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a b s t r a c t

Widely cited evidence for scaling (self-similarity) of the returns of stocks and other se-
curities is inconsistent with virtually all currently-used models for price movements. In
particular, state-of-the-art models provide for ubiquitous, irregular, and oftentimes high-
frequency fluctuations in volatility (‘‘stochastic volatility’’), both intraday and across the
days, weeks, and years overwhich data is aggregated in demonstrations of self-similarity of
returns. Stochastic volatility renders these models, which are based on variants and gener-
alizations of randomwalks, incompatible with self-similarity. We show here that empirical
evidence for self-similarity does not actually contradict the analytic lack of self-similarity
in these models. The resolution of the mismatch between models and data can be traced
to a statistical consequence of aggregating large amounts of non-stationary data.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Background

The 1900 dissertation of Louis Bachelier, on The Theory of Speculation [1], proposed a random-walk model for security
prices. The basic model, elaborated to accommodate heavy-tailed distributions and stochastic volatilities, still provides a
compelling and nearly universally accepted foundation for a theory of price movements. At the same time, a salient and
much-discussed feature of the data is the remarkably precise self-similarity of the returns, relative to the return interval, of
many of these securities. This was first observed by Mandelbrot [2] and has since been found in multiple data sets involving
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Fig. 1. Scaling of GARCH-simulated returns. One-minute returns on IBM for all of 2005 were used to fit a GARCH model, with autoregressive and moving
average terms each of order 10 (p = q = 10). The model was used to generate σ(t), for ten years of one-minute volatilities (t = 1, 2, . . . , 932, 400).
Left-hand panel shows a typical window with 101 consecutive values of σ . Volatilities were used to generate ten years of simulated one-minute returns,
using (1.2) and a standard Brownian motion for ω. These were summed over disjoint intervals to produce the corresponding (simulated) returns R(h)

k ,
k = 1, 2, . . . ,N (h) , h = 2i for i = 0, 1, . . . , 10. For each of the 11 return intervals, the ensemble of returns was used to estimate f (h)(0), the magnitude
of the mass function at zero. Following the approach of Ref. [4], if R(h)

∼ h1/αR(1) then f (h)(r) = h−1/α f (1)(rh−1/α), and hence f (h)(0) = h−1/α f (1)(0) and
log f (h)(0) = −

1
α
log h + log f (1)(0). The fit is excellent, as seen in the right-hand panel where the least-squares regression line is superimposed on the

pairs (log h, log f̂ (h)(0)), f̂ (h) denoting a nonparametric, kernel, estimator of f (h) . (We used theMatlab library function ksdensity.) The slope of the regression
is about −0.52, which together with the good fit could be mistaken as evidence for R(h)

∼ h1/αR(1) with α = 2. We did not include the superposition of
the eleven histograms of scaled returns, h−1/αR(h)

k , k = 1, 2, . . . ,N(h) , where h = 2i , i = 0, 1, . . . , 10, since they are indistinguishable.

a range of securities and time periods (cf. Refs. [3–16], to name a few). With a straightforward calculation we will conclude
that state-of-the-art models of price movements do not generate self-similar processes (see Section 2), and are therefore at
odds with the empirical scaling of returns. We will then show (Section 3) that scaling of empirical distributions is likely to
be a statistical consequence of the aggregation of large amounts of non-stationary data.

Bachelier’s remarkable thesis included a first construction of Brownian motion, and proposed a suitably scaled version
as a model for the price dynamics of securities: S(t) = S(0) + σw(t), in which w is a ‘‘standard’’ Brownian motion and σ
is the standard deviation of the change in price after one unit of time. The model has evolved, incrementally, to better ac-
commodate theoretical and empirical constraints. For example, the realization that the scale of an ensuing price increment
is typically and logically proportional to the current price, rather than independent of it, leads to the geometric (instead of
linear) Brownian motion:

R(t) .
= ln S(t) − ln S(0) = σw(t) (1.1)

after correcting for a possible drift associated with risk-free investment.
Additionally, the common observation that returns are too peaked and heavy-tailed to be consistent with the normal

distribution led [2] to seek a replacement for the Brownian motion, while preserving the compelling argument that
increments of prices arise from large numbers of small influences. As stable processes are the only possible limits of rescaled
sums of independent random variables (the ‘‘generalized central limit theorem’’ [17]), and as the resulting theoretical return
distributions are a better, and often excellent, fit to empirical returns,Mandelbrot proposedmodels of the same form as (1.1)
but with w(t) interpreted more generally as an α-stable Lévy process, α ∈ (0, 2]. The special case α = 2 recovers ordinary
Brownian motion.

Further refinements are dictated by the fact that volatilities, modeled by the scaling factor σ (which is a standard devi-
ation only in the case α = 2), are almost never constant (σ = σ(t), ‘‘stochastic volatility’’ cf. Refs. [18,19]). And in fact the
evidence is for very rapid fluctuations in σ(t) (e.g. the left-hand panel in Fig. 1 is typical). A parsimonious extension of (1.1),
whether or not α = 2, is through the stochastic integral

R(t) = ln S(t) − ln S(0) =

 t

0
σ(s)dw(s) (1.2)

which falls out of the same thought experiment that took us from discrete and small price movements to the stable process
w(t), except that a step at time t has scale proportional to σ(t) rather than σ .

Many lines of thought lead to more-or-less the same thing. For example, the function σ(t) can be thought of as itself
a stochastic process, dependent or independent of w, or as a given deterministic (perhaps historical) volatility trajectory.
Many authors prefer to think of σ(t) as a proxy for, or measure of, market activity or ‘‘market time’’, and in fact under very
general conditions the result of a random time change can also be expressed by (1.2), cf. Refs. [20–22]. We will assume that
either σ(t) is deterministic or, if stochastic, it is independent of w, in which case we will condition on a sample path of
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σ(t) so that the two situations amount to the same thing. In any case, it would be a mistake to think of σ(t) as statistically
stationary, given the prototypical intraday volatility profile (including high values in the opening and closing thirtyminutes)
and the overall rise in volatility with rise in volume through the years and decades over which return profiles are studied.

The question we wish to examine is an apparent incompatibility between the class of models embodied by Eq. (1.2) and
the widely cited evidence for scaling of returns on stock prices and other financial processes.

2. Are random-walk models consistent with empirical scaling?

Assume (1.2) for t ∈ [0, T ] and consider the sequence of returns, R(h)
1 , R(h)

2 , . . . , R(h)
N , over intervals of length h, where

R(h)
k = ln

S(kh)
S((k − 1)h)

=

 kh

(k−1)h
σ(s)dw(s), k = 1, 2, . . . ,N

and N = N (h)
= ⌊T/h⌋ (i.e. T over h rounded down to the nearest integer). The observations of Mandelbrot and others

suggest that the distribution of R(h)
k is nothing more than a scaled version of the distribution of R(1)

k . In other words, for
some scaling parameter α the probability mass function of R(h)

k , say f (h)
k (r), is the same as the probability mass function of

h1/αR(1)
k , inwhich case f (h)

k (r) = h−1/α f (1)
k (h−1/αr), by change of variables. Indeed, in a particularly innovative and convincing

approach, [4] compare f (h)
k (0) (the probability of zero return over h minutes) to f (1)

k (0) (the corresponding probability over
1 min) and find that by setting α = 1.40 the entire distribution of returns, f (h)

k (r), on the S&P500 from the five-year period
1984–1989, is virtually indistinguishable from the scaled distribution of one-minute returns, h−1/α f (1)

k (h−1/αr), over the three
orders of magnitude h = 1 min to h = 1000 min.

If, in (1.2),w(t) is anα-stable Lévy process, aswould be assumedof a random-walkmodel, thenL{w(ht)} = L{h1/αw(t)}
(henceforth w(ht) ∼ h1/αw(t), for short), meaning that the two stochastic processes, w(ht), t ≥ 0, and h1/αw(t), t ≥ 0,
are statistically indistinguishable. We would appear to have an explanation for the empirical scaling of returns: the returns
simply inherit the scaling characteristics of the α-stable process w, with, for example, something approximating α = 1.4 in
the model generating the data examined by Mantegna and Stanley. But, concerning returns,

R(h)
k =

 kh

(k−1)h
σ(s)dw(s) =

 k

(k−1)
σ(hs)dw(hs) ∼ h1/α

 k

(k−1)
σ(hs)dw(s) ≠ h1/αR(1)

k (2.1)

unless σ(t) is constant.
To the contrary, the weight of evidence is that σ(t) is far from constant, at least over the return intervals at which scaling

behavior is often demonstrated. Consider, for example, the 101 min sample trajectory displayed in the left-hand panel of
Fig. 1, which was drawn from a GARCH model with p = q = 10 (e.g. [18]), estimated from the entire year of one-minute
returns of IBM in 2005. (Lower-order fits, with smaller p and/or q, estimated over different securities in different eras, all
look and behave similarly.) Fluctuations are extreme, even over very short intervals. The GARCH model assumes Gaussian
noise (α = 2), but there is plenty of statistical evidence for equally rapid changes in volatility whether or not α = 2.

In light of Eq. (2.1), how can models that are consistent with (1.2) be reconciled with evidence that returns are stable
(i.e. scaling) random variables: R(h)

∼ h1/αR(1), for suitable α?
In fact, even when returns are generated artificially from (1.2) they appear to scale, as in the experimental results shown

in the right-hand panel of the figure, where the GARCH data was used in (1.2) to produce prices and their returns at multiple
intervals.1 We offer the following theorem, together with the ensuing discussion about rate of convergence, as a plausible
explanation.

3. Analytic results and discussion

We consider the class of models defined by (1.2), where w(t) is a generalized random walk (‘‘α-stable Lévy processes’’),
and where σ(t) is assumed to be either deterministic or independent of the random walk w. In either case we assume that
σ(t) is continuous.

We are interested in studying the empirical return distribution, which is an aggregation of the observed returns over the
interval t ∈ [0, T ]. We anticipate showing that the collection of returns R(h)

k , k = 1, 2, . . . ,N (h), will generate a histogram
(empirical distribution) indistinguishable from that of h(1/α)R(1)

k , k = 1, 2, . . . ,N (1), regardless of the return interval h.

1 A similar experiment can be performed with α ≠ 2 by re-interpreting the GARCH-generated volatility trajectory, σ(t), t ≥ 0, as the scaling function
of an α-stable process, as in Eq. (1.2). This involves generating α-stable variables, which can be done with modern software easily and efficiently. We
performed this experiment systematically for α values between 0.5 and 2.0; in each case the results were virtually identical to those shown in Fig. 1.



L.-B. Chang, S. Geman / Physica A 392 (2013) 5046–5052 5049

Equivalently, our goal is to show that the collections h−1/αR(h)
k , k = 1, 2, . . . ,N (h), produce the same empirical distribution.

With this in mind, we define the cumulative distribution function of the scaled returns h−1/αR(h)
k by

F̂ (h)(r) =
1

N (h)

N(h)
k=1

1(−∞,r)


h−1/αR(h)

k


where 1A(x) is the ‘‘indicator function’’, indicating x ∈ A with 1 and x ∉ A with 0. For each r and h, F̂ (h)(r) is the fraction of
the scaled returns that are less than r .

The theorem below identifies a single cumulative distribution function, F(r), as the limit of each of the empirical dis-
tributions, F̂ (h)(r), thereby offering a resolution of the mismatch between observations of self-similarity and models of the
form (1.2).

Using σ(t), define a random volatility V by V = σ(U), where U has the uniform distribution on [0, T ], and let W be
independent of V with W ∼ w(1), where w(t) is the α-stable process in (1.2). Let F(r) = Prob{VW < r}. Then

Theorem.

sup
r

|F̂ (h)(r) − F(r)| → 0

as h ↓ 0.

Various forms of convergence of the empirical distributions F̂ (h)(r) to F(r) are equivalent. Please see the Appendix for
precise statements about the convergence in the theorem, some of the equivalent formulations, and for the proof itself along
with a detailed discussion and analysis of the proof.

Hence the properly scaled empirical distribution on returns is independent of the size of the return interval, for all inter-
vals sufficiently small, i.e. the empirical distributions scale. Specifically, the empirical distribution on returns, standardized
by h−1/α , approaches a mixture of distributions of α-stable variables. The mixture is multiplicative, and defined by the dis-
tribution of volatilities σ(t), t ∈ [0, T ].

The assumed continuity of σ(t) is a key part of the proof. Yet the extreme and rapid fluctuations in σ(t), as seen for
example through the 101 min window in the left-hand panel of the figure, suggest that continuity per se is insufficient to
explain the scaling properties of all but the smallest intervals. A close look at the proof of the theorem in fact highlights
the contributions of these fluctuations to the near convergence of F̂ (h), already at large values of h. (See the Appendix for a
detailed discussion and analysis.) In other words, within the framework of pricing models of the type depicted in (1.2), non-
constant volatility, and especially high-frequency fluctuations, actually contribute to the empirical scaling of returns, while at
the same time ensuring that the returns themselves are not self-similar. Empirical scaling is consistent with (1.2), and in
fact can be viewed as support for rather than evidence against this class of models.

Finally, we remark on some additional practical and theoretical implications of non-stationary aggregation. Consider a
trader who builds a strategy based, in part, on the idea that stock returns behave like a self-similar process. As indicated
by the theorem, the trader can indeed estimate the scaling parameter, under a random-walk model, from aggregated data
of stock returns. As for the practical implications, let S = S(R(h)) be a function of the return sequence R(h) (= (R(h)

1 , R(h)
2 ,

. . . , R(h)
N )) representing a trading strategy, such as, for example, an event-triggered buy or sell order. If stock returns really

were self-similar, then S(R(h)) ∼ S(r
1
α R(rh)), meaning that the single strategy would be equivalent to a multitude of strate-

gies, each executed at its own time scale. But we have argued that empirical self-similarity is not the same thing as actual
self-similarity, and that the latter is in fact inconsistent with stochastic volatility, at least in the random-walk model. In a
finite-time experiment, the actual relationships among scales are subordinate to the actual trajectory of volatility, which is
rarely well described as stationary, much less constant.

More generally, the practical challenge is to find invariant features in a dynamical system that is demonstrably non-
stationary. It cannot be a surprise that ever-more frequent introductions of new securities and derivatives, a relentless trend
to higher volume, and the increasing pace of innovation in market making and trading strategies, render an assumption of
temporal homogeneity less and less tenable. Howarewe to interpret, or evendetect, empirical invariants? The challenge is to
tease apart the non-stationary and oftentimes highly circumstantial trends (e.g. in volatility) from any preserved dimensions
of the dynamics (e.g. a scaling exponent in a generalized random-walk model).

One approach is tomake aweaker assumption: identify pairs of (generallymultivariate) statistics underwhich the condi-
tional distribution on one given the other can be reasonably assumed, or demonstrably approximated, to be homogeneous,
e.g. independent of the particular day, week, month, or year of interest. This works well in neuroscience applications, where
micro-electrode recordings from so-called repeated trials are never actual repeats in any strict statistical sense; the activi-
ties of billions of unrecorded neurons, reflecting the animal’s fluctuating attention, mood, and general state of mind, are in
no way stationary. But parameters can still be estimated and models can still be tested, by conditioning on variables that
are observable but out of control of the experimenter (see Amarasingham et al. for a review).

In a study of various financial markets, Preis et al. [23] demonstrate a remarkable invariant of the trajectory of volume
activity in and around local price extrema, when conditioning on (and hence scaling by) the interval length to the previous
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extremum. Similarly, conditioning on a set of returns and thendefining large returns (‘‘excursions’’) relative to the conditioned
set, can be shown to produce reliably invariant waiting times between excursions (see Refs. [24,25]). These and other
methods of conditional inference can sidestep some of the barriers to coherent statistical analysis in complex non-stationary
systems.

Appendix. Proof and discussion of the empirical scaling theorem

We consider the (drift-corrected) model for price movement given by

ln S(t) − ln S(0) =

 t

0
σ(s)dw(s) t ∈ [0, T ] (A.1)

where S(t) is the price of a security at time t , w(t) is an α-stable Lévy process (‘‘generalized random walk’’), and σ(t) is
either a deterministic function or, if stochastic, then it is independent of w.

The α-stable Lévy process, w, is characterized by a ‘‘location parameter’’ (playing the role of a mean or mode) which we
will take to be zero, a ‘‘scale parameter’’ (which determines units, and can be absorbed into σ(t)) which we will take to be
one, a ‘‘scaling parameter’’ α (sometimes called the ‘‘stability parameter’’, under which w(ht) ∼ h1/αw(t)) which can be
anything in the interval α ∈ (0, 2], and finally a skewness parameter β (which determines the range of possible steps as
well as their symmetry, or lack of symmetry) which we will take to be in the interval β ∈ (−1, 1), except when α = 1 or
α = 2 (corresponding to w(1) being the Cauchy or Gaussian distribution, respectively), for which β is always zero.2 As for
σ(t), we assume that it is either deterministic or independent of the random walk w. In either case we assume that σ(t) is
continuous.

Define the return process R(h)
1 , R(h)

2 , . . . , R(h)
N , over intervals of length h, by

R(h)
k = ln

S(kh)
S((k − 1)h)

=

 kh

(k−1)h
σ(s)dw(s), k = 1, 2, . . . ,N

where N = N (h)
= ⌊T/h⌋. And define the empirical cumulative distribution function of the scaled returns h−1/αR(h)

k by

F̂ (h)(r) =
1

N (h)

N(h)
k=1

1(−∞,r)


h−1/αR(h)

k


where 1A(x) is the indicator function of the event x ∈ A. For each r and h, F̂ (h)(r) is the fraction of the scaled returns that are
less than r .

Define the distribution of volatilities by the random variable V = σ(U), where U has the uniform distribution on [0, T ],
and letW be independent of V withW ∼ w(1), where w(t) is the α-stable process in (1.2). Let F(r) = Prob{VW < r}. Then

Theorem.

sup
r

|F̂ (h)(r) − F(r)| → 0

in probability, as h ↓ 0.

Remarks. 1. In other words, for every ϵ > 0:

lim
h↓0

Prob

sup
r

|F̂ (h)(r) − F(r)| > ϵ


= 0.

2. Since supr(·) is bounded 2, convergence in probability implies convergence of moments: E[supr |F̂ (h)(r) − F(r)|m] → 0
for allm > 0.

Proof. For any α ∈ (0, 2], h > 0, and k = 1, 2, . . . ,N (h), define

σ̄
(h)
k,α =


1
h

 kh

(k−1)h
σ(s)αds

1/α

.

Then

{h−1/αR(h)
k }

N(h)

k=1 ∼ {σ̄
(h)
k,αWk}

N(h)

k=1

whereW1,W2, . . . ,WN(h) are iid copies of w(1).

2 For completeness, we could also allow β = ±1, when α ∈ (0, 1), though this would truncate the possible values of w(1).
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Let G(r) = Prob{W < r} be the distribution function of w(1). (Then G is infinitely differentiable, and each of its
derivatives is bounded.) In terms of G,

F(r) =
1
T

 T

0
G


r
σ(s)


ds.

By a well-known argument based on the continuity of F , it is enough to show that F̂ (h)(r) → F(r) in probability, for each
(fixed) r:

F̂ (h)(r) − F(r) = F̂ (h)(r) −
1
T

 T

0
G


r
σ(s)


ds

∼
1

N (h)

N(h)
k=1


1

σ̄
(h)
k,αWk<r − G


r

σ̄
(h)
k,α


(A.2)

+
1

N (h)

N(h)
k=1


G


r

σ̄
(h)
k,α


− G


r

σ̄
(h)
k,1


(A.3)

+
1

N (h)

N(h)
k=1


G


r

1
h

 kh
(k−1)h σ(s)ds


−

1
h

 kh

(k−1)h
G


r
σ(s)


ds


(A.4)

+


1

N (h)h

 N(h)h

0
G


r
σ(s)


ds −

1
T

 T

0
G


r
σ(s)


ds


. (A.5)

The expression in (A.2) has mean zero and variance at most 1/N (h), and (A.5) is no bigger than 2/N (h). As for (A.3) and
(A.4), we note that the boundedness of G(r) and of G′(r) (i.e. the α-stable density function) imply the existence of a function
γr,α(x) ≥ 0 such that limx→0 γr,α(x) = 0 andG  r

a


− G

 r
b

 ≤ γr,α(|a − b|)

for any pair of non-negative numbers a and b. Set a = σ̄
(h)
k,α and b = σ̄

(h)
k,1 and note that, by the continuity of σ , |a − b| → 0

uniformly in k, which takes care of (A.3). Finally, for each k replace

1
h

 kh

(k−1)h
G


r
σ(s)


ds

byG


r
σ(sk)


for some sk ∈ [(k−1)h, kh] (mean value theorem), and again use the continuity ofσ to conclude that |a−b| → 0,

again uniformly in k, but this time with a =
1
h

 kh
(k−1)h σ(s)ds and b = σ(sk). Hence (A.4) vanishes as h → 0, and this

completes the proof. �

As remarked in the main text, the experiments indicate that convergence is rapid, and in fact essentially complete even
when h = 1024. This observation, in the face of the rapid fluctuations of σ(t) on a far shorter time scale, suggest that the
continuity of σ(t), in and of itself, is insufficient to completely explain the empirical results. Here we will take a closer look
at the proof of the theorem, in order to highlight the contributions of the additional path properties of σ(t), beyond just
continuity, that explain the near convergence of F̂ (h) already at large values of h.

|F̂ (h)(r)−F(r)| is bounded by bounding the four expression (A.2)–(A.5). There is nomystery about the first and the fourth:
the expressions in (A.2) and (A.5) are small simply because N (h) is large, the first by virtue of the law of large numbers, and
the second because of a deterministic bound. Rapid convergence in (A.3) and (A.4) is less obvious. We conclude with a brief
analysis of these terms, based on the presumed properties of typical volatility trajectories.

Beginning with (A.3), we note that the contribution is small provided that σ̄
(h)
k,α is close to σ̄

(h)
k,1 . Depending on whether

α > 1 or α < 1, one or the other term is larger by virtue of Jensen’s inequality. The difference between the two depends on
the distribution of σ(t), t ∈ [(k − 1)h, kh], and not directly on the continuity or smoothness of σ . For most intervals this
distribution is unimodal, in which case the uniform distribution on σ([(k − 1)h, kh]) gives an upper bound on the percent-
age error in replacing σ̄

(h)
k,α by σ̄

(h)
k,1 ; this turns out to be quite small for all α ∈ (0, 2]. A similar conclusion holds in (A.4)—the

magnitude of the expression depends on the distribution of σ and not on the smoothness, per se. In particular, (A.4) can be
re-written as the difference between E[G(r/X)] and E[G(r/Y )], where

X =
1
h

 Kh

(K−1)h
σ(s)ds
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with K uniformly distributed on {1, 2, . . . ,N (h)
}, andwhere Y = σ(S)with S uniformly distributed on [0, hN (h)

]. Notice that
non-stationarity or at least fluctuations inσ on time scales larger than h (e.g. a ten-year trend in increasing volatility) actually
works to make the distributions of X and Y similar, and therefore contributes to making the contribution from (A.4) small.
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