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ABSTRACT

This paper considers a spatially separated wireless sensor network, which consists of a number of isolated subnetworks
that could be far away from each other in distance. We address the issue of using mobile mules to collect data from these
sensor nodes. In such an environment, both data-collection latency and network lifetime are critical issues. We model this
problem as a bi-objective problem, called energy-constrained mule traveling salesman problem (EM-TSP), which aims at
minimizing the traversal paths of mobile mules such that at least one node in each subnetwork is visited by a mule and the
maximum energy consumption among all sensor nodes does not exceed a pre-defined threshold. Interestingly, the traversal
problem turns out to be a generalization of the classical traveling salesman problem (TSP), an NP-complete problem. With
some geometrical properties of the network, we propose some efficient heuristics for EM-TSP. We then extend our heuris-
tics to multiple mobile mules. Extensive simulation results have been conducted, which show that our proposed solutions
usually give much better solutions than most TSP-like approximations. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The progress of embedded micro-sensing microelectrome-
chanical systems (MEMS) and wireless communications
has made wireless sensor networks (WSNs) feasible.
A conventional WSN normally consists of a sink and
many inexpensive sensor nodes deployed in a sensing
field. Each node has the capability of sensing, collecting,
processing, and storing environment information, and com-
municating with neighboring sensor nodes. Many applica-
tions such as object tracking, health monitoring, security
surveillance, and intelligent transportation [1–4] have been
proposed.

This paper considers a spatially separated WSN (SS-
WSN), which consists of several isolated subnetworks.
These subnetworks are not connected because of reasons
such as cost constraints, physical constraints (rivers and
mountains), or unavoidable disasters (explosions or earth-
quakes), and thus called spatially separated. For example,
as a result of geographical constraints, the sensing field
could be huge, and deploying a connected WSN is very dif-
ficult. Even if the WSN is initially connected, it could be

partitioned because of emergencies such as fires. In addi-
tion, when random deployment is adopted, the network is
not necessarily connected. Therefore, we believe that an
SS-WSN may appear frequently in many practical appli-
cations, such as ecology-observing systems [5]. However,
coordination among these isolated subnetworks is neces-
sary. We thus consider using mobile mules to travel among
these subnetworks to collect data. Figure 1 shows an exam-
ple, where a helicopter serves as a mobile mule to provide
connectivity among these isolated subnetworks. In fact,
depending on different scenarios and availability of mules,
there may exist various applications of such an SS-WSN
architecture. For example, in a long-term monitoring appli-
cation of a huge forest, deploying an SS-WSN is inevitable.
In this case, a set of robotic cars may patrol along footpaths
in the forest to collect sensing data of multiple geograph-
ical areas, where the moving paths between two subnet-
works can be simply modeled as a set of footpaths. In
contrast, in underwater monitoring applications, although
there is no geographical constraints in an underwater envi-
ronment, data collection may highly rely on mobile mules
because dramatic signal attenuation can easily partition
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Figure 1. An example of one round of data gathering by a mobile mule in a spatially separated wireless sensor network.

a sensor network. In this case, submarines may serve as
mobile mules [6].

This paper considers the data gathering issue in an SS-
WSN. We focus on exploiting mobile mules (‘mules’ for
short) to collect subnetworks’ sensory data. For example,
in Figure 1, a mule is initially located at the sink node v0.
Assuming an identical data generation rate for each sen-
sor, our goal is to dispatch the mule from v0 to visit one
sensor node in each subnetwork and then return to v0. The
node being visited in each subnetwork is called the land-
ing port of the subnetwork. Any node can be selected as
a landing port. (For load balance consideration, it is pos-
sible to have multiple landing ports in a subnetwork; this
will be addressed later on.) Therefore, the mule will switch
between an inter-subnetwork movement state and an intra-
subnetwork data gathering state. During the movement
state, the mule leaves from its current landing port and
moves to the next landing port. During the data gathering
state, the mule stays at a landing port, contacts all one-
hop neighboring nodes (termed gateway nodes), requests
all nodes in this subnetwork to form a data-collection
tree rooted at the mule, and commands all nodes to relay
their sensory data to the mule along the tree. When the
mule returns to v0, it relays all collected data to v0. This
completes one round of data gathering.

Two critical issues in the aforementioned scenario are
data-collection latency and energy conservation. The for-
mer is to quickly collect sensory data from all sensors in

the SS-WSN, whereas the latter is to prolong the network
lifetime. To minimize the data-collection latency, we need
to compute the shortest traversal path for the mule to visit
each subnetwork in exactly one landing port. To prolong
the network lifetime, we should enforce the mule to visit
each node in each subnetwork (implying that a node needs
not to relay data for others). Clearly, these are trade-offs.
In this paper, we define a new problem called energy-
constrained mule traveling salesman problem (EM-TSP),
which is a generalization of the Euclidean traveling sales-
man problem (ETSP) [7]. The goal of EM-TSP is to find
the shortest traversal path of the mule to visit each sub-
network at least one landing port. The landing ports of
each subnetwork will connect all nodes in that subnetwork
via some data-collection trees rooted at them, such that
the maximum energy consumption among sensor nodes
does not exceed a pre-defined threshold �e. EM-TSP gen-
eralizes ETSP as follows: (i) it is sufficient to visit some
landing ports in each subnetwork; (ii) load balance among
gateways (due to the selection of landing ports) is essen-
tial; and (iii) the construction of intra-subnetwork data-
collection trees also matters. On the other hand, if we limit
�e such that a node can only transmit the data generated by
itself but not relay data for others, EM-TSP degenerates to
ETSP. We will give a formal nondeterministic polynomial
(NP)-hardness proof.

Clearly, the existing solutions to ETSP cannot directly
be applied to EM-TSP efficiently. We thus need to design a
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new data gathering scheme for EM-TSP. It consists of three
phases. The first phase is to properly partition each sub-
network, if necessary, into multiple subnetworks to meet
the constraint �e. Note that �e is an application-specific
parameter to provide flexibility in dealing with different
application requirements. For example, one may use �e to
balance between minimizing data-collection latency and
maximizing the network lifetime. When �e is very large,
each original subnetwork will remain as one subnetwork,
thus imposing more work on data relay and damaging net-
work lifetime. On the contrary, when �e is very small, each
original subnetwork will be divided into many small sub-
networks, thus imposing more work on mules. The second
phase is to plan a traversal path for the mule to visit each
subnetwork. Several schemes are proposed. In particular,
we adopt the approach in [8], which shows that, when
nodes are placed in a Euclidean space, the CH of input
nodes in ETSP has some geometrical properties closely
related to the optimal solution to ETSP. This motivates us
to define a special convex polygon, termed convex con-
tainer (CC), with some geometrical properties that help
find thes shorter traversal path. Finally, the third phase is to
construct a data-collection tree in each subnetwork to min-
imize the energy consumption of nodes. In addition, we
also extend our proposed scheme to the case of multiple
mules. Extensive simulations have been conducted, which
show that an exhausted search usually cannot find the opti-
mal solution in a limited time, whereas our heuristic not
only has low computation complexity but also gives much
better solutions than several TSP-like approximations.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 describes our net-
work model and the problem definition. Section 4 presents
our algorithms. Simulation results are in Section 5. Finally,
Section 6 concludes this paper.

2. RELATED WORK

In this section, we survey some mobility control schemes
in mobile WSNs [9] and some path-planning techniques.

For mobility control, researchers have studied the func-
tionality of mobile sensor nodes in both homogeneous and
heterogeneous networks. For homogeneous networks, the
authors of [10–12] consider that all sensor nodes have
identical capability. To address coverage and connectivity
issues, Zou and Chakrabarty [10] and Heo and Varshney
[11] adopt virtual forces to move sensors, whereas Wang
et al. [12] use Voronoi diagram to detect coverage holes
and then move sensors to cover these holes.

For heterogeneous networks, it is normally assumed that
there are some resource-richer mobile nodes. In [13] and
[14], actors are used to respond to dynamic events and pro-
vide appropriate actions. In [15] and [16], mobile actors
with long transmission ranges are used to relay data for
their local cluster, which are formed by static sensors.
Recently, for spatially separated subnetworks, researchers
have designed mobile nodes, called data mules, to conduct

message relaying. Random mobility are assumed for such
mules in [17–19]. Because random mobility may incur
unbounded data-collection delay, message ferries with
controllable mobility are studied. Reference [20] designs
moving paths of robots for search and rescue systems.
In [21], there is a ferry moving along a publicly known
route. With knowledge of the ferry route, nodes can proac-
tively schedule their transmission/reception with the ferry.
An optimization problem is to find a ferry route such that
the average message delay is minimized and that the com-
munication time of each node can be met. Two ferrying
schemes are proposed in [22]. One allows nodes to periodi-
cally move closer to the ferry route. The other allows nodes
to request the ferry, via high-power radios, to approach
them when they have intention to transmit/receive. The
optimization goal is to minimize the message drops. Mul-
tiple ferries are considered in [23], where packets may be
relayed by multiple ferries before reaching their destina-
tions. In [24], sensors with different weights are deployed
sparsely in an isolated way. Data mules must visit sen-
sors along deterministic paths to collect their data such
that sensors with higher weights are visited with lower
inter-arrival time and that the total length of paths is min-
imized. Reference [25] further extends [24] by designing
probabilistic paths for data mules. In [26], sensors are mod-
eled as disjoint disks with different radii, and a mobile
robot is dispatched to visit each sensor with the shortest
traversal path. Note that a sensor is visited once the robot
is within its communication range. (In comparison, our
work assumes that it is sufficient to visit one representative
node in each subnetwork.) To relieve the funneling effect
[27] in a connected WSN, researchers have proposed to
use mobile collectors. Given a candidate set of rendezvous
points, finding moving paths to visit these points are stud-
ied in [28]. How to find better rendezvous points is studied
in [29,30]. Distributed protocols are designed in [31,32]
to navigate these mobile collectors, where a point may be
visited by a multi-hop path.

The aforementioned results are highly related to the clas-
sical path-planning issues, such as the traveling salesman
problem (TSP). In [33], a 2-approximation algorithm with
complexity O.n2/ for TSP based on the minimum span-
ning tree (MST) of nodes is proposed, where n is the
number of nodes. In [34], a .1:5/-approximation, termed
Christofides heuristic, with complexity O.n3/ based on
MST and the minimum-length matching of nodes is pro-
posed. These two algorithms may find a self-intersecting
path. When nodes are scattered in an Euclidean space,
for a fixed c > 1, Arora [35] proposed a .1 C 1=c/-
approximation scheme with complexity O.n.logn/O.c//,
by putting nodes in a square box, partitioning them into
smaller grids, and finding an initial path that enters and
exits grids only through some special points, termed por-
tals, such that self-intersections are avoided. Note that
these approaches cannot handle EM-TSP because a mobile
sensor only needs to be within the communication range of
a node or a representative node of a subnetwork. With these
path-planning technologies, Meliou et al. [36] designed the
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paths for query/reply messages in a static and connected
WSN, where a path is allowed to split into multiple ones
and eventually converge into one before arriving at the
sink. Reference [37] extends [36] by considering the set
of queried sensor nodes being time varying.

3. NETWORK MODEL AND
PROBLEM DEFINITION

The SS-WSN is modeled as an undirected graph G D

.V ;E/, where V is the set of sensor nodes and E is the
set of communication links. A special node v0 2 V is des-
ignated as the sink node and is responsible for collecting
sensory data from all other nodes in V . Each node has
a communication range of rc . Constrained by rc and the
physical environment, the network G is spatially separated
in the sense that it is partitioned into multiple connected
subnetworks G0; G1; : : : ; Gn. Without loss of generality,
we let sink v0 2 G0. The location of each vi 2 V is
denoted by .xi ; yi / (how to identify nodes’ locations is out
of the scope of this work). The Euclidean distance between
two vi and vj in V is denoted by d.vi ; vj /. We assume a
long-term monitoring application, where each sensor node
has an identical data generation rate � and an identical ini-
tial energy Etotal. A mobile mulem is responsible for mov-
ing to these subnetworks to collect and deliver their sensing
data to v0. We assume that m also has a communication
range of rc .

We are interested in the data gathering issue in an SS-
WSN G. This is achieved by the cooperation among v0,
m, and all subnetworks. The problem is formulated as
follows. Time is divided into rounds. In each round, m
will leave from v0, visit each subnetwork, collect all data
therein, return to v0, and forward the collected data to v0.
Therefore, during a round, m will switch between an inter-
subnetwork movement state and an intra-subnetwork data
gathering state. A movement state starts when m leaves
from the landing port of its current subnetwork and ends
when m arrives at the landing port of the next subnetwork.
A landing port of a subnetwork can be any sensor node in
the subnetwork. In the beginning of a round, m will stay at
v0. Then, it will visit one or multiple landing ports in each
Gi ¤ G0 and return to v0. (The reason for requiring vis-
iting multiple landing ports in Gi will become clear later
on). This completes one round of data gathering. A data
gathering state starts after m arrives at a landing port in Gi
and ends once it has collected all nodes’ newly generated
sensory data. Once landed, m should contact all neighbor-
ing nodes within its communication range (termed gateway
nodes), request all nodes in Gi to form a data-collection
tree rooted at m, and instruct all nodes in the tree to relay
their sensory data to m along the tree. Note that the mule
does not need to conduct data collection in G0 because
nodes in G0 can report to v0 at any time. Figure 1 gives an
example, where sensory data of each Gi is relayed though
its tree to the mule and then to v0, except G0.

We make two notes as follows. First, for practical rea-
sons, when a subnetwork contains too many nodes, we
may enforce it to be divided into multiple subnetworks,
thus requiring multiple landing ports. This may reduce the
energy consumption of gateway nodes and balance their
load. We will show how to conduct such partitioning later
on. As follows, for ease of presentation, unless stated other-
wise, a ‘subnetwork’ will refer to one after conducting such
partitioning. Second, afterm landed at a landing port inGi ,
the relaying load of this landing port should be regarded as
zero (or near zero) because the root of the data-collection
tree is the mule, rather than this landing port (sending its
data to m is negligible). Thus, we will calculate the energy
consumption of those gateway nodes associated with the
tree. For example, in Figure 1, gateway nodes a, b, and c
will take care of sensory data of 1 node, 3 nodes, and 5
nodes, respectively.

We consider two main performance metrics: data-
collection latency of m and energy consumptions of sensor
nodes. The former is modeled by the length of the traver-
sal path of m in a round, whereas the latter is modeled by
the maximum energy consumption among all sensor nodes
in a round. (We do not consider the data-collection latency
per subnetwork because it should be relatively much faster
than the movement of the mule.†) By putting these two
goals together, the objective in a round becomes finding
the shortest traversal path of m to visit each subnetwork
such that the maximum energy consumption among sen-
sor nodes is minimized. However, these two goals contra-
dict each other. Visiting a subnetwork exactly once is the
best for the first metric but the worst for the second met-
ric and vice versa. To resolve this problem, we define an
optimization problem, termed EM-TSP, where the goal is
to find the shortest path for m to visit each subnetwork
at least once and then return to v0 such that the maxi-
mum energy consumption among all sensor nodes does
not exceed than a threshold �e. To measure the energy
consumption of a node, we consider the data-collection
tree when m visits a subnetwork Gi . Let T be the data-
collection tree ofGi . We model the energy cost of vk 2Gi
by ET .vk/D e � � � ı � jT .vk/j, where e is the energy con-
sumption for a node to transmit one unit of sensory data,
� is the data generation rate of each sensor node, ı is the
maximum duration of a round, and T .vk/ is the subtree of
T rooted at vk . That is, ET .vk/ includes the energy cost
to report the sensory data of vk and vk’s descendants.

†Let �t be the packet transmission time on a link. Given a subnet-

workGi , if a well-scheduled MAC protocol [38] is adopted, the intra-

subnetwork data-collection latency can be approximated by �t jGi j

(this happens when a pipeline effect occurs such that one packet is

delivered to the mule per time unit while the mule is visiting Gi ).

Therefore, the total data-collection latency can be approximated by the

mule traveling time plus
Pn
iD0�t jGi j. The latter factor is close to a

constant given a fixedG.
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Definition 1. Given an SS-WSNG D .V ;E/, a sink node
v0 inG0, and an energy threshold �e, the EM-TSP is to find
a proper partition of G into subnetworks and a traversal
path P starting and ending at v0, visiting each subnetwork
Gi ¤ G0 in one landing port, and connecting all nodes in
Gi via a data-collection tree T rooted at the landing port,
such that maxvk2V ET .vk/ � �e and the total length jP j
is minimized.

To prove that EM-TSP is NP-hard, we define a decision
problem as follows.

Definition 2. Given an SS-WSNG D .V ;E/, a sink node
v0 in G0, an energy threshold �e, and a positive integer L,
the length-constrained and energy-constrained mule TSP
(LEM-TSP) is to find a proper partition of G into subnet-
works and a traversal path P starting and ending at v0,
visiting each subnetwork Gi ¤ G0 in one landing port,
and connecting all nodes inGi via a data-collection tree T
rooted at the landing port, such that maxvk2V ET .vk/ �
�e and jP j � L.

Theorem 1. Length-constrained and energy-constrained
mule traveling salesman problem is NP-hard.

Proof of Theorem 1 is proved in Appendix 6. We reduce
ETSP [7], an NP-hard problem, to a special case of LEM-
TSP by regarding each subnetwork as a ‘macro’ node.

4. HEURISTICS TO
ENERGY-CONSTRAINED MULE
TRAVELING SALESMAN PROBLEM

In this section, we propose some heuristics to solve EM-
TSP. Our solutions consist of three phases: (i) subnetwork
partition; (ii) path planning; and (iii) balanced tree con-
struction. The first phase partitions each ‘original’ sub-
network,‡ if necessary, into multiple smaller subnetworks
such that each subnetwork can meet the energy require-
ment �e. The second phase is to plan a traversal path of m
to visit each subnetwork at one landing port such that the
total path length is as small as possible. We will propose
three schemes for phase 2. The third phase is to form a
data-collection tree rooted at each landing port such that
the minimum remaining energy among sensors is maxi-
mized. At the end, we will analyze the complexity of our
heuristics and discuss how to extend to multiple mules.

4.1. Subnetwork partition

To meet the energy constraint �e, this phase tries to par-
tition each original subnetwork into several subnetworks
such that (i) the amount of sensory data relayed by each

‡We use ‘original’ subnetworks to distinguish from those after parti-

tioning.

sensor is bounded and (ii) the number of subnetworks after
partitioning is minimized. To achieve these goals, we first
try to limit the number of sensors in each subnetwork after
partitioning within a bound �s D b

�e

e���ı
c such that each

original subnetwork Gi is partitioned into ˛i D d
jGi j
�s
e

subnetworks. In the following, we propose a modified k-
means algorithm to solve this problem. Note that the typ-
ical k-means algorithm [39] cannot properly handle this
partitioning problem for two reasons. First, it cannot guar-
antee the number of nodes in each set. Second, we require
that each subnetwork is connected by itself (i.e., with-
out passing other subnetworks). For example, in Figure 2,
although the partitioning is perfect, the right subnetwork
needs to rely on the left subnetwork to become connected.

Our scheme works as follows. For each original subnet-
work Gi , we set ˛i as its ideal number of partitions and
initially partitionGi into ˛i groups by the following group-
ing process. Then, we check whether each group Gj has
jGj j � �s. If not, we increase ˛i by one and repeat the
grouping process until each group Gj satisfies jGj j � �s.
Otherwise, each group Gj is regarded as a new subnetwork,
and this phase terminates. Note that, after this phase, we
will use Gj to denote a subnetwork later. The details of the
grouping process are as follows.

(1) For each Gi , we randomly select ˛i nodes as its
initial seeds. Each seed is considered as a trivial tree.

(2) From the tree rooted at each seed, we try to grow
the tree by one hop based on the breadth-first search
order. For each node that has not joined any tree yet
and is one hop away from at least one tree, it joins
the smallest tree among all candidates.

(3) Step 2 is repeated until each node has joined a tree.
(4) For each tree, generate a new seed by choosing the

node nearest to the tree’s center-of-gravity.
(5) With these new seeds, re-run steps 2–4, until there

is no or very little change on the sizes of these trees
(a threshold may be set so that this step terminates).

Communication links

partition 1
Gi

partition 2

5s

Figure 2. An example of subnetwork partition using a typical
k-means algorithm.
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(6) Check if the ˛i trees meet our balancing criteria
(i.e., �s). If so, the algorithm terminates; otherwise,
increase ˛i by one and repeat steps 1–5 again.

4.2. Path planning

In this phase, we propose three heuristics to find a
traversal path for m. The input is a set of subnetworks
G D fG0;G1; : : : ;Gqg. The goal is to minimize the path
length. The first heuristic greedily chooses the next land-
ing port repeatedly. The second one is derived from the CH
approach in [8]. The third one relies on a special convex
polygon that may lead to an even shorter path.

4.2.1. Greedy scheme.

This scheme is mainly designed for making compar-
isons. It works in an iterative manner. Initially,m is located
at v0. In each iteration, m chooses the next landing port,
denoted by vl, to be visited such that vl is located at an
unvisited subnetwork and closest to the current location of
m. This process is repeated until all the subnetworks are
visited. Finally, m returns to v0. This finds the traversal
path P .

Figure 3 gives an example of this scheme. It is to be
noted that the traversal path may have intersections, which
should be avoided, as to be shown later.

4.2.2. Convex hull-based (CH-based) scheme.

This scheme first selects a delegation node in each sub-
network and then constructs a convex hull (CH) of these
delegation nodes to provide a base for constructing a traver-
sal path such that intersections can be avoided. To start
with, we extend a property raised in [40] to the following
property.

Theorem 2. An optimal traversal path to EM-TSP has no
intersection with itself.

Proof . Referring to Figure 4, an intersection is defined as
two line segments that cross each other in a 2D plane. We
assume that path P D v0 ! � � � ! vi ! viC1 � � � !

vk ! vkC1! � � � ! v0 is an optimal solution to EM-TSP
such that viviC1 and vkvkC1 intersect each other. How-
ever, we can find another traversal path P 0 D v0! � � � !
vi ! vk ! � � � ! viC1 ! vkC1 ! : : :! v0 such that
jP 0j < jP j by the triangle inequality. It is a contradiction.
Therefore, this theorem is proven. �

A CH has some good geometric properties that can help
find a shorter traversal path. First, a CH is a convex poly-
gon that never intersects with itself. Second, Larson and
Odoni [40] proved that the order of boundary nodes on
the CH must appear, in that order, in the optimal solution
to ETSP. These observations motivate us to conduct path
construction and path improvement based on a CH. In the
following, we modify the algorithm in [8] into one fitting
our need.

Sink
v0

P

Figure 3. An example of the greedy scheme.

v0

vi

vk+1 vi+1

vk

Figure 4. The proof of Theorem 2.

(1) For each subnetwork Gi ¤ G0, compute a
delegation node di , where di is the node
closest to the center-of-gravity of Gi , that is,�P

.xk;yk/2Gi xk
jGi j

;

P
.xk;yk/2Gi yk
jGi j

�
. The landing

port of Gi will be di .
(2) Let D D fv0g [ f8di jGi ¤ G0g. Following

Theorem 2, we construct a CH of D (such
algorithms can be found in [33]). Let the CH be our
initial path P .

(3) We iteratively add nodes inD�P into the traversal
path. Specifically, in each iteration, for each node
di 2D�P , we try to insert di into each link .x; y/
of P . The insertion cost of putting di between x and
y is cost.x; di ; y/D d.x; di /Cd.di ; y/�d.x; y/.
Let dmin be the node whose insertion between link
.x; y/ incurs the smallest cost.x; dmin; y/. Then,
we update P by inserting dmin between .x; y/ of
P . We repeat this process until all delegation nodes
are included in P . This finds the final path P .

Figure 5 gives an example of the CH-based scheme.
After step 1,D D fv0; d1; : : : ; d7g. After step 2, the CH of
D is composed of v0, d1, d2, d4, d6, and d7. Step 3 first
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Sink
v0

Convex hull of DP

d7

d1

d2

d3

d4

d5

d6

Figure 5. An example of the convex hull-based scheme.

inserts d3 into link .d2; d4/ and then inserts d5 into link
.d3; d4/ to form the final P .

4.2.3. Convex container-based (CC-based)

scheme.

We make two observations on the geometric proper-
ties to form a small convex polygon. First, the landing
port of each subnetwork are usually closer to the inner
side of the whole field. Figure 6 shows an example of an
SS-WSN after conducting the subnetwork partition phase.
Using outer nodes A, B, C, and D as landing ports will
incur a longer path than using inner nodes A0, B 0, C 0, and
D0. Second, although inner nodes are generally preferred,
sometimes skipping some inner nodes may even reduce the
path length. In the above example, if we replaceD0 byD00,
we can find an even better path.

The aforementioned observations motivate us to define
a special kind of convex polygon, termed convex container
(CC), that allows a subnetwork to either contribute a very
inner node to the convex polygon or simply have some
node(s) inside the convex polygon. The formal definition
is as follows.

A

B C

D

D''

A'

B'
C'

D'

Figure 6. Examples of selecting inner nodes as landing ports.

Definition 3. Given a set of node-disjoint subnetworks
G D fG0;G1; : : : ;Gqg, q � 3, a CC of G is a convex poly-
gon P D x1 ! x2 ! � � � ! xr composed of r nodes,
r � q, such that for each Gi , i D 1; : : : ; q, either of the
following conditions is satisfied:

� Gi has one node belonging to P , and this node is the
only node of Gi contained inside P .

� Gi has no node belonging to P but has at least one
node contained inside P .

Figure 7 shows some examples of Definition 3, where
there are seven subnetworks G0;G1; : : : ;G6. The one in
Figure 7(a) is not a CC because G6 is outside the polygon.
The one in Figure 7(b) is not a CC because G1 has some
extra nodes inside the polygon. The one in Figure 7(c) is
a CC. Clearly, CCs are not unique. (Note that to take into
account the case of multiple nodes forming a straight line,
a node on P is not considered inside P .)

Our CC-based scheme consists of four steps. Step 1 tries
to choose a ‘min–max’ initial node to start our construc-
tion. Step 2 is the main step to form a CC. Steps 3 and
4 add nodes of those unvisited subnetworks into the con-
tainer to form a traversal path. Note that because v0 must
be included in the final path P , we will imagine that G0
contains only one node v0.

(1) Let h0 D v0, and let hi be the node in Gi ,
i D 1; : : : ; q, which has the largest y-coordinate.
We then let hmin be the node in fh0; h1; : : : ; hqg
that has the smallest y-coordinate. (In Figure 8(a),
hmin D h4.)

(2) Initially, let P contain only hmin, and all subnet-
works are considered unvisited except the one con-
taining hmin. We then enter an iterative sweeping
process to add nodes into P to form a CC. Intu-
itively, this step simulates tying the shortest string
around all subnetworks in the counterclockwise
direction such that P is a CC. We imagine that there
is an arrow string S of an infinite length pointing
at degree 0 with hmin as the origin. The following
steps repeatedly rotate S in the counterclockwise
direction until a CC is constructed.
(a) Rotate S , from its current direction, counter-

clockwise with the last node in P as its cen-
ter. Stop rotating when any of the following
conditions is encountered: (i) hmin is on string
S and (ii) the first unvisited subnetwork (say
Gi ) appears such that all node of Gi have been
swept by string S and the last node/nodes swept
by S is/are now on S . Note that condition
(i) may happen when multiple nodes form a
line. (Figure 8(b) shows an example of the i th
iteration during the sweeping process.)

(b) If hmin is on S , a CC P is found, and we exit
this loop. Otherwise, let vj be the node of Gi
that is on S (if there are multiple such nodes,
the one closest to the center of S is selected).
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Figure 7. The polygons in (a) and (b) are not convex containers, whereas that in (c) is.
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Figure 8. The CC-based scheme: (a) an example of the CC-based scheme, and (b) the i-th iteration of the sweeping process.

We then append vj to path P , mark Gi as vis-
ited, and go back to step 2. (In Figure 8(a), in the
first iteration, G2 is the first subnetwork whose
nodes are all swept by S . Because the last node
being swept is vA, vA is appended to P .)

(3) With the CC P , we divide the remaining unvisited
subnetworks into two sets: bG contains those sub-
networks that are ‘crossed’ by P and eG contains
those that are completely inside P . (For example,
in Figure 8(a), G3 is ‘crossed’ by P , whereas G5
is inside P .) We first deal with set bG. We will iter-
atively choose one node in a subnetwork in bG and
insert it into P . Specifically, in each iteration, for
each node vj in each Gi 2 bG, we try to insert
vj between each link .x; y/ of P . The insertion
cost of inserting vj into .x; y/ is cost.x; vj ; y/ D
d.x; vj /Cd.vj ; y/�d.x; y/. Let vmin be the node

among all candidates in all Gi 2 bG that incurs
the least cost. Then, we insert vmin into P and
remove the subnetwork containing vmin from bG.

This process is repeated until bG D ;. (For exam-
ple, in Figure 8(a), vD of G3 is inserted into the link
.hmin; vA/.)

(4) Next, we deal with set eG. We repeat the same pro-
cess as step 3 to insert more nodes into P untileG D ;. The final traversal path is P . (For example,
in Figure 8(a), vE of G5 is inserted into .vC ; hmin/.)

4.2.4. Some local optimizations.

Finally, we present some local optimization techniques
to further reduce the length of P . Let P D v0 ! vp1 !

� � � ! v0 be a path obtained by any one of the above heuris-
tics. We can examine any two consecutive links vpi !
vpiC1 ! vpiC2 , try to find another v0piC1 which is in

the same subnetwork as vpiC1 such that d.vpi ; v
0
piC1

/C

d.v0piC1 ; vpiC2/ < d.vpi ; vpiC1/ C d.vpiC1 ; vpiC2/,

and replace vpiC1 by v0piC1 . This process can be repeated
for all consecutive links of P until no further improvement
is possible. This method can be extended to a three-link
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look-ahead scheme, too. This is applicable to the iterative
process of the aforementioned three heuristics.

4.3. Balanced tree construction

When the mule arrives at subnetwork Gi , m enters this
phase to form a data-collection tree rooted at itself to con-
duct intra-subnetwork data gathering. Specifically, once
m lands at the landing port of Gi , m will switch from
movement state to data gathering state, request the sen-
sors withinm’s communication range to be gateway nodes,
and instruct all sensors in Gi to report their sensory data
through these gateway nodes to m. Our goal is to balance
the loads among these gateway nodes such that the mini-
mum remaining energy among sensors in Gi is maximized.
For this purpose, we extend the centralized algorithm pro-
posed in [41] to a distributed one. We will use the remain-
ing energies of nodes to measure the degree of balance of
a tree. The protocol has two stages: tree construction stage
and balancing stage. The first stage is to form an initial tree
T in a top–down manner based on the remaining energies
of nodes. The second stage is to adjust T in a top–down
manner according to nodes’ balanced degrees.

4.3.1. Tree construction stage.

In this stage, an initial tree will be spanned fromm to all
nodes of Gi . A Contact.Gi / message will be broadcast by
m to its direct neighbors.§

(1) When a node vk receives a Contact.Gi / message, it
becomes a gateway node and immediately replies an
Association.vk/message tom to becomem’s child.
Then, vk broadcasts a Form_Tree.e.vk// message
to span its subtree, where e.vk/ is vk’s current
remaining energy.

(2) When non-gateway node vj receives a Form_Tree.�/
message for the first time, it sets a timer �w .
After �w expires, from all Form_Tree.�/ messages
it received, vj chooses an on-tree node vp with
the maximum e.vp/ as its parent by sending an
Association.vj / message to vp . In case of a tie,
the one with the least number of neighbors is cho-
sen. Then, vj sets itself as an on-tree node and
broadcasts a Form_Tree.e.vj // message.

§In practice, any localization algorithm will suffer from some degree of

localization errors, typically ranged between 0:2rc and rc [42]. This

may lead to the mule missing the landing port or connecting to an

incorrect landing port. The mule may need to circle around to locate the

landing port or use its neighboring nodes as the landing port. Through

simulations, our protocol still works correctly under such situations

but may suffer from little performance degradation in the minimum

remaining energy for the CH-based scheme. Clearly, if we allow the

mule to pick a landing port different from the originally planned one

(which is at the center-of-gravity), a larger localization error may cause

a less balanced data-collection tree.

(3) After vj becomes an on-tree node, it sends a
Join.vj / message to m. After m has received
Join.�/ messages from all nodes in Gi , tree T is
formed, and m will broadcast an Adjustment.T /
message to instruct all nodes in Gi to enter the
next stage.

4.3.2. Balancing stage.

In this stage, the adjustment will be conducted in a
top–down manner. Given T , a node vk can compute its
remaining energy after executing one round of data col-
lection as follows: r.vk/ D e.vk/ � ET .vk/. To evaluate
the balancing degree of T with respect to vk , we define
B.T ; vk/Dmaxvj2C.vk/fr.vj /g�minvj2C.vk/fr.vj /g,
where C.vk/ is the set of vk’s children in T . Note that a
smaller B.�/ means better balance in terms of remaining
energy. The adjustment works as follows:

(1) When vk receives an Adjustment.T / message
from its parent, it computes its current B.T ; vk/.
Then, let vmin (resp., vmax) be the child of vk , which
has the smallest (resp., largest) remaining energy
r.�/. For each subtree of vmin, vk tries to move it
to vmax (if the connectivity exists) and computes the
new balancing degree B.T 0; vk/, where T 0 is the
new tree. If there exists a movement that leads to
the smallest balancing degree less than its current
one, then vk instructs vmin and vmax to do so.

(2) If vk makes any change of T in step 1, it goes back
to step 1 and tries another change. Otherwise, it
broadcasts an Adjustment.T / message to its chil-
dren and replies a Complete.vk/ message to m.

(3) After m has collected Complete.�/ messages from
all nodes in Gi , this phase completes.

4.4. Complexity analysis

In this section, we analyze the time complexity of the pro-
posed heuristics. In Section 5, we will further investigate
the performance issue through simulations. Let N D jV j
be the number of nodes, E be the number of communica-
tion links, n be the number of original subnetworks, and n0

be the number of subnetworks after partitioning. Normally,
N � n0 � n.

For the subnetwork partition phase, step 1 takes O.nC
n0/ to compute the initial seeds. The time complexity of
steps 2–3 is the same as the breadth-first search, that is,
O.N C E/. Step 4 takes O.N/ time to scan all nodes
for updating seeds. Suppose that steps 2–4 are repeated
I times. Normally, I � N in practice because our sub-
network partition phase is extended from the k-means
algorithm [43]. Finally, step 6 will repeat the aforemen-
tioned process up to O.n0/ times. Therefore, the total time
complexity of the subnetwork partition phase is O..n C
n0/C ..N C E/CN/In0/DO..N C E/In0/.
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For the path-planning phase, there are three schemes.
For the greedy scheme, each iteration takes O.N/ time to
find the next landing port, and there are n0 iterations. Thus,
its time complexity is O.Nn0/. For the CH-based scheme,
step 1 takesO.N/ time to scan all nodes for computing the
delegation nodes. Finding a CH in step 2 takesO.n0r/ time
by Jarvis’ march [33], where r � n0 is the number of nodes
along the CH. In step 3, at mostO.n0/ unvisited delegation
nodes will be checked in each iteration, and there areO.n0/
iterations. In addition, all links inP will be checked, giving
cost of O.n03/. Thus, the total complexity is O.N C n03/.
For the CC-based scheme, step 1 costs O.N/. In step 2,
finding the next node in the CC takes O.N/, and there are
O.r/ iterations. Thus, step 2 takes O.Nr/ time. In steps
3–4, each insertion will try O.N/ nodes. Thus, steps 3–4
take O.Nn02/ time. The total complexity is O.Nn02/.

For the balanced tree construction phase, we first ana-
lyze the computational cost and the message complexity of
each node. For the computational cost, in the tree construc-
tion stage, each node vk takes O.N/ time to check those
received Form_T ree.�/ messages for selecting its parent.
In the balancing stage, for a pair of vmin and vmax, for
each possible movement T 0, each node vk will take O.N/
time to compute a new B.T 0; vk/ value. Because there are
O.N 2/ combinations of movements and O.N 2/ possible
pairs of vmin and vmax, the balancing stage takes O.N 5/
time. Overall, the balanced tree construction phase takes
O.N 5/. As to the message complexity, the tree construc-
tion stage is similar to forming an MST. Thus, the message
complexity of this stage is O.N/. In the balancing stage,
each node vk sends at mostO.N 2/ Adjustment.T /mes-
sages to its vmin and vmax, and there are O.N 2/ pairs
of vmin and vmax. Therefore, the balancing stage incurs
O.N 4/ message complexity. Overall, the balanced tree
construction phase incurs O.N 4/ message complexity.

4.5. Extensions to multiple mobile mules

The aforementioned solutions have assumed that there is
only one mule. In the following, we show how to extend
EM-TSP to multiple mules.

Definition 4. Given an SS-WSNG D .V ;E/, a sink node
v0 in G0, an energy threshold �e, and K mobile mules
located at v0, the min–max EM-TSP is to find a proper
partition of G into subnetworks and K traversal paths
P D fP1; P2; : : : ; PKg, each starting and ending at v0,
visiting each subnetwork Gi ¤ G0 in one landing port by
at least one path, and connecting all nodes in Gi via a
data-collection tree T rooted at the landing port, such that
maxvk2V ET .vk/ � �e and the maximum of these path
lengths is minimized.

Our three-phase heuristics can be directly applied to
min–max EM-TSP, except that the path-planning phase
needs to be extended to K traversal paths. In the follow-
ing, we propose two solutions. The first one is to group
subnetworks into K clusters by applying the traditional

k-means algorithm [39] before planning paths. First, the
center-of-gravities of all subnetworks are identified. Then,
the k-means algorithm is applied to all subnetworks, except
G0, into K clusters. Then, for each cluster of subnetworks,
any one of our earlier path-planning schemes is applied.

The k-means algorithm has more sense of the geo-
graphic vicinity of subnetworks but little sense of load
balance. The second heuristic is to iteratively merge clus-
ters until onlyK clusters remain. Initially, each subnetwork
is regarded as a cluster. For each cluster, we merge G0 into
this cluster and compute a tentative traversal path by any
single-mule scheme. If there are sufficient mules (i.e., the
number of clusters is less than K), the algorithm stops.
Otherwise, we merge the cluster with the shortest traversal
path with the cluster nearest to it. The distance between two
clusters are defined as the minimum distance between any
two nodes between these two clusters. If there are K clus-
ters, then the algorithm terminates. Otherwise, we repeat
the aforementioned process to merge more clusters.

5. SIMULATION RESULTS

A simulator has been implemented by JAVA programs.
To simulate an SS-WSN, we randomly deployed N sen-
sor nodes in an S � S m2 field. The field is divided
into grids, each of size sg � sg m2. In order to form
a spatially separated network in a systematic way, we
imposed a fail probability of Pf on each grid. If a grid
is determined to fail, all sensor nodes inside it fail. This
would partition the network into multiple subnetworks
when Pf is sufficiently large. The sink node v0 is ran-
domly selected. Following the energy model of Mica2
[44], we set e D 100 mJ. Considering long-term mon-
itoring applications [45], we set � D 10 packets/h,
with 10 kb per packet. Table I summarizes all default

Table I. Definitions of parameters and their default values used
in our simulations.

Parameter Meanings Default value

N Number of sensor nodes 1000
S Area size 500 m
sg Grid size 50 m
Pf Fail probability of 0.5

a grid
rc Transmission range 20 m

of a node
�e Energy consumption 3� 106 mJ

threshold
e Energy cost to transmit 100 mJ

one unit of data
� Data arrival rate 10 packets/h
ı Maximum duration 100 h

between rounds
Etotal Initial energy of 107 mJ

a node
K Number of mobile mules 1
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parameters used in our simulations. We compared our EM-
TSP solutions against a modified Christofides heuristic in
which the path-planning phase randomly chooses a land-
ing port for each subnetwork after partitioning and then
the Christofides heuristic is applied to find a traversal path
of the mule. All simulation results are from the average of
100 runs.

We consider two performance metrics: (i) the path length
of a mule and (ii) the minimum remaining energy among
sensors. In the following, we first vary the number of sen-
sor nodesN , the area size S , the fail probability Pf, and the
transmission range rc , to investigate the performance when
there is only one mobile mule. In addition, we also simu-
late a more complicated irregular radio propagation model.
Finally, we compare our heuristics against an exhaustive
search by varying the number of subnetworks before par-
titions. Then, we study the performance when multiple
mules coexist.

5.1. Effect of N

First, we investigate the effect of the number of nodes.
Figure 9(a) shows its impact on path length. The CC-based
scheme performs the best, which implies that its local opti-
mization technique can efficiently shorten the path length.
WhenN falls in the range 200–400, the path length is rela-
tively longer. This is because there are too many (original)
subnetworks, as reflected by Figure 9(b). As N increases
(N D 400 	 1400), the path length decreases grad-
ually because there are less subnetworks to be visited.

Recall that the ideal number of partitions is
Pn
iD0d

jGi j
�s
e.

Figure 9(b) shows that our schemes will not incur too
many subnetworks after partitioning. Figure 10 shows that
the CH-based scheme performs the best in terms of the
minimum remaining energy of nodes. This is because the
CH-based scheme selects the node close to the geometri-
cal centroid of each subnetwork as the landing port. Thus,
the average relaying hop counts from sensors to the gate-
way nodes are reduced. As can be seen, although some of
our path-planning policies choose landing ports nearby the

boundaries of subnetworks, the resulted minimum remain-
ing energy among sensors is still slightly less than that
of Christofides. Additionally, we can see that the greedy
and CC-based schemes have the similar performance in
terms of the minimum remaining energy among sensor
nodes. This is because these schemes will choose nodes
around the borders of subnetworks as landing ports. Thus,
the average amount of sensory data relayed by a sensor
becomes higher than that in the CH-based scheme. When
N is relatively large, the minimum remaining energy is rel-
atively small and eventually becomes flat. This is because
the energy consumption of each sensor can be bounded by
�e even if there is the larger N .

5.2. Effect of S

Next, we study the effect of the area size by varying S
from 400 to 800. Figure 11(a) shows that the mule’s traver-
sal path length will increase proportionally with S . This
is caused by two reasons: (i) there are more and more
small subnetworks as the network is becoming sparser, as
reflected by Figure 11(b), and (ii) the distance between
subnetworks are relatively farther. Even when S is large
(which means that subnetworks have less nodes), our solu-
tions still outperform Christofides. This gives us evidence
that the selection of landing ports is important and the
existing TSP heuristics (such as Christofides) cannot be
trivially applied to EM-TSP to achieve good performance.
In Figure 12, the minimum remaining energy of sensor
nodes increases as S increases. This is because the larger
S will cause that each subnetwork includes the less sensor
nodes and spends less energy on relaying.

5.3. Effect of Pf

We now investigate the effect of the fail probability by
varying Pf from 0:9 to 0:1. As shown in Figure 13(a),
the CC-based scheme still performs better than the other
schemes in terms of path length. The gap between the CC-
based scheme and others actually enlarges as Pf decreases.
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Figure 10. Effect of N D 200 � 1400 on the minimum
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This is because a smaller Pf will lead to more available
sensors and, thus, larger-scale (original) subnetworks and
more (logical) subnetworks. This also concludes that the
CC-based is more important when we deploy larger-scale
subnetworks. Note that in Figure 13(b), it is reasonable
to see that the path length is related to the number of
subnetworks after partition (rather than that before parti-
tion). From Figure 13(b), we see that the gaps between the
number of subnetworks before partition and the ideal num-
ber of subnetworks are quite large when Pf is relatively
small. This is due to two reasons. First, it is possible to
have isolated nodes when nodes are randomly deployed.
Second, the connectivity of nodes nearby the boundary of
the field is not strong compared with those inner nodes.
In Figure 14, the minimum remaining energy among sen-
sors decreases as Pf decreases because sensors spend more
energy on relaying.

5.4. Effect of rc

We vary rc from 20 to 50 to study the effect of nodes’
transmission range. Figure 15(a) shows that the path length
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Figure 12. Effect of S D 400� 800 on the minimum remaining
energy of sensor nodes.

decreases as rc increases because sensor nodes will con-
nect each other easily. Figure 15(b) also gives evidence that
most subnetworks have many sensor nodes and need to be
partitioned when a larger rc is considered. Figure 16 shows
that the minimum remaining energy of sensors will be
bounded by �e even if the larger rc causes that each subnet-
work includes more sensors. By the aforementioned simu-
lation results, we conclude that our schemes can efficiently
solve the bi-objective EM-TSP.

5.5. Effect of irregular radio propagation

To understand the impact of more complicated radio prop-
agation, we adopt the degree of irregularity (DOI) model in
[42,46], which allows us to vary the radio range in different
directions. For example, whenDOI D 0:1, the radio range
is randomly chosen from Œ0:9rc ; 1:1rc � in each direction.
We vary DOI from 0:1 to 0:5 in the following simula-
tions. Figure 17(a) shows that the path length of the mule
decreases asDOI increases. This is because a sensor node
may discover more neighbor nodes, leading to more oppor-
tunities to reduce the number of subnetworks. Figure 17(b)
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Figure 13. Effect of Pf D 0:9� 0:1 on (a) path length and (b) number of subnetworks.
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Figure 14. Effect of Pf D 0:9 � 0:1 on the minimum remaining
energy of sensor nodes.

gives evidences of this argument. Figure 18 shows that the
irregularity of radio propagation does not have a serious
impact on energy consumption of sensors because it only
changes the topology slightly.

5.6. Comparison to exhaustive search

To understand how our path-planning heuristics perform
against an exhaustive search algorithm, which is able to
find the optimal path, we conducted the following simu-
lations. We vary the value of n but skipped the subnet-
work partition step in Section 4.1 (this is to ensure that
our observation is not affected by the partitioning result).
Unfortunately, only a small n (around 10) can be com-
putationally handled by an exhaustive scheme (note that
a subnetwork may contain a lot of sensor nodes, which
also need be searched.) Figure 19 shows that the CC-based
schemes perform very closely to the optimal scheme.

5.7. Effect of K

Finally, we consider the case of multiple coexisting mules.
We look at the maximum path length among all mules.
First, we vary K from 1 to 20 to investigate the effect of
the number of mules when the merging-based clustering
scheme is adopted. Figure 20(a) shows that, as the num-
ber of mules increases, the gaps between different path-
planning schemes shrink gradually. This is because each
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Figure 15. Effect of rc D 20� 50 on (a) path length and (b) number of subnetworks.
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Figure 16. Effect of rc D 20 � 50 on the minimum remaining
energy of sensor nodes.

mule is responsible for traversing relatively less subnet-
works. It is to be noted that, ideally, K mules should be
able to reduce the path lengths by 1

K
. As can be seen in the

figure, the reduction in the maximum path length is much
lesser than what was expected. This shows the importance
of load balance among mules. In Figure 20(b), we compare
the performance of the merging-based and k-means-based
schemes, where the CC-based scheme is adopted. Gener-
ally speaking, the k-means-based scheme performs better.
AsK increases, the gaps decrease because each mule needs
to take care of relatively less subnetworks.

To summarize, the greedy scheme has low computation
cost, the CH-based scheme incurs low energy costs on
sensor nodes, and the CC-based scheme can find shorter
data-collection paths. Therefore, these three path-planning
schemes may be adopted in different scenarios. For exam-
ple, the greedy scheme is more suitable for a network
with a high failure rate because frequent recomputing of
the mule’s path may be needed. The CH-based scheme is
more suitable for a sparse network because energy of sen-
sor nodes becomes more critical for connectivity reason.
On the other hand, the CC-based scheme is more suit-
able for a delay-sensitive network with a stronger real-time
requirement.
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Figure 18. Effect of DOI D 0:1 � 0:5 on minimum remaining
energy of sensor nodes.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

40353025201519876543

P
at

h 
le

ng
th

 (
m

)

Number of (original) subnetworks

2-link look ahead, CC-based
CC-based
CH-based

Greedy
Christofides

Optimal

0

Figure 19. Comparing with the optimal solution on path length.

6. CONCLUSIONS

This paper considers the data gathering issue in an SS-
WSN, where sensor nodes may form several isolated sub-
networks, each far away from each other. Mobile mules
are adopted to traverse these subnetworks to conduct data
collection. To address issues of data-collection latency
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and network lifetime simultaneously, we formulate a new
problem, called EM-TSP, to find mules’ traversal paths to
visit each subnetwork in at least one landing port such
that the energy consumption of sensors is bounded and
the traversal path lengths of mules are minimized. We
show that EM-TSP is a generalization of the classical TSP.
Based on some interesting geometrical properties, we pro-
pose several heuristics to solve EM-TSP. In particular,
the properties of the CH are explored to solve this prob-
lem. Simulation results show that our approaches can find
efficient solutions to EM-TSP so as to balance between
data-collection latency and network lifetime.

APPENDIX A: PROOF OF
THEOREM 1

Proof . We prove that LEM-TSP is NP-hard by reduc-
ing the ETSP [7], an NP-hard problem, to a special case
of LEM-TSP. Note that ETSP is a special case of the
TSP when nodes are given in a Euclidean space. Let
G0 D .V 0; E 0/ and a positive integer L0 be an arbitrary
instance of ETSP, where a complete graph and the distance
between any two vertices v0i and v0j in V 0 is defined as their

Euclidean distance. ETSP is to determine whether G0 has
a tour P 0 visiting all vertices in V 0 such that jP 0j � L0. We
can reduce G0 D .V 0; E 0/ to a special case G D .V ;E/

of LEM-TSP in polynomial time as follows. Let V D V 0

and E D ; (i.e., the communication range of each sen-
sor node is infinitesimal, and thus, each subnetwork Gi ,
i D 0; 1; : : : ; jV � 1j, contains only one node). The dis-
tance between any two vertices vi and vj in V is also their
Euclidean distance. The sink node v0 can be any vertex in
V . Let the energy threshold �e D e � � � ı and L D L0.
Clearly, the reduction can be done in polynomial time.

We now show thatG0 has a tourP 0 visiting all vertices in
V 0 such that jP 0j � L0 iff G has a partition and a traversal

path P starting and ending at v0, visiting each Gi ¤ G0
in one landing port, and connecting all nodes in Gi via a
data-collection tree T rooted at the landing port such that
maxvk2V ET .vk/ � �e and jP j � L. We first prove the
if part. If G has a solution to LEM-TSP with a traversal
path P and jP j � L, P must visit each vertex in G exactly
once because the only way to partition G is to make that
each Gi includes only one node vi . Thus, we can find a
corresponding path P 0 in G0 with the same visiting order
of vertices as P such that jP 0j � L0. Conversely, we then
prove the only if part. IfG0 has a solution P 0 to ETSP with
jP 0j � L0, we can find a corresponding path P in G with
the same visiting order of vertices as P 0 and a partition
of G that each subnetwork Gi contains only one node vi .
Clearly, P starts and ends at v0, visits each subnetwork Gi
in one landing port vi , and connects all nodes in Gi via a
data-collection tree T (i.e., T is a single-node tree) such
that maxvk2V ET .vk/� �e and jP j � L. �
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