguments show that Hc(A) has an orthonormal subset {w j ⊕ 0}h

j=2.
Since Hc(A) = ⋃

η∈l Kη(A) by [2, Theorem 1], this implies that w j ⊕ 0 ∈ Kη j (A), where η j ∈ l, for
j = 2, . . . ,h. From η j = 〈A(w j ⊕ 0), w j ⊕ 0〉 = 〈B w j, w j〉 ∈ l ⊆ ∂W (B), where j = 2, . . . ,h, we reach a
contradiction since

k(B) � (h − 1) + (
k(A) − h

) = k(A) − 1 � k(B) + 1.

For the remaining part of the proof, let c be an extreme point of l, where l is a line segment on
the boundary of W (B). We consider two cases: either (a) there is only one line segment in ∂W (B)
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Fig. 2.

passing through c, or (b) there are exactly two line segments in ∂W (B) passing through c. In case (a),
since x j and y j are nonzero vectors for j = 1, . . . ,h, we infer that c = b j = ξ j or ξ j ∈ (c,b j) for
these j’s. This implies that z j ∈ Hη(A) by [2, Theorem 1], where η is not an extreme point of l. So,
the same arguments as above lead us to get a contradiction. For case (b), since c is a corner of W (B),
c is a reducing eigenvalue of B by [1, Theorem 1]. Thus B is unitarily similar to a matrix of the
form B ′ ⊕ cIn′ , where c is not an eigenvalue of B ′ , and the size of B ′ and n′ are both less than n.
Obviously, c /∈ W (B ′). We apply the preceding remark as for the case of c /∈ W (B) to see that k(A) =
k(B ′ ⊕ cIn′+1) = k1(B ′) + n′ + 1, and k(B) = k(B ′ ⊕ cIn′ ) = k1(B ′) + n′ . In addition, k(B) = k1(B) in this
case. Hence we obtain that k(A) = k1(B)+ 1, which contradicts our assumption that k(A) � k1(B)+ 2.
With this, we conclude the proof of the asserted equality. �

We remark that the part of the proof of Lemma 2.3 on c /∈ W (B) involves the following three
cases (1), (2), and (3) depending on whether ∂W (B) contains a line segment or otherwise. In case (1),
we have R = {z j: y j 
= 0} and S = {z j: y j 
= 0}, in (2) R = R1 ∪ R2, where R1 = {z j: y j 
= 0} and
R2 = {z j: y j = 0}, and S = {z j: y j 
= 0}, and in (3) R = R1 ∪ R2, where R1 = {z j: y j 
= 0} and R2 =
{z j: y j = 0}, and S = S1 ∪ S2, where S1 = {z j: y j 
= 0} and S2 = {z j: y j = 0}. Note that the key point
is to handle R and S in (1), R1 and S in (2), and R1 and S1 in (3), that is, all nonzero y j ’s of the
three cases. We find that the proofs of the three cases are almost the same. This observation can
facilitate the proof of Theorem 2.2 as follows. If ∂W (B) contains a line segment such that this line
segment is a portion of ∂W (A) and stretches to a point of ∂W (C), then we take the same method
as the proof of Lemma 2.3 on c /∈ W (B) to partition the corresponding R into R1 = {z j: y j 
= 0}
and R2 = {z j: y j = 0}. As mentioned above, we need only handle R1. On the other hand, if ∂W (B)

contains no such line segments, then we need only handle the corresponding R = {z j: y j 
= 0}. From
this, there is no difference between the proofs of the two cases. Hence we may assume, in the proof
of Theorem 2.2, that ∂W (B) and ∂W (C) contain no line segments.

Before giving a proof of Theorem 2.2, we note several things. First of all, by Lemma 2.3, we may
assume that both of the numerical ranges W (B) and W (C) are not singletons. Secondly, we may
further assume that ∂W (B) and ∂W (C) contain no line segment by the above remark. Thirdly, since
W (A) is the convex hull of the union of W (B) and W (C), there are two line segments, called [a, p]
and [b,q], in ∂W (A), where a,b ∈ ∂W (B) and p,q ∈ ∂W (C). Fourthly, it is easy to check that a 
= b
and p 
= q. Indeed, if a = b, then a is a corner. By [1, Theorem 1], we obtain that a is a reducing
eigenvalue of A, and hence a is a reducing eigenvalue of B . This shows that W (B) must contain a
line segment, which contradicts our previous assumption. Similarly, we also have p 
= q. Combining
the above, we have the following Fig. 2 as the numerical range W (A).

As before, by the definition of k(A), there exist ξ j = 〈Az j, z j〉 ∈ ∂W (A), j = 1,2, . . . ,k(A), where
z j = x j ⊕ y j , and 〈zi, z j〉 = δi j for i, j = 1, . . . ,k(A). We define four (disjoint) subsets consisting of the
corresponding unit vectors, and their cardinal numbers, respectively, as follows:

R ≡ {
z j: ξ j ∈ (a, p)

}
with r ≡ #(R),

S ≡ {
z j: ξ j ∈ (b,q)

}
with s ≡ #(S),

T B ≡ {
z j: ξ j ∈ ∂W (A) ∩ ∂W (B)

}
with t1 ≡ #(T B), and
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TC ≡ {
z j: ξ j ∈ ∂W (A) ∩ ∂W (C)

}
with t2 ≡ #(TC ).

Since the intersection of W (B) and W (C) is empty, and ∂W (B) and ∂W (C) contain no line segment,
we may assume that

R = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}r
j=1,

S = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}r+s
j=r+1,

T B = {z j = x j ⊕ 0: x j 
= 0}r+s+t1
j=r+s+1, and

TC = {z j = 0 ⊕ y j: y j 
= 0}r+s+t1+t2
j=r+s+t1+1.

So, k(A) = r + s + t1 + t2, k1(B) � t1 and k1(C) � t2. Clearly, the inequality k(A) � k1(B)+k1(C) holds.
Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We need only prove that the reversed inequality k1(B) + k1(C) � k(A) holds.
First, we consider the case r = 0. Assume that s = 0. Then our assertion is obvious since

k1(B) + k1(C) � t1 + t2 = r + s + t1 + t2 = k(A).

Assume that s = 1, i.e., z1 = x1 ⊕ y1 ∈ S . Then k1(B) � t1 + 1 since the unit vector (x1/‖x1‖) ⊕ 0 is
clearly orthogonal to T B and 〈B(x1/‖x1‖), x1/‖x1‖〉 is in ∂W (B) by the convex combination

〈Az1, z1〉 = ‖x1‖2
〈

B
x1

‖x1‖ ,
x1

‖x1‖
〉
+ ‖y1‖2

〈
C

y1

‖y1‖ ,
y1

‖y1‖
〉
∈ (b,q).

Hence

k1(B) + k1(C) � (t1 + 1) + t2 = r + s + t1 + t2 = k(A).

Assume that s = 2, i.e., z1 = x1 ⊕ y1 and z2 = x2 ⊕ y2 ∈ S . If x1 and x2 are linearly independent, then
by the Gram–Schmidt process, there are two unit vectors z′

1 and z′
2, where z′

j = x′
j ⊕ y′

j with x′
j 
= 0

for j = 1,2, such that x′
1 and x′

2 are mutually orthogonal, and span({z1, z2}) is equal to span({z′
1, z′

2}).
Choosing the two unit vectors (x′

1/‖x′
1‖) ⊕ 0 and (x′

2/‖x′
2‖) ⊕ 0, we obtain that k1(B) � t1 + 2. Hence

k1(B) + k1(C) � (t1 + 2) + t2 = r + s + t1 + t2 = k(A).

On the other hand, if x1 and x2 are linearly dependent, say, x2 = λx1 for some scalar λ, then we define
a new unit vector

z′
2 = z2 − λz1

‖z2 − λz1‖ = 0 ⊕ y2 − λy1

‖y2 − λy1‖ ∈ span
({z1, z2}

)
so that span({z1, z2}) = span({z′

1}) ⊕ span({z′
2}) for some unit vector z′

1 ≡ x′
1 ⊕ y′

1, where z′
1 and z′

2
are mutually orthogonal. Clearly, x′

1 
= 0 for otherwise, it leads to x1 = x2 = 0, which contradicts the
definition of S . From the two unit vectors (x′

1/‖x′
1‖) ⊕ 0 and z′

2, we infer that k1(B) � t1 + 1 and
k1(C) � t2 + 1. Hence

k1(B) + k1(C) � (t1 + 1) + (t2 + 1) = r + s + t1 + t2 = k(A).

Assume that s � 3, i.e., S = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}s
j=1. We consider the largest linearly

independent subset of {x j}s
j=1 as follows. Without loss of generality, we may assume that this can be

{x j}s
j=1, {x1} or {x j}l

j=1, where 1 < l < s. For the first two cases, it can be done by applying similar
arguments as for the case of s = 2. In the last case, since x j is a linear combination of x1, . . . , xl for
j = l + 1, . . . , s, it is easy to check that the unit vectors

z′
j ≡ z j − ∑l

i=1 a( j)
i zi

‖z − ∑l a( j)z ‖
= 0 ⊕

(
y j − ∑l

i=1 a( j)
i yi

‖y − ∑l a( j) y ‖

)
, j = l + 1, . . . , s, (∗)
j i=1 i i j i=1 i i
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are linearly independent. Let y′
j = y j−

∑l
i=1 a( j)

i yi

‖y j−
∑l

i=1 a( j)
i yi‖

for j = l + 1, . . . , s. Since F ≡ span({z′
j = 0 ⊕

y′
j}s

j=l+1) is a subspace of the space V ≡ span({z j}s
j=1), the orthogonal complement of F in V , called

E , can be written as span({z′
j ≡ x′

j ⊕ y′
j}l

j=1) for some unit vectors z′
j , j = 1, . . . , l. By (∗), we see

that {x′
j}l

j=1 is linearly independent since {x j}l
j=1 is linearly independent. Hence we may assume

that both {x′
j}l

j=1 and {y′
j}s

j=l+1 are orthogonal subsets by the Gram–Schmidt process. This shows

that G1 ≡ {(x′
j/‖x′

j‖) ⊕ 0}l
j=1 and G2 ≡ {0 ⊕ y′

j}s
j=l+1 are orthogonal to T B and TC , respectively. Since

every vector v in G1 (resp., G2) is such that 〈Av, v〉 is in ∂W (B) (resp., ∂W (C)), we obtain that
k1(B) + k1(C) � k(A) from k1(B) � t1 + l and k1(C) � t2 + s − l. This completes the proof of the case
r = 0.

Next, we prove the case r = 1. Obviously, it is sufficient to consider s � 1 since the case r = 1, s = 0
is the same as the case r = 0, s = 1. Assume that s = 1, i.e., z1 = x1 ⊕x2 ∈ R and z2 = x2 ⊕ y2 ∈ S . Then
k1(B) � t1 + 1 and k1(C) � t2 + 1 since (x1/‖x1‖)⊕ 0 and 0 ⊕ (y2/‖y2‖) are orthogonal to T B and TC ,
respectively. Moreover, 〈B(x1/‖x1‖), x1/‖x1‖〉 is in the boundary of W (B) by the convex combination

〈Az1, z1〉 = ‖x1‖2
〈

B
x1

‖x1‖ ,
x1

‖x1‖
〉
+ ‖y1‖2

〈
C

y1

‖y1‖ ,
y1

‖y1‖
〉
∈ (a, p),

and 〈C(y2/‖y2‖), y2/‖y2‖〉 is in the boundary of W (C) by the same arguments. Hence

k1(B) + k1(C) � (t1 + 1) + (t2 + 1) = r + s + t1 + t2 = k(A).

Assume that s = 2. That is, we have R = {z1 = x1 ⊕ y1: x1 
= 0 and y1 
= 0} and S = {z j = x j ⊕
y j: x j 
= 0 and y j 
= 0}3

j=2. If {x2, x3} is linearly independent, then we may assume that it is an
orthogonal set by the Gram–Schmidt process. By the convex combination mentioned above, we infer
from the three unit vectors 0 ⊕ (y1/‖y1‖), (x2/‖x2‖) ⊕ 0, and (x3/‖x3‖) ⊕ 0 that k1(B) � t1 + 2 and
k1(C) � t2 + 1. Hence

k1(B) + k1(C) � (t1 + 2) + (t1 + 1) = r + s + t1 + t2 = k(A).

On the other hand, if {x2, x3} is linearly dependent, say, x2 = λx3 for some scalar λ, then we define a
new unit vector

z′
2 = z2 − λz3

‖z2 − λz3‖ = 0 ⊕ y2 − λy3

‖y2 − λy3‖ ∈ span
({z2, z3}

)
so that span({z2, z3}) = span({z′

2})⊕ span({z′
3}) for some unit vector z′

3 ≡ x′
3 ⊕ y′

3, where z′
2 is orthog-

onal to z′
3. Clearly, x′

3 
= 0 for otherwise, it leads to x2 = x3 = 0, which contradicts the definition of S .
From the three unit vectors 0 ⊕ (y1/‖y1‖), 0 ⊕ ((y2 − λy3)/‖y2 − λy3‖), and (x′

3/‖x′
3‖) ⊕ 0, we infer

that k1(B) � t1 + 1 and k1(C) � t2 + 2. Hence

k1(B) + k1(C) � (t1 + 1) + (t2 + 2) = r + s + t1 + t2 = k(A).

Assume that s � 3, that is, S = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}s+1
j=2, and R = {z1 = x1 ⊕

y1: x1 
= 0 and y1 
= 0}. We consider the largest linearly independent subset of {x j}s+1
j=2 as fol-

lows. Without loss of generality, we may assume that this can be {x j}s+1
j=2, {x2} or {x j}l

j=2, where
2 < l < s + 1. The three largest linearly independent subsets are similar to these under r = 0, s � 3.
Indeed, we need only add this unit vector 0 ⊕ (y1/‖y1‖) to every sub-case of the case r = 0, s � 3.
Hence we have proved that the reversed inequality k1(B) + k1(C) � k(A). This completes the proof of
the case r = 1.

Let r = 2. With the help of the preceding discussions, we may assume that s � 2. Assume that
s = 2, that is, R = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}2

j=1 and S = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}4
j=3. If

{x3, x4} is linearly independent, then we consider two cases as follows. First, we assume that {y1, y2}
is linearly independent. We may further assume that {x3, x4} and {y1, y2} are orthogonal subsets
by the Gram–Schmidt process. Obviously, the two subsets H1 ≡ {0 ⊕ (y1/‖y1‖), 0 ⊕ (y2/‖y2‖)} and
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H2 ≡ {(x3/‖x3‖) ⊕ 0, (x4/‖x4‖) ⊕ 0} are orthogonal to TC and T B , respectively. Since every vector
v in H1 (resp., H2) is such that 〈Av, v〉 is in the boundary of W (C) (resp., W (B)), we infer, from
k1(B) � t1 + 2 and k1(C) � t2 + 2, that k1(B) + k1(C) � k(A). On the other hand, assume that {y1, y2}
is linearly dependent, say, y1 = λy2 for some scalar λ. Then we define a new unit vector z′

1 = (z1 −
λz2)/‖z1 −λz2‖ = ((x1 −λx2)/‖x1 −λx2‖)⊕0 so that span({z1, z2}) = span({z′

1})⊕span({z′
2}) for some

unit vector z′
2 ≡ x′

2 ⊕ y′
2, where z′

1 and z′
2 are mutually orthogonal. Clearly, y′

2 
= 0 for otherwise, it
leads to y1 = y2 = 0, which contradicts the definition of R . Moreover, we may assume that {x3, x4}
is an orthogonal subset by the Gram–Schmidt process. Hence H3 ≡ {((x1 − λx2)/‖x1 − λx2‖) ⊕ 0,

(x3/‖x3‖) ⊕ 0, (x4/‖x4‖) ⊕ 0} and H4 ≡ {0 ⊕ (y′
2/‖y′

2‖)} are orthogonal to T B and TC , respectively.
Since every vector v in H3 (resp., H4) is such that 〈Av, v〉 is in the boundary of W (B) (resp., W (C)),
we infer, from k1(B) � t1 + 3 and k1(C) � t2 + 1, that k1(B) + k1(C) � k(A). On the other hand, if
{x3, x4} is linearly dependent, then we need only consider the case that {y1, y2} is linearly dependent.
So, we may assume that y1 = λy2 and x3 = μx4 for some scalars λ and μ. Define two new unit
vectors

z′
1 = z1 − λz2

‖z1 − λz2‖ = x1 − λx2

‖x1 − λx2‖ ⊕ 0 and z′
3 = z3 − μz4

‖z3 − μz4‖ = 0 ⊕ y3 − μy4

‖y3 − μy4‖ .

Then span({z1, z2}) = span({z′
1}) ⊕ span({z′

2}) and span({z3, z4}) = span({z′
3}) ⊕ span({z′

4}) for some
unit vectors z′

2 = x′
2 ⊕ y′

2 and z′
4 = x′

4 ⊕ y′
4, where z′

2 (resp., z′
4) is orthogonal to z′

1 (resp., z′
3). Clearly,

y′
2 and x′

4 are nonzero by the same argument as above. Hence H5 ≡ {((x1 − λx2)/‖x1 − λx2‖) ⊕ 0,

(x′
4/‖x′

4‖) ⊕ 0} and H6 ≡ {0 ⊕ (y′
2/‖y′

2‖), 0 ⊕ ((y3 − λy4)/‖y3 − λy4‖)} are orthogonal to T B and TC ,
respectively. Since every vector v in H5 (resp., H6) is such that 〈Av, v〉 is in the boundary of W (B)

(resp., W (C)), we infer, from k1(B) � t1 +2 and k1(C) � t2 +2, that k1(B)+k1(C) � k(A). Assume that
s � 3, i.e., R = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}2

j=1, and S = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}s+2
j=3.

If {y1, y2} is linearly independent, then we may assume that {y1, y2} is orthogonal by the Gram–
Schmidt process. In this case, we consider the largest linearly independent subset of {x j}s+2

j=3, which

may be assumed to be {x j}s+2
j=3, {x3} or {x j}l

j=3 (3 < l < s + 2). Each of the three cases can be
handled by applying similar arguments as for the cases of r = 0, s � 2. On the other hand, if
{y1, y2} is linearly dependent, say, y1 = λy2 for some scalar λ, then we define a new unit vector
z′

1 = ((x1 − λx2)/‖x1 − λx2‖) ⊕ 0 so that span({z1, z2}) = span({z′
1}) ⊕ span({z′

2}) for some unit vector
z′

2 = x′
2 ⊕ y′

2, where z′
1 and z′

2 are mutually orthogonal. Clearly, y′
2 is nonzero by the same argument

as for the case of r = 0, s = 2. To complete the proof, it remains to consider the three cases mentioned
above. By applying similar arguments again as for the cases of r = 0, s � 2, we obtain the reversed
inequality k1(B) + k1(C) � k(A). This completes the proof of the case r = 2.

Finally, assume that r � 3. It suffices to consider s � 3 since s � 2 has been proven if we
exchange the roles of s and r. Hence R = {z j = x j ⊕ y j: x j 
= 0 and y j 
= 0}r

j=1, and S = {z j =
x j ⊕ y j: x j 
= 0 and y j 
= 0}r+s

j=r+1. As mentioned previously, there are three cases by considering the

largest linearly independent subset of {y j}r
j=1 (resp., {x j}r+s

j=r+1). Without loss of generality, we may

assume that this can be {y j}r
j=1, {y1} or {y j}l1

j=1, where 1 < l1 < r, and {x j}r+s
j=r+1, {xr+1} or {x j}r+l2

j=r+1,
where 1 < l2 < s. There are a total of nine cases to be considered. Since each case is similar to the one
under r = 0, s � 1, it follows that the reversed inequality k1(B) + k1(C) � k(A) holds. This completes
the proof of the case r � 3. �

At the end of the section, we give a generalization of Theorem 2.2 under a slightly weaker
condition on B and C . Let A be a matrix of the form B ⊕ C . Since W (A) is the convex hull of
the union of W (B) and W (C), we consider two (disjoint) subsets of ∂W (A) as follows: one is
∂W (A) \ (∂W (B) ∪ ∂W (C)) ≡ Γ1, and the other is ∂W (A) ∩ ∂W (B) ∩ ∂W (C) ≡ Γ2. Geometrically,
Γ1 consists of the line segments contained in ∂W (A) but not in ∂W (B) ∪ ∂W (C). For Γ2, since the
common boundaries of the three numerical ranges consist of the line segments and points which are
not in the line segments, every point of the latter is regarded as a degenerate line segment. Hence
Γ2 consists of the (possibly degenerate) line segments contained in the common boundaries of the
three numerical ranges. If Γ ≡ Γ1 ∪ Γ2 consists of at most two (possibly degenerate) line segments,
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then we say that W (A) has property Λ. Evidently, the disjointness of W (B) and W (C) implies that
property Λ holds since Γ1 consists of exactly two line segments and Γ2 is empty.

Applying the similar arguments in the proof of Theorem 2.2, property Λ is enough to establish the
equality k(A) = k1(B) + k1(C). Hence we have the following theorem.

Theorem 2.4. Let A = B ⊕ C, where B and C are n-by-n and m-by-m matrices, respectively. If W (A) has
property Λ, then k(A) = k1(B)+k1(C) � k(B)+k(C). In this case, k(A) = k(B)+k(C) if and only if k1(B) =
k(B) and k1(C) = k(C). In particular, k(A) = m + n if and only if k1(B) = k(B) = m and k1(C) = k(C) = n.

3. Applications and discussion

The first application of our results in Section 2 is a generalization of Lemma 2.3. Indeed, we are
able to determine the value of k(A) for A = B ⊕ C with normal C .

Proposition 3.1. Let A = B ⊕ C, where C is an m-by-m normal matrix. Then k(A) = k1(B) + k1(C). In this
case, k(A) = k(B) + k(C) if and only if k1(B) = k(B) and k1(C) = k(C). In particular, if C = cIm for some
scalar c, then k(A) = k1(B) + k1(cIm).

Proof. Let the normal C be unitarily similar to
⊕m

j=1[c j]. By [7, Lemma 2.9], we may assume that
all the c j ’s are lying in ∂W (A). This shows that k1(C) = m immediately. On the other hand, we also
obtain k(A) = k1(B) + m by Lemma 2.3. Hence the asserted equality k(A) = k1(B) + k1(C) has been
proven. For the remaining part of the proof, it holds trivially by this equality. �

An easy corollary of Proposition 3.1 is the determination of when k(A) equals the size of A for a
matrix A = B ⊕ C with normal C .

Corollary 3.2. Let A = B ⊕ C, where B is an n-by-n matrix and C is an m-by-m normal matrix. Then k(A) =
n + m if and only if k1(B) = n and k1(C) = m. Assume, moreover, that dim Hη = 1 for all η ∈ ∂W (B). Then
k(A) = n + m if and only if k1(B) = n � 2 and k1(C) = m.

Proof. By Proposition 3.1, it is clear that k(A) equals the size of A if and only if k1(B) and k1(C) equal
the sizes of B and C , respectively. In this case, the assumption on Hη implies that k1(B) = n � 2 by
[7, Proposition 2.10]. This completes the proof. �

For a matrix A of the form B ⊕C , we recall the decomposition Γ = Γ1 ∪Γ2 at the end of Section 2,
where Γ1 = ∂W (A) \ (∂W (B) ∪ ∂W (C)) and Γ2 = ∂W (A) ∩ ∂W (B) ∩ ∂W (C). The next proposition
gives a lower bound for k(A).

Proposition 3.3. Let A = B ⊕ C be an n-by-n (n � 3) matrix. Then Γ is empty if and only if the numerical
range of one summand is contained in the interior of the numerical range of the other summand. In particular,
if Γ is nonempty, then k(A) � 3.

Proof. If Γ = Γ1 ∪ Γ2 is empty, then both Γ1 and Γ2 are empty. Since Γ1 is empty, ∂W (A) is con-
tained in ∂W (B) ∪ ∂W (C). This implies that W (B) ∩ W (C) is nonempty and thus W (B) = W (C),
W (B) ⊆ int W (C) or W (C) ⊆ int W (B). Moreover, Γ2 = φ implies that W (B) 
= W (C). With this, we
conclude that either W (B) ⊆ int W (C) or W (C) ⊆ int W (B). The converse is obvious. Hence we have
proved the first assertion. Let Γ be nonempty, i.e., either Γ1 or Γ2 is nonempty. If Γ1 is nonempty,
then there is a line segment on the boundary of W (A). This shows that k(A) � 3 by [7, Corollary 2.5].
On the other hand, if Γ2 is nonempty, then there is a (possibly degenerate) line segment on the com-
mon boundaries of the three numerical ranges. Using [7, Corollary 2.5] again, we may assume that the
line segment is degenerate, say, to {ξ}. This implies immediately that dimξ H(A) � 2. Thus k(A) � 3
by [7, Proposition 2.4]. �
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As an application, when A is reducible, the next corollary gives a necessary and sufficient condition
for k(A) = 2.

Corollary 3.4. Let A = B ⊕ C be an n-by-n (n � 3) matrix. Then k(A) = 2 if and only if either k(B) = 2 and
W (C) ⊆ int W (B), or k(C) = 2 and W (B) ⊆ int W (C).

Proof. If k(A) = 2, then Proposition 3.3 shows that Γ is empty, and thus the numerical range of one
summand, say, B is contained in the interior of the numerical range of the other summand C . Hence
k(C) = 2 by [7, Lemma 2.9]. The converse is obvious by [7, Lemma 2.9] again. �

The following proposition determines exactly when k(A) equals the size of A for an irreducible
matrix A.

Proposition 3.5. Let A be an n-by-n (n � 3) irreducible matrix. Then k(A) = n if and only if ∂W (A) contains
a line segment l and there are n points (not necessarily distinct) in l ∪ (∂W (A) ∩ L), where L is the supporting
line parallel to l, such that their corresponding unit vectors form an orthonormal basis for Cn.

Proof. We need only prove the necessity. Assume that A is an n-by-n (n � 3) irreducible matrix
with k(A) = n. If ∂W (A) contains no line segment, then dim Hξ = dim Eξ,l � n

2 for all ξ ∈ ∂W (A)

by [7, Proposition 2.2]. If n is odd, say, n = 2m + 1, then dim Hξ = dim Eξ,l � m for all ξ ∈ ∂W (A).
Since k(A) = n, it follows from [7, Theorem 2.7] that A is reducible, which is absurd. If n is even,
say, n = 2m, then m � 2 by our assumption that n � 3. Since k(A) = n and ∂W (A) contains no line
segment, A is unitarily similar to a matrix of the form[

ξ Im eiθ D
−eiθ D∗ ηIm

]

by [7, Theorem 2.7], where dim Hξ = dim Hη = m. Let D = U S V be the singular value decomposition
of D , where U and V are unitary and S = diag(s1, . . . , sm) is a diagonal matrix with s j � 0, j =
1, . . . ,m. Then[

U∗ 0
0 V

][
ξ Im eiθ D

−eiθ D∗ ηIm

][
U 0
0 V ∗

]
=

[
ξ Im eiθ S

−eiθ S ηIm

]

is unitarily similar to

m⊕
j=1

[
ξ eiθ s j

−eiθ s j η

]
.

This contradicts the irreducibility of A. Hence ∂W (A) must contain a line segment. We then apply [7,
Theorem 2.7] again to complete the proof. �

An easy corollary of Proposition 3.5 is the following upper bound for k(A). This result was shown
in [7, Proposition 2.10]. Here we give a simpler proof.

Corollary 3.6. If A is an n-by-n (n � 3) matrix with dim Hξ = 1 for all ξ ∈ ∂W (A), then k(A) � n − 1.

Proof. Assume that k(A) = n. It suffices to consider that A is reducible; this is because if otherwise,
then Proposition 3.5 shows that ∂W (A) contains a line segment, which contradicts the assumption
on Hξ . Let A = B ⊕ C . Then our assumption on Hξ implies that Γ is empty. By Proposition 3.3, we
obtain that the numerical range of one summand is contained in the interior of the numerical range
of the other summand. It follows from [7, Lemma 2.9] that the value of k(A) equals k(B) or k(C).
Thus k(A) � n − 1 as asserted. �
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We now combine Proposition 3.1, Corollary 3.2, Corollary 3.4, and Proposition 3.5 to determine
the value of k(A) for any 4-by-4 reducible matrix A. Corollary 3.4 shows exactly when the value
of k(A) equals two. By Proposition 3.1, Corollary 3.2 and Proposition 3.5, we get a necessary and
sufficient condition for the value of k(A) to be equal to four. In other words, the value of k(A) can be
determined completely for any 4-by-4 reducible matrix A. To do this, we note that a 4-by-4 reducible
matrix A can be written, after a unitary similarity, as (i) A = B ⊕ [c], where B is a 3-by-3 irreducible
matrix and c is a complex number, (ii) A = B ⊕ [c], where B is a 3-by-3 reducible matrix and c is a
complex number, or (iii) A = B ⊕ C , where B and C are 2-by-2 irreducible matrices. Proposition 3.7
below is to deal with case (i).

Recall that for a 3-by-3 irreducible matrix A, W (A) is of one of the following shapes (cf. [5]): an
elliptic disc, the convex hull of a heart-shaped region, in which case ∂W (A) contains a line segment,
and an oval region.

Proposition 3.7. Let A = B ⊕ [c], where B is a 3-by-3 irreducible matrix and c is a complex number. Then
k(A) = 4 if and only if c /∈ int W (B) and {a1,a2,b} ⊆ ∂W (A), where W (B) is the convex hull of a heart-
shaped region, in which case ∂W (B) contains a line segment [a1,a2] contained in the supporting line L1 of
W (B) at a1 and a2 , and L2 is the supporting line of W (B) at b which is parallel to L1 .

Proof. By Corollary 3.2, we see that k(A) = 4 is equivalent to k1(B) = 3 and k1([c]) = 1. Since a neces-
sary and sufficient condition for k1([c]) = 1 is that c /∈ int W (B), it remains to show that k1(B) = 3 if
and only if {a1,a2,b} ⊆ ∂W (A) and W (B) satisfies the asserted properties. If k1(B) = 3, then k(B) = 3.
Hence it follows from Proposition 3.5 that ∂W (A) contains {a1,a2,b}, and W (B) is as asserted. The
converse is trivial. �

For case (ii), let A = B ⊕ [c], where B is a 3-by-3 reducible matrix. After a unitary similarity,
B can be written as C ⊕ [b], where C is a 2-by-2 matrix, so that k(A) = k1(C) + k1([b] ⊕ [c]) by
Proposition 3.1. The following proposition gives a necessary and sufficient condition for k(A) to be
equal to four.

Proposition 3.8. Let A = C ⊕ [b] ⊕ [c], where C is a 2-by-2 matrix, and b and c are complex numbers. Then
k(A) = 4 if and only if both b and c are in ∂W (A) and k1(C) = 2.

Proof. By Corollary 3.2, it is obvious that k(A) = 4 if and only if k1(C) = 2 and k1([b] ⊕ [c]) = 2.
Moreover, it is also clear that k1([b]⊕ [c]) = 2 is equivalent to both of b and c being in ∂W (A). Hence
the proof is complete. �

To prove for case (iii), let A = B ⊕ C , where B and C are 2-by-2 irreducible matrices. Since W (A)

is the convex hull of the union of the two elliptic discs W (B) and W (C), either W (B) equals W (C),
or Γ consists of at most four (possibly degenerate) line segments. With this, we are now ready to
give a necessary and sufficient condition for k(A) = 4.

Proposition 3.9. Let A = B ⊕ C, where B and C are 2-by-2 irreducible matrices. Then k(A) = 4 if and only
if Γ consists of at least three line segments (including the possibly degenerate cases), or Γ consists of exactly
two (possibly degenerate) line segments such that k1(B) = k1(C) = 2.

Proof. If Γ consists of more than four (possibly degenerate) line segments, then the two elliptic discs
W (B) and W (C) are identical. Hence k(A) = 4 by direct computations. If Γ consists of four or three
(possibly degenerate) line segments, then the endpoints of the major axes of the two elliptic discs
W (B) and W (C) are in ∂W (A). Hence k(A) = 4. If Γ consists of exactly two (possibly degenerate)
line segments such that k1(B) = k1(C) = 2, then k(A) = 4 by Theorem 2.4. Therefore we have proved
the sufficient condition for k(A) = 4. Next assume that k(A) = 4 and either Γ consists of exactly two
(possibly degenerate) line segments such that the equalities k1(B) = k1(C) = 2 fail, or Γ consists of
at most one (possibly degenerate) line segment. Since property Λ holds in each case, we must have
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k1(B) = k1(C) = 2 by Theorem 2.4. This shows that we need only consider the latter. If Γ consists
of exactly one (possibly degenerate) line segment, then Γ1 is empty and Γ2 is a singleton. Hence
we may assume that W (B) is contained in W (C) and the intersection of W (B) and W (C) is Γ .
This shows that k1(B) = 1 and k1(C) = 2, which is a contradiction. If Γ is empty, then it follows
from Proposition 3.3 that the numerical range of one summand, say, B is contained in the interior
of the numerical range of the other summand C . By Corollary 3.4 and [3, Lemma 4.1], we see that
k(A) = k(C) = 2, which is absurd. This completes the proof. �

As a final application of Theorem 2.4, it is obvious that the convex hull of the union of W (A) and
W (A + aIn) has property Λ for any a 
= 0. Hence we obtain the following proposition.

Proposition 3.10. Let A be an n-by-n matrix and a be a nonzero complex number. Then k(A ⊕ (A + aIn)) =
k1(A) + k1(A + aIn). In this case, k(A ⊕ (A + aIn)) = 2k(A) if and only if k1(A + aIn) = k1(A) = k(A).

We conclude this paper by stating the following open questions concerning this topic. Is it true
that the equality k(A) = k1(B) + k1(C) holds for a matrix A of the form B ⊕ C even if property
Λ fails? We note that although property Λ fails, the mentioned formula may still be correct (cf.
Proposition 3.1). Another natural example of the failure of property Λ is that both W (B) and W (C)

have the same numerical range. Is it true that k(B ⊕ C) = k(B) + k(C) in this case? In particular, can
we determine the value of k(A ⊕ A) (cf. Proposition 3.10)? The following proposition gives a partial
answer for k(A ⊕ A) if we assume, in addition, that dim Hξ = 1 for all ξ ∈ ∂W (A).

Proposition 3.11. If A is an n-by-n matrix with dim Hξ = 1 for all ξ ∈ ∂W (A), then

k

(
m⊕

j=1

A

)
= m · k(A).

Proof. Obviously, the inequality k(⊕m
j=1 A) � m · k(A) holds. To prove the reversed inequality, we con-

sider, for convenience, the case m = 2. Let ξ1 ∈ ∂W (A ⊕ A). Then dim Hξ1 (A ⊕ A) = 2 by our assump-
tion on Hξ (A). Hence the subspace Hξ1 (A ⊕ A) is spanned by the two unit vectors x1 ⊕ 0 and 0 ⊕ x1,

where ξ1 = 〈Ax1, x1〉. Let z1 be a unit vector in Hξ1 (A ⊕ A). Then z1 = (α1x1 ⊕ α2x1)/
√|α1|2 + |α2|2,

where α1 and α2 are in C. Similarly for ξ2 ∈ ∂W (A ⊕ A). That is, the subspace Hξ2 (A ⊕ A) is spanned
by the two unit vectors x2 ⊕ 0 and 0 ⊕ x2, where ξ2 = 〈Ax2, x2〉. Moreover, if z2 is a unit vector
in Hξ2 (A ⊕ A), then z2 = (β1x2 ⊕ β2x2)/

√|β1|2 + |β2|2, where β1 and β2 are in C. Obviously, the
orthogonality of z1 and z2 is equivalent to (α1β̄1 + α2β̄2)〈x1, x2〉 = 0, i.e.,〈[

α1
α2

]
,

[
β1
β2

]〉
〈x1, x2〉 = 0.

This shows that k(A ⊕ A) � 2k(A) immediately by the definition of k(A).
For general m, a similar argument as above yields that

〈⎡
⎣ α1

...

αm

⎤
⎦ ,

⎡
⎣ β1

...

βm

⎤
⎦

〉
〈x1, x2〉 = 0

for some scalars α1, . . . ,αm and β1, . . . , βm , where x1 and x2 are similarly defined. Since the di-
mension of C

m is m, the number of these vectors of the form [α1, . . . ,αm]T which are orthogonal
to each other is at most m. We infer from this and the above equality that the reversed inequality
k(

⊕m
j=1 A) � m · k(A) holds. Therefore we have the asserted equality. �

At the end of this section, we apply Proposition 3.11 to the quadratic matrices. Recall that an
n-by-n quadratic matrix A is unitarily similar to a matrix of the form
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aIn1 ⊕ bIn2 ⊕
[

aIn3 D
0 bIn3

]
,

where n1,n2,n3 � 0, n1 + n2 + n3 = n, D > 0, and a,b ∈ σ(A) (cf. [6, Theorem 2.1]).

Corollary 3.12. Let A be an n-by-n quadratic matrix of the above form. If D > 0, then k(A) = 2 · #({λ ∈
σ(D): λ = ‖D‖}).

Proof. If D > 0, then D is unitarily similar to diag(d1, . . . ,dn3 ), where d1 = · · · = dp = ‖D‖ ≡
d > dp+1 � · · · � dn3 � 0 (1 � p � n3). Hence A is unitarily similar to a matrix of the form
aIn1 ⊕ bIn2

⊕p
j=1 B

⊕n3
j=p+1 B j , where n1 + n2 + 2n3 = n,

B ≡
(

a d
0 b

)
, and B j ≡

[
a d j
0 b

]
, j = p + 1, . . . ,n3.

Since the set {a,b} and all of the numerical ranges W (B j), j = p + 1, . . . ,m, are contained in the
interior of W (B), it follows from [7, Lemma 2.9] that k(A) = k(

⊕p
j=1 B). Since dim Hξ (B) = 1 for all

ξ ∈ ∂W (B), we have k(A) = p · k(B) by Proposition 3.11. Obviously, k(B) = 2 by [3, Lemma 4.1]. Thus
k(A) = 2p as asserted. �

We remark that in the preceding proof the equality k(
⊕p

j=1 B) = 2p can also be established di-

rectly. Indeed, the inequality k(
⊕p

j=1 B) � 2p holds trivially and we can infer from [3, Lemma 4.1]

that k(
⊕p

j=1 B) = 2p.
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