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Abstract
The spontaneous emission dynamics of atoms embedded in an omnidirectional waveguide
(ODWG), a novel optical waveguide, is studied on the basis of the complete reflection of
one-dimensional photonic crystals. With the dispersion curve of the single waveguide mode
within the photonic band gap and various extents of background dissipation, we characterize the
photon–atom interaction in the ODWG. The photon emitter of the system is a two-level atom
embedded in the low-index medium of the multilayer-film ODWG or the atom–ODWG system.
Fractional calculus, an innovative mathematical method in optical systems, is applied to solve
the equation of motion for this atom–ODWG system. Two kinds of states with different group
velocities exhibit totally distinctive dynamical behavior. The high frequency waveguide mode
with a fast group velocity shows fast exponential decay in propagation while the band-edge
mode with a slow group velocity displays non-Markovian dynamics with non-exponential
oscillating time evolution. We therefore suggest different functions of this atom–ODWG system
for these two kinds of states. The richness of the physical content of the system is also revealed
through investigating the dynamical behavior of the band-edge mode. These results aid in
further application and fundamental understanding of the atom–ODWG system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An omnidirectional waveguide (ODWG), surrounded by
dielectric omnidirectional (OD) reflectors [1], is also a
waveguide (WG) structure based on the complete reflection
of one-dimensional (1D) photonic crystals (PCs) [2]. It
is acclaimed as a flexible WG due to its ability to guide
electromagnetic (EM) waves with high transmission of up to
0.99 at arbitrary and random bending angles as long as the
radius of curvature R is large enough (R � 26a with a
being the lattice constant) [3]. The WG structure, shown in
figure 1(a), consists of a dielectric layer (or air) of lower index

4 Authors to whom any correspondence should be addressed.

na sandwiched by a 1D PC with refractive indices n2 > n1 >

na and variable thicknesses h2, h1, and ha. The dispersion
curve of the single WG mode is sketched in figure 1(b) using
the plane wave expansion method [4]. This dispersion curve
and OD frequency range can be tailored by proper design of
the geometrical structure of the system. This structure can
exhibit complete reflection of radiation in a given frequency
range for all incident angles and polarizations which has been
proven both theoretically and experimentally [1, 5, 6]. It
combines the features of both metallic-like OD reflectivity
and frequency selectivity with the typical low-loss behavior
of a PC. Within the frequency range of OD reflection, i.e.,
the dispersion curve lies within the photonic band gap (PBG)
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Figure 1. (a) Scheme of an omnidirectional waveguide and (b) its dispersion curve and the group velocity of a single guide mode within the
photonic band gap made of the 1D photonic crystal. These parameters are referred to the actual polystyrene–tellurium film [1]. Here a is the
lattice constant of the structure and c is the light speed in vacuum.

and above the light line of the guiding medium, the EM wave
is allowed to propagate in this medium but is forbidden in
(or completely reflected by) the PC that functions as an OD
mirror. The reason for the high transmission in this ODWG is
the single mode guiding within the waveguide.

Spontaneous emission (SE) from an excited atom in free
space decays exponentially with time, which can be described
under the Markovian approximation. This behavior will
change if the emitter is put into environments with different
densities of states (DOS) of photons and this is called the
Purcell effect [7]. In this case, the atoms strongly couple
with the ‘structured’ reservoir that leads to the invalidity of
the Markovian approximation. Especially, in the presence of
a threshold or singularities in the photon DOS [8–14], the
non-Markovian effect becomes of major relevance. Typical
features of non-Markovian dynamics include non-exponential
decay, fractional decay, population trapping, atom–photon
bound states and damped Rabi oscillation [12, 15]. Kleppner
predicted in the early 1980s [16] that the SE rate can be
changed when the emission frequency lies near the band-
edge mode of an optical WG. Near the band-edge mode, the
photon DOS increases and the optical mode possesses a slow
group velocity (see figure 1(b)). An optical mode with slow
group velocity implies greatly enhanced light–matter coupling
strength and explicit non-Markovian effect. This enhanced
coupling allows the efficient channeling of interaction between
photons and emitters fabricated in the WG.

Study of the SE dynamics of atoms embedded in an
ODWG (atom–ODWG) is a timely requirement for both
practical application and fundamental understanding. It was
indicated by Joannopoulos et al [17] that when a light source
is embedded close to the interface of an ODWG, the emitted
light will couple to the extended modes propagating in the 1D
PC and thus the reflective property of the OD mirror will be
changed. That is, embedding a light emitter within an ODWG
would induce distortion of the PC mirror. This distortion
should lead to a change of the SE dynamics. Therefore,
study of the dynamical behavior of an atom–ODWG system
is important due to its unexplored properties and potential
applications.

Fractional calculus, integration and differentiation of an
arbitrary order, has been applied widely in science, such as
in fractional kinetics [18], thermodynamics [19–21], fractal
media [22], and chaos dynamics [23, 24]. This mathematical
method has been proven to be better for studying the dynamical
behavior of optical systems near threshold [15]. Traditionally,
the dynamical behavior of these optical systems is studied
through the Laplace transform method [9, 10, 25] and/or
the smoothing method [11, 26] to solve the time evolution
equations. The Laplace transform method had given many
important results such as photon–atom bound states but would
lead to a multiple-valued problem and inconsistency with
experimental results, which was pointed out in our previous
study [15]. Fractional calculus gives a rigorous solution and
correct physical results for this kind of optical system in PCs
without dealing with the multiple-valued problem and artificial
smoothing parameters.

In this paper, we applied fractional calculus to study the
SE dynamics of a two-level atom embedded in the lower-index
medium of the ODWG with its transition frequency being
nearly resonant with the single WG mode within the PBG.
We found two distinctive dynamical behaviors governed by
two regimes with a fast group velocity for the high frequency
modes and a slow group velocity for the band-edge mode.
These two kinds of regimes are discussed under different
extents of background dissipation, which are associated with
fabrication defects of the PC mirrors. Functions of this atom–
ODWG system are suggested based on these two distinctive
modes. We describe the atom–ODWG system from the
quantum point of view in section 2. The characteristic
of the atom–ODWG is depicted by the specific memory
kernels associated with the dispersion curve of the single
WG mode and the background dissipation property of the PC
mirror. In section 3, we introduce the fractional calculus to
this optical system and obtain the corresponding fractional
kinetic equation and dynamical solution. The SE dynamics
of the system with various atomic detuning frequencies and
background dissipations is discussed. Finally, we summarize
our results in section 4.
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2. Quantum description of the atom–waveguide
system

When the system of a two-level atom coupled to a WG
reservoir is considered, the total Hamiltonian can be written
as

H = ωa|1〉〈1| +
∑

k

ωkc+
k ck +

∑

k

ωkb+
k bk

+
∑

k

gc(ωk)(c
+
k |0〉〈1| + |1〉〈0|ck)

+
∑

k

gb(ωk)(b
+
k |0〉〈1| + |1〉〈0|bk), (1)

where ωa denotes the atomic transition frequency; |0〉 and
|1〉 are the atomic ground and excited states; gc(ωk) and
gb(ωk) specifying the frequency-dependent coupling between
the atom and photon reservoirs are defined as g =
ωad

h̄ (
h̄

2ε0ωk L )
1/2ek · ud with d and ud being the absolute value

and the unit vector of the atomic dipole moment; L is the
length of the WG. There are two kinds of reservoirs in this
system. The pair of creation and annihilation operators c+

k and
ck correspond to the photon associated with the WG resonance
while the other pair b+

k and bk stand for the photons referred
to the background-dissipating modes due to imperfection in
the periodic structure. The corresponding wavefunction of the
system can be expressed as

|ψ(t)〉 = e−iωct [A(t)|2, {0}〉 +
∑

k

Bk(t)|1, {1kb}〉

+
∑

k

Ck(t)|1, {1kc}〉] (2)

with the cutoff frequency ωc (e.g., ∼0.2 in figure 1(b)) of
the WG. The probability amplitude A(t) indicates the atom
in its excited state |2〉 with no photon or in the vacuum state
while Bk(t) and Ck(t) indicate that the atom is in its ground
state |1〉 with one photon in mode kb and one in mode kc,
respectively. The initial condition of A(t = 0) = 1 and
Bk(t = 0) = Ck(t = 0) = 0 expresses the atom being in
the excited state |2〉 with no photon in either reservoir initially.

The equations of motion for these probability amplitudes
can be derived from the time-dependent Schrödinger equation
as

d

dt
A(t) = −i(ωa − ωc)A(t)− i

∑

k

gb(ωk)Bk(t)

− i
∑

k

gc(ωk)Ck(t), (3)

d

dt
Bk(t) = −i(ωk − ωc)Bk(t)− igb(ωk)A(t), (4)

d

dt
Ck(t) = −i(ωk − ωc)Ck(t)− igc(ωk)A(t). (5)

These equations can be further simplified after making the
following transformations:

A(t) = e−i(ωa−ωc)tα(t); Bk(t) = e−i(ωk−ωc)tβk(t);
Ck(t) = e−i(ωk−ωc)tγk(t).

(6)

This gives
d

dt
α(t) = −i

∑

k

gb(ωk)e
−i(ωk−ωa)tβk(t)

− i
∑

k

gc(ωk)e
−i(ωk−ωa)tγk(t), (7)

d

dt
βk(t) = −igb(ωk)e

−i(ωk−ωa)tαk(t), (8)

d

dt
γk(t) = −igc(ωk)e

−i(ωk−ωa)tαk(t). (9)

After integrating equations (8) and (9) and substituting
these results into equation (7), we obtain the integral–
differential equation

d

dt
α(t) = −i

∑

k

gb(ωk)
2
∫ t

0
e−i(ωk−ωa)(t−τ)α(τ ) dτ

−
∑

k

gc(ωk)
2
∫ t

0
e−i(ωk−ωa)(t−τ)α(τ ) dτ. (10)

A neat form of this equation reads

d

dt
α(t) = −

∫ t

0
Kb(t − τ )α(τ ) dτ −

∫ t

0
Kc(t − τ )α(τ ) dτ,

(11)
where the memory kernels are defined as

Kb(t − τ ) ≡
∑

k

gb(ωk)
2e−i(ωk−ωa)(t−τ),

Kc(t − τ ) ≡
∑

k

gc(ωk)
2e−i(ωk−ωa)(t−τ).

(12)

The characteristics of the WG reservoir are determined by
these memory kernels. For an ODWG, the kernel Kb(t − τ )

referred to the background dissipative modes may be assumed
to be

Kb(t − τ ) = γbδ(t − τ ) (13)

with the Dirac δ function and the decay rate γb indicating the
reflective property and scattering traits of the OD PC mirror.
When the atom is embedded inside this ODWG as a light
emitter, its transition dipole would induce distortion of the PC
mirror [17]. This decay rate could also express the extent of
the distortion.

On the basis of the dispersion curve of the single WG
mode in this optical system, the other kernel Kc(t − τ )

connected to the WG resonance can be expressed in terms of
the frequency-dependent mode density ρ(ω) as

Kc(t − τ ) =
(
ω2

a d2

2ε0ωch̄

)∫ ∞

0
ρ(ω)e−i(ω−ωa)(t−τ) dω. (14)

Here we have assumed that the energy of dipole transition
is close to the PBG and the dipole is perpendicular to the
propagation direction of the WG. For an ODWG with the
structure given in figure 1(a), the dispersion relation of the
single WG mode shown in figure 1(b) can be approximated
by a parabolic curve as ω = ωc + Mk2 with cutoff frequency
ωc and curvature M . The corresponding photon DOS exhibits
a threshold-like behavior with frequency dependence as

ρ(ω) = 1

2π
√

M
√
ω − ωc

�(ω − ωc), (15)
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where �(x) is a Heaviside step function. This photon DOS is
singular for a frequency ω near the threshold (cutoff) frequency
ωc. For a frequency below threshold, ω < ωc, the photon
DOS is zero and no propagation mode exists in the WG. In this
case, the WG-resonance kernel Kc vanishes and the decaying
behavior comes from the background-dissipating kernel Kb.
Substituting this photon DOS into the memory kernel Kc(t−τ )
and applying the complex Fresnel integral

∫ ∞
0 x p−1e−ax dx =

(p)/a p, we obtain

Kc(t − τ ) = β3/2 e−i[π/4−�c(t−τ)]
√

t − τ
(16)

with the coupling constant β3/2 = ω2
a d2/4

√
Mπε0ωch̄; (x)

is the gamma function and the atomic detuning frequency
�c = ωa − ωc under the long time limit t > τ . Substituting
these two memory kernels into equation (11), we obtain the
equation for this atom–ODWG system as

d

dt
α(t) = −γbα(t)− β3/2e−iπ/4ei�ct

∫ t

0

e−i�cτ

√
t − τ

α(τ) dτ.

(17)

3. Fractional kinetic equation and solutions

In this section, we apply the fractional calculus to deal with the
dynamical behavior of the system. The integral on the right
hand side of equation (17) can be expressed as the Riemann–
Liouville fractional differential operator, which is defined as

dv

dtv
f (t) = 1

(−ν)
∫ t

0
(t − τ )−v−1 f (τ ) dτ. (18)

After transforming the probability amplitude α(t) back to
A(t) by α(t) = ei�ct A(t), equation (17) can be written in a
fractional form as

d

dt
A(t)+ (γb + i�c)A(t)+ β3/2e−iπ/4√π d−1/2

dt−1/2
A(t) = 0.

(19)
This is the fractional kinetic equation of this atom–ODWG

system. It can be solved through manipulating the fractional
operators including the integral operator d−1/dt−1 followed by
the fractional differentiation operator d3/2/dt3/2. The first step
yields

A(t)− A(0)+ (γb + i�c)
d−1

dt−1
A(t)

+ β3/2e−iπ/4√π d−3/2

dt−3/2
A(t) = 0, (20)

and the second step gives

d3/2

dt3/2
A(t)+ i(�c − iγb)

d1/2

dt1/2
A(t)

+ β3/2e−iπ/4√π A(t) = − 1

2
√
π

t−3/2, (21)

where we have applied the initial condition A(0) = 1. By
taking the Laplace transform with the fractional derivative of
A(t), we obtain

Ã(s) =
√

s

s3/2 + i(�c − iγb)s1/2 − ei3π/4β
3/2
W

. (22)

Here we have defined a new coupling constant β3/2
W =

β3/2√π , which denotes the coupling strength between the two-
level atom and the ODWG mode depending on the orientation
and distance of the atomic dipole relative to the interface of the
multilayer structure.

The standard solving procedures for the dynamical
behavior of the atom–ODWG system involve expressing Ã(s)
as a sum of partial fractions and inversely Laplace transforming
the partial fractions. The partial-fraction form of Ã(s) is

Ã(s) = C1√
s − Z1

+ C2√
s − Z2

+ C3√
s − Z3

, (23)

where Zn are the roots of the indicial equation

Z 3 + i(�c − iγb)Z − ei3π/4β
3/2
W = 0, (24)

and Cn are the coefficients related to Zn. The roots Zn and the
coefficients Cn are solved as

Z1 = β
1/2
W [−(2/3)1/3�/ζ + ζ/181/3]eiπ/4, (25)

Z2 = β
1/2
W [(2/3)1/3�eiπ/3/ζ − ζ e−iπ/3/181/3]eiπ/4, (26)

Z3 = β
1/2
W [(2/3)1/3�e−iπ/3/ζ − ζ eiπ/3/181/3]eiπ/4, (27)

with

ζ = 32/3

[
1 +

(
1 + 4

27
�3

)1/2]1/3

, � = �c

βW
− i

γb

βW
,

(28)
and

Cn = Zn

(Zn − Z j)(Zn − Zm)
(n �= j �= m; n, j,m = 1, 2, 3).

(29)
Applying the fractional inverse Laplace transform,

L−1{ 1√
s−a

} = Et(−1/2, a2) + a Et(0, a2), to the partial
fractions in equation (23), we get the excited-state probability
amplitude A(t) as

A(t) =
3∑

n=1

Cn[Et(−1/2, Z 2
n)+Zn Et(0, Z 2

n)]

=
3∑

n=1

Cn[Z 2
n Et(1/2, Z 2

n)+ ZneZ2
n t ]. (30)

Here Et(ν, a) = tν
∑∞

n=0
(at)n

(ν+n+1) is the fractional
exponential function of order ν with variable t and constant
a. Equation (30) can be further written as

A(t) =
3∑

n=1

Cn[Ynerf(Yn

√
t)+ Zn]eZ2

n t (31)

with Yn being the square roots of Z 2
n in the first or the

second quadrant because the fractional exponential function
Et(1/2, Z) can be expressed as the error function through
Et(1/2, Z) = eZt erf(

√
Zt)/

√
Z .

The dynamical behavior of this excited-state population
P(t) = |A(t)|2 is strongly related to the number Z 2

n. When Z 2
n

is a complex number, the excited-state population contributed
from this dressed state (DS) will exhibit decaying behavior.

4
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Figure 2. The spontaneous emission dynamics of the atom–ODWG
system with γb = 0.05βW. It is plotted as a function of βWt for
various values of the atomic detuning frequency�c = ωa − ωc.

As Z 2
n is a pure positive imaginary number, the population

amplitude contributed from this DS equals 2Cn Znexp(Z 2
nt)

at t = ∞ with Zn = αnexp(iπ/4) and αn > 0 because
erf(

√
Z 2

nt) = 1 at t = ∞. On the other hand, the population
amplitude equals 0 at t = ∞ as αn < 0 because Yn =
−Zn. Therefore, only the DS with Zn having amplitude
αnexp(iπ/4) with αn > 0 contributes to a bound state. When
analyzing the indicial equation of equation (24), we find that
there always exists a bound DS when γb = 0. The DS with
larger atomic detuning frequency from the photonic band edge
contributes less to the bound state. This contribution even
becomes zero when the detuning frequency is high enough, i.e.,
ωa 	 ωc. Under this circumstance, the existence of
background dissipation accelerates the decay of the excited
state. On the other hand, as the DS has an atomic frequency
close to the PC band edge, the background dissipation provides
a channel to release the bound state energy through a photon
decaying into the reservoir.

We plot the SE dynamics of this atom–ODWG system
in terms of the excited-state probability, P(t) = |A(t)|2 in
figure 2, for different atomic detuning frequencies �c = ωa −
ωc with background dissipation γb = 0.05βW. It can be seen
that distinct dynamical behaviors exist between the states with
frequencies far away from the guiding threshold frequency
(�c/βW � 5) and those with frequency near the threshold
frequency �c/βW ≈ 0.

The excited-state population or the SE dynamics exhibits
fast exponential decay for the case of �c/βW � 5 where the
high frequency WG mode has a fast group velocity. Thus this
atom–ODWG at high detuning is named the high frequency
WG (HFWG) mode hereafter. It reveals that the excited atom
favors dissipation of its stored energy by emitting a photon to
the WG mode. Chen et al [3] indicated numerically that this
WG can achieve a high transmission rate of up to 0.99 within
the ODWG corresponding to the HFWG here. On the other
hand, the band-edge mode at near-zero detuning having slow
group velocity displays non-exponential decay, which is one
of the typical features of non-Markovian dynamics. This non-
Markovian effect results from strong light–matter interaction

Figure 3. Spontaneous emission dynamics of the omnidirectional
waveguide system in the slow-light states with different detuning
frequencies�c = 0.5βW and −0.5βW and different background
decaying rates (γb = 0.05βW and 0.1βW).

enhanced by the singularity of the photon DOS near threshold.
The enlarged photon DOS or the slow group velocity enhances
the light–matter interaction. This band-edge mode reflects the
strong coupling between the excited-state atoms and the WG
reservoir results in non-exponential dynamics with damped
Rabi oscillation. When the atomic transition frequency is
below the WG propagating mode, i.e., �c/βW = −5 in
figure 2, the energy of the atom in the excited state will almost
release via the background dissipation. The oscillation of the
population at the beginning is caused by the interaction or
energy transfer between the WG and the atom.

It is worth investigating the behavior of the system at the
band-edge modes where the atomic transition frequency (ωa)

lies near the cutoff frequency (ωc) of the WG, i.e., ωa − ωc =
�c

∼= 0. In figure 3, the SE dynamics is plotted with two
different values of the background decaying rate. Typical
features of non-Markovian dynamics with non-exponential
decay and damped Rabi oscillation are observed in figure 3
for both dissipation cases. For large background dissipation,
the SE dynamics with the atomic detuning frequency positive
(�c > 0) displays more seriously propagating behavior,
while that of the negative-detuning states (�c < 0) manifests
bound behavior in the strong atom–WG interaction region,
e.g., βWt = 0–5; then the decaying behaviors are dominated
by the background dissipation rate γb at the long time scale.
Therefore, in the band-edge mode, the dynamics of the
population is dominated by the atom–WG interaction initially
but is dissipated at the long time scale. In the HFWG region,
the emitted photon energy is quickly transferred to the WG
mode so the influence of the background dissipation will be
dramatically reduced.

The ODWG in this band-edge mode is not suitable for
guiding waves because of the binding feature from the strong
light–matter interaction. With this binding feature, the atom–
ODWG system can act as an active optical device such as
a single-photon emitter or a qubit. The enhanced coupling
allows the channeling of photons from the emitter into a bound
propagating mode and thus results in the efficient extraction

5
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and manipulation of the emitted photons, which are the criteria
for producing single-photon sources [27].

4. Conclusion

We have studied the SE dynamics of an omnidirectional
waveguide with a two-level atom embedded in the low-index
medium of the multilayer-film structure. The characteristic
of the waveguide is denoted by the dispersion curve and
background dissipations of the system through the memory
kernels. The relative extent of the background dissipation is
expressed in terms of the background dissipation rate γb with
respect to the coupling constant between the atom and the
waveguide mode. By applying fractional calculus to derive
and solve the dynamical behavior of this optical system, a
fractional kinetic equation and a corresponding solution of
the system are obtained through manipulating the fractional
operators. The dynamics of this system shows that there are
two kinds of regimes behaving very differently. The population
of the excited state in the ODWG with a fast group velocity
decays exponentially implying propagating characteristics.
The existence of background dissipation enhances the decay
rate. The population of the excited state in the ODWG with
a slow group velocity near the WG cutoff, however, exhibits
non-exponential decay with damped Rabi oscillation, which
is a typical feature of the non-Markovian effect. The strong
light–matter interaction leads to bound propagating behavior
of the fractional decay with a large value of the excited-
state probability density, while the dissipation provides the
channel to release the bound state photon due to the finite
size or imperfect manufacture of the photonic crystals. The
physical content of the atom–ODWG system is rich and worth
investigating further both experimentally and theoretically.
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