Published online 13 September 2012 in Wiley Online Library

Supplier Selection Critical Decision Values for Processes with Multiple Independent Lines

W. L. Pearn and C. H. Wu^{*†}

The process yield is the most common criterion considered for decision making in supplier selection problem. For normally distributed processes with multiple independent lines, the S_{pk}^{M} index provides an exact measurement for the overall yield. Therefore, the S_{pk}^{M} index can be implemented to deal with the supplier selection problem with processes having multiple independent lines. In this article, a test statistic obtained by a division method is employed to establish a hypothesis testing procedure, with two phases, which is developed to determine whether two suppliers are equally capable or not. The sampling distribution and the probability density function of the test statistic are derived. For various minimum requirements of process capability, number of lines, sample sizes, magnitudes of the difference between the two suppliers and the type I error, the critical values for decision making are presented. The required sample sizes for various designated powers at given type I error are tabulated. A thin-film transistor type liquid-crystal display application example is provided to demonstrate the testing procedure. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: critical value; multiple independent lines; supplier selection problem

1. Introduction

Supplier selection is a problem of comparing two or even more suppliers and selecting the one that has a significantly higher process capability. Process capability indices (PCI) have been widely used to be a criterion for dealing with supplier selection problem in manufacturing industries. Process yield is an important factor that needs to be considered in supplier selection problem. Boyles¹ proposed the S_{pk} index to provide an exact measurement for the process yield. However, processes with multiple characteristics or multiple independent lines often occur in practice. For processes with multiple independent characteristics, Chen *et al.*² firstly introduced the S_{pk}^{T} index to evaluate the process performance. Pearn and Cheng³ investigated the relationship between process parameters and the sampling distribution of natural estimator of S_{pk}^{T} . Pearn *et al.*⁴ derived the asymptotic distribution for the natural estimator of S_{pk}^{T} index under multiple samples. Recently, more investigations for processes with multiple characteristics include Pearn *et al.*⁵⁻⁷

For normally distributed processes with multiple independent lines, Tai *et al.*⁸ proposed the overall yield index S_{pk}^{M} to establish the relationship between the actual overall process yield and the manufacturing specifications. Thus, the S_{pk}^{M} index can be used as a benchmark for evaluating process performance. Tai *et al.*⁸ developed an effective method to measure the manufacturing yield for photolithography processes with multiple independent manufacturing lines by S_{pk}^{M} index.

For the supplier selection problem, Tai *et al.*⁹ investigated the glass substrate processes selection problem in thin-film transistor type liquid-crystal display (TFT-LCD) manufacturing industries. Lin and Pearn¹⁰ developed an analytical approach based on the yield index S_{pk} to compare two processes. Lin and Pearn¹¹ extended the results of Lin and Pearn¹⁰ to cases with multiple independent manufacturing lines. Yum and Kim¹² and Wu *et al.*¹³ provided some reviews and overviews for PCI.

2. The S_{pk}^{M} index for multiple independent lines

For a multiple independent lines process with *k* identical lines (flows), an overall capability index was proposed by Tai *et al.*⁸ designed as follows:

$$S_{pk}^{M} = \frac{1}{3} \Phi^{-1} \left\{ \left[\frac{1}{k} \sum_{j=1}^{k} \left(2\Phi(3S_{pkj}) - 1 \right) + 1 \right] / 2 \right\},\tag{1}$$

where $S_{pkj'} j = 1, ..., k$ is the S_{pk} index value of the *j*th line. $\Phi(\cdot)$ means the cumulative distribution function of the standard normal distribution. For normally distributed processes, the yield of the *j*th line $P_{j'} j = 1, 2, ..., k$ can be obtained by

Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan *Correspondence to: Chia-Huang Wu, Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, 300 Taiwan. *E-mail: hexjacal.iem96g@nctu.edu.tw Quality and Reliability Engineering International

Yield
$$= P_j = 2\Phi(3S_{pkj}) - 1.$$
 (2)

Consequently, from Equation (1), a one-to-one relationship between the index S_{pk}^{M} and the overall process yield *P* can be presented as follows:

$$P = \frac{1}{k} \sum_{j=1}^{k} P_j = \frac{1}{k} \sum_{j=1}^{k} \left[2\Phi(3S_{\rho k j}) - 1 \right] = 2\Phi(3S_{\rho k}^{M}) - 1.$$
(3)

Hence, the S_{pk}^{M} index provides an exact measurement of the yield for normally distributed processes with multiple independent lines. That is, the S_{pk}^{M} can be used to deal with the supplier selection problem on the basis of the overall process yield. Because the process parameters such as means and variances are unknown, in general, S_{pk}^{M} sample data should be collected to estimate the S_{pk}^{M} index. The natural estimator of S_{0k}^{M} , \hat{S}_{0k}^{M} , can be expressed as

$$\hat{S}_{pk}^{M} = \frac{1}{3} \Phi^{-1} \left\{ \left[\frac{1}{k} \sum_{j=1}^{k} \left(2\Phi(3\hat{S}_{pkj}) - 1 \right) + 1 \right] / 2 \right\},$$
(4)

where

$$\hat{S}_{pkj} = \frac{1}{3} \Phi^{-1} \left\{ \frac{1}{2} \left[\Phi \left(\frac{USL_j - \bar{X}_j}{S_j} \right) + \Phi \left(\frac{\bar{X}_j - LSL_j}{S_j} \right) \right] \right\}, \quad j = 1, 2, \dots, k,$$
(5)

is the natural estimator of S_{pk} index value of the *j*th line¹. The exact sampling distribution of \hat{S}_{pk}^{M} is mathematically intractable. Tai *et al.*⁸ used the first-order Taylor expansion for multiple variables to derive the asymptotic distribution of \hat{S}_{pk}^{M} as

$$\hat{S}_{pk}^{M} \approx N\left(S_{pk}^{M}, \frac{D^{2}\phi(3D)}{2k^{2}n\phi^{2}\left(3S_{pk}^{M}\right)}\right),\tag{6}$$

where

$$D = \frac{1}{3} \Phi^{-1} \left\{ \left[k \left(2\Phi \left(3S_{\rho k}^{M} \right) - 1 \right) - (k - 2) \right] / 2 \right\}.$$
⁽⁷⁾

The results mentioned earlier can be implemented to compare two suppliers with multiple independent lines and normally distributed processes.

3. Supplier selection for processes with multiple independent lines

Consider two suppliers, suppliers I and II, supplier II claims that it has a significantly higher capability than supplier I. Our main object is to compare two suppliers and make a reliable decision at a given significance level α . Based on given data from the two suppliers with multiple independent lines, \hat{S}_{pk1}^{M} and \hat{S}_{pk2}^{M} would be first calculated. The quotient $R = \hat{S}_{pk2}^{M}/\hat{S}_{pk1}^{M}$ would then be considered. If the quotient $R = \hat{S}_{pk2}^{M}/\hat{S}_{pk1}^{M}$ is sufficiently large, then it is clear that supplier II is better than supplier I, and supplier II in this case would be selected. The critical decision values, however, must be determined by statistical hypothesis testing. When the suppliers have S_{pk}^{M} index values S_{pk1}^{M} and S_{pk2}^{M} , the testing of the hypothesis

$$\begin{aligned} H_0 : S^M_{pk1} \ge S^M_{pk2}, \\ H_1 : S^M_{pk1} < S^M_{pk2}. \end{aligned}$$
(8)

is considered to handle the supplier selection problem. Next, the probability density function of the test statistic R is derived explicitly.

4. Test statistic quotient R

In this section, we implement a test statistic *R* to investigate the hypothesis testing mentioned earlier. Firstly, Equation (8) can be represented as

$$\begin{split} H_0 : & \frac{S_{pk2}^M}{S_{pk1}^M} \leqslant 1, \\ H_1 : & \frac{S_{pk2}^M}{S_{pk1}^M} \! > \! 1. \end{split}$$

(9)

The ratio of the two estimators, $R = \hat{S}_{pk2}^{M} / \hat{S}_{pk1}^{M}$, is applied to deal with the hypothesis testing of Equation (9). From Equation (6), the natural estimator \hat{S}_{pk}^{M} is an asymptotic, normally distributed random variable. Consequently, the sampling distribution of the test statistic *R* is as follows:

$$R = \frac{\hat{S}_{pk2}^{M}}{\hat{S}_{pk1}^{M}} \approx \frac{N\left(S_{pk1}^{M}, \frac{D_{1}^{2}\phi(3D_{1})}{2k_{1}^{2}n_{1}\phi^{2}\left(3S_{pk1}^{M}\right)}\right)}{N\left(S_{pk2}^{M}, \frac{D_{2}^{2}\phi(3D_{2})}{2k_{2}^{2}n_{2}\phi^{2}\left(3S_{pk2}^{M}\right)}\right)}.$$
(10)

Thus, the distribution of the test statistic *R* is the quotient of two independent, normally distributed random variables and is related to the Cauchy distribution. Let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ be two independent random variables with normal distribution. Using the Jocobian transformation technique, the probability density function of R = Y/X can be represented as

$$f_{R}(r) = \frac{1}{2\pi\sigma_{1}\sigma_{2}} \left\{ 2\sigma_{3}^{2} \exp\left(-\frac{\mu_{3}^{2}}{2\sigma_{3}^{2}}\right) + \mu_{3}\sigma_{3}\sqrt{2\pi} \left[1 - 2\Phi\left(\frac{\mu_{3}}{\sigma_{3}}\right)\right] \right\} \times \exp\left[-\frac{1}{2} \left(\frac{\mu_{1}^{2}}{\sigma_{1}^{2}} + \frac{\mu_{2}^{2}}{\sigma_{2}^{2}} - \frac{\mu_{3}^{2}}{\sigma_{3}^{2}}\right)\right], \tag{11}$$

where

$$\mu_{3} = \frac{\mu_{1}/\sigma_{1}^{2} + r\mu_{2}/\sigma_{2}^{2}}{1/\sigma_{1}^{2} + r^{2}/\sigma_{2}^{2}} = \frac{r\mu_{2}\sigma_{1}^{2} + \mu_{1}\sigma_{2}^{2}}{r^{2}\sigma_{1}^{2} + \sigma_{2}^{2}}, \text{ and } \sigma_{3}^{2} = \left[\frac{1}{\sigma_{1}^{2}} + \frac{r^{2}}{\sigma_{2}^{2}}\right]^{-1} = \frac{\sigma_{1}^{2}\sigma_{2}^{2}}{r^{2}\sigma_{1}^{2} + \sigma_{2}^{2}}.$$
 (12)

Finally, the probability distribution of $R = \hat{S}_{pk2}^{M} / \hat{S}_{pk1}^{M}$, can be established by substituting the parameters as

$$\mu_1 = S_{pk1}^M, \ \mu_2 = S_{pk2}^M, \ \sigma_1^2 = \frac{D_1^2 \phi(3D_1)}{2k_1^2 n_1 \phi^2 \left(3S_{pk1}^M\right)}, \ \text{and} \ \sigma_2^2 = \frac{D_2^2 \phi(3D_2)}{2k_2^2 n_2 \phi^2 \left(3S_{pk2}^M\right)}.$$
(13)

In the next section, on the basis of the sampling distribution of *R* developed in Equation (11), a procedure having two phases is proposed to deal with the supplier selection problem.

5. Supplier selection procedure

Let *C* denote the minimum requirement of S_{pk}^{M} values for all suppliers. When the existing supplier, supplier I, has achieved the process requirement (i.e., $S_{pk1}^{M} \ge C$), a new supplier, supplier II claims that its capability is better than suppler I. Our object is to compare two suppliers and make a reliable decision at a given significance level α risk.

5.1. Phase I: selecting supplier with higher capability

In the first phase, the hypothesis testing: $H_0: S_{pk2}^M \leq S_{pk1}^M$ versus $H_1: S_{pk2}^M > S_{pk1}^M$ is considered to test whether supplier I has a better process capability than supplier I or not. On the basis of the testing statistic $R = \hat{S}_{pk2}^M / \hat{S}_{pk1}^M$ and a given significance level α , the decision rule is to reject H_0 if $R \ge c_0$. The critical value c_0 satisfies the following equation:

Type I Error =
$$P(R \ge c_0 | H_0 : S_{pk2}^M \le S_{pk1}^M, n_1, n_2, k_1, k_2 \text{ and } S_{pk1}^M \ge C) \le \alpha.$$
 (14)

That is, the probability that falsely rejects H_0 is no more than α . Because the smaller the value of S_{pk2}^M/S_{pk1}^M , the larger the type I error is, then, we calculate the critical value c_0 under the conditions $S_{pk1}^M = S_{pk2}^M = C$. Therefore, the critical value c_0 can be obtained by solving the following equation

$$P(R \ge c_0 | S_{pk1}^{\mathsf{M}} = S_{pk2}^{\mathsf{M}} = C, n_1, n_2, k_1, k_2) = \alpha.$$
(15)

Table I shows the critical values to test H_1 : $S_{pk2}^M > S_{pk1}^M$ for various values of $k_1 = k_2 = k$ and $n_1 = n_2 = n = 30(10)200$ at $\alpha = 0.05$. It is to be noted that the critical value is the same as the result in Lin and Pearn.¹⁰

5.2. Phase II: magnitude outperformed measurement

In Phase I, the decision is based solely on the two S_{pk}^{M} values without further regard to the magnitude of the difference between the two suppliers. In practice, owing to the high cost of the process replacement, the supplier change is considered only if the new supplier significantly outperforms the existing supplier's capability by a given magnitude h > 0. In this case, the proposed approach can be modified to test the corresponding hypothesis:

$$H_{0}: S_{pk2}^{M} \leq S_{pk1}^{M} + h,$$

$$H_{1}: S_{pk2}^{M} > S_{pk1}^{M} + h.$$
(16)

The decision rule is similar to Phase I. We will reject H_0 and accept that $S_{pk2}^M > S_{pk1}^M + h$ when the test statistic R is greater than or equal to the critical value c_0 , where c_0 satisfies the following:

Type I Error =
$$P(R \ge c_0 | H_0 : S_{nk_2}^M \le S_{nk_1}^M + h, n_1, n_2, k_1, k_2 \text{ and } S_{nk_1}^M \ge C) \le \alpha.$$
 (17)

Similarly, the critical value c_0 is obtained by keeping the type I error less than α under the conditions $S_{pk1}^M = C$ and $S_{pk2}^M = C + h$. That is, c_0 is obtained by solving the following equations

$$P(R \ge c_0 | S_{pk1}^M = C, S_{pk2}^M = C + h, n_1, n_2, k_1, k_2) \le \alpha.$$
(18)

If the decision is rejecting the null hypothesis (16), then we have sufficient evidence to conclude that supplier II is significantly better than supplier I by a magnitude of *h*. Table II shows the critical values for given numbers of lines $k_1 = k_2 = k = 2(1)5$, sample sizes $n_1 = n_2 = n = 30(10)200$, the magnitude of the difference between the two suppliers h = 0.1(0.1)0.5, and minimum requirements of suppliers C = 1.00, 1.33, 1.50.

5.3. Required sample size

The decision making in Phases I and II solely depends on the given type I error α risk, but does not consider the type II error β risk (or power), which is the probability of falsely accepting H_0 . It is an unfavorable risk for the competing supplier. To decrease the β risk, then increasing the decision power at a given α risk, sample sizes need to be increased. Obviously, the larger the sample size, the smaller the β risk (the larger the power of test) is. By calculating the power for a specific combination of $\left(S_{pk1}^M, S_{pk2}^M\right)$, the minimal sample size required for various given power (or β risk) and α risk can be established. The required sample size can be obtained by solving the following two constraints

Type I Error =
$$P(R \ge c_0 | H_0 : S_{bk2}^M \le S_{bk1}^M, n_1, n_2, k_1, k_2 \text{ and } S_{bk1}^M \ge C) \le \alpha$$
, (19)

Power =
$$P(R \le c_0 | H_1 : S_{pk2}^M > S_{pk1}^M, n_1, n_2, k_1, k_2 \text{ and } S_{pk1}^M \ge C) \ge 1 - \beta.$$
 (20)

For application, Table III tabulates the required sample sizes for various minimal capability requirements C = 1.00, 1.30, 1.50, 1.67 and magnitude of difference h = 0.15(0.05)1.00 with given power = 0.90, 0.95, 0.975, 0.99 when the sample size and the number of lines of two suppliers are the same (i.e., $n_1 = n_2$, $k_1 = k_2$). For example, if two suppliers both have k = 3 lines, the minimal capability requirement C = 1.30, the designated α risk is 0.05, and the expected magnitude of difference $h = S_{pk2}^M - S_{pk1}^M = 0.3$, then it requires 183 samples from both suppliers to reach a testing power of 0.95 (i.e., β risk = 0.05).

Table	Table I. Critical values for rejecting $S_{pk1}^M \leq S_{pk2}^M$ with $n_1 = n_2 = n = 30(10)200$ at $\alpha = 0.05$											
			p p.	-		k						
n	1	2	3	4	5	6	7	8	9	10		
30	1.3581	1.3037	1.2734	1.2526	1.2368	1.2242	1.2137	1.2046	1.1968	1.1899		
40	1.3019	1.2571	1.2321	1.2148	1.2016	1.1910	1.1822	1.1747	1.1680	1.1622		
50	1.2653	1.2266	1.2048	1.1897	1.1782	1.1690	1.1613	1.1547	1.1489	1.1438		
60	1.2391	1.2046	1.1852	1.1717	1.1613	1.1531	1.1461	1.1402	1.1350	1.1304		
70	1.2192	1.1879	1.1701	1.1578	1.1484	1.1409	1.1345	1.1291	1.1243	1.1201		
80	1.2034	1.1746	1.1582	1.1468	1.1381	1.1311	1.1252	1.1202	1.1158	1.1118		
90	1.1906	1.1637	1.1485	1.1378	1.1297	1.1231	1.1176	1.1129	1.1088	1.1051		
100	1.1799	1.1546	1.1403	1.1303	1.1226	1.1164	1.1112	1.1068	1.1029	1.0994		
110	1.1707	1.1469	1.1333	1.1238	1.1166	1.1107	1.1058	1.1016	1.0979	1.0946		
120	1.1628	1.1402	1.1272	1.1182	1.1113	1.1057	1.1011	1.0970	1.0935	1.0904		
130	1.1559	1.1343	1.1219	1.1133	1.1067	1.1014	1.0969	1.0930	1.0897	1.0867		
140	1.1498	1.1290	1.1172	1.1090	1.1026	1.0975	1.0932	1.0895	1.0862	1.0833		
150	1.1443	1.1244	1.1130	1.1050	1.0990	1.0940	1.0899	1.0863	1.0832	1.0804		
160	1.1394	1.1202	1.1092	1.1015	1.0956	1.0909	1.0869	1.0835	1.0804	1.0778		
170	1.1349	1.1164	1.1057	1.0983	1.0926	1.0881	1.0842	1.0809	1.0779	1.0753		
180	1.1309	1.1129	1.1026	1.0954	1.0899	1.0854	1.0817	1.0785	1.0756	1.0732		
190	1.1271	1.1097	1.0998	1.0928	1.0874	1.0831	1.0794	1.0763	1.0736	1.0711		
200	1.1237	1.1068	1.0971	1.0903	1.0851	1.0809	1.0774	1.0743	1.0717	1.0693		

Table	II. Critical va	alues for reje	cting $S_{pk1}^M \leq S_p^I$	$h_{k2}^{M} + h$ with a	$\alpha = 0.05$ and	h = 0.1(0.1)0.1	5			
						h				
	0.10	0.20	0.30	0.40	0.50	0.10	0.20	0.30	0.40	0.50
C=1.0	0		_					_		
n		4 5 7 9 9	k=2	4 00 77	4 0740	4 40 60	4 530 4	k=3	4	4 00 40
30	1.4374	1.5709	1.7044	1.8377	1.9710	1.4060	1.5384	1.6707	1.8028	1.9348
40	1.3857	1.5142	1.6426	1.7709	1.8990	1.3598	1.48/3	1.6148	1./421	1.8694
50	1.3518	1.4769	1.6020	1./269	1.8518	1.3293	1.4537	1.5780	1./022	1.8263
60	1.32/4	1.4501	1.5728	1.6953	1.8178	1.30/3	1.4294	1.5514	1.6/33	1./951
70	1.3089	1.4297	1.5505	1.6712	1.7919	1.2906	1.4109	1.5311	1.6513	1.7713
80	1.2941	1.4135	1.5328	1.6521	1.7713	1.2772	1.3962	1.5150	1.6337	1.7524
90	1.2820	1.4002	1.5184	1.6365	1./545	1.2663	1.3841	1.5018	1.6194	1./369
100	1.2719	1.3891	1.5063	1.6234	1.7404	1.2571	1.3740	1.4907	1.6073	1.7238
110	1.2633	1.3796	1.4959	1.6122	1.7283	1.2493	1.3653	1.4812	1.5970	1.7127
120	1.2558	1.3714	1.4870	1.6025	1.7179	1.2426	1.3578	1.4730	1.5881	1.7031
130	1.2493	1.3642	1.4791	1.5940	1.7088	1.2366	1.3512	1.4658	1.5802	1.6946
140	1.2435	1.3578	1.4722	1.5864	1.7007	1.2313	1.3454	1.4594	1.5733	1.6871
150	1.2383	1.3521	1.4660	1.5797	1.6935	1.2266	1.3402	1.4537	1.5671	1.6804
160	1.2336	1.3470	1.4604	1.5737	1.6869	1.2224	1.3355	1.4485	1.5615	1.6744
170	1.2294	1.3424	1.4553	1.5682	1.6810	1.2185	1.3312	1.4438	1.5564	1.6689
180	1.2255	1.3381	1.4507	1.5632	1.6756	1.2150	1.3273	1.4396	1.5518	1.6640
190	1.2220	1.3342	1.4464	1.5586	1.6706	1.2118	1.3238	1.4357	1.5475	1.6594
200	1.2187	1.3306	1.4425	1.5543	1.6661	1.2088	1.3205	1.4321	1.5436	1.6551
C = 1.0	0									
n			k = 4					<i>k</i> = 5		
30	1.3844	1.5161	1.6476	1.7790	1.9101	1.3681	1.4993	1.6303	1.7611	1.8917
40	1.3419	1.4689	1.5958	1.7225	1.8491	1.3283	1.4550	1.5814	1.7077	1.8339
50	1.3138	1.4377	1.5615	1.6852	1.8087	1.3019	1.4256	1.5490	1.6723	1.7955
60	1.2935	1.4152	1.5367	1.6582	1.7795	1.2829	1.4043	1.5255	1.6467	1.7677
70	1.2779	1.3979	1.5177	1.6375	1.7572	1.2682	1.3880	1.5076	1.6271	1.7464
80	1.2655	1.3842	1.5026	1.6211	1.7393	1.2566	1.3750	1.4932	1.6114	1.7294
90	1.2554	1.3728	1.4902	1.6075	1.7247	1.2470	1.3643	1.4815	1.5985	1.7155
100	1.2469	1.3634	1.4798	1.5962	1.7124	1.2390	1.3554	1.4716	1.5878	1.7038
110	1.2396	1.3553	1.4710	1.5865	1.7019	1.2322	1.3477	1.4632	1.5785	1.6938
120	1.2333	1.3483	1.4633	1.5781	1.6929	1.2262	1.3411	1.4558	1.5705	1.6851
130	1.2278	1.3422	1.4565	1.5707	1.6849	1.2210	1.3352	1.4494	1.5635	1.6774
140	1.2229	1.3367	1.4505	1.5642	1.6778	1.2164	1.3301	1.4437	1.5572	1.6707
150	1.2185	1.3318	1.4451	1.5583	1.6714	1.2122	1.3254	1.4386	1.5517	1.6647
160	1.2145	1.3274	1.4403	1.5531	1.6658	1.2085	1.3213	1.4340	1.5466	1.6592
170	1.2109	1.3234	1.4359	1.5483	1.6606	1.2051	1.3175	1.4298	1.5420	1.6542
180	1.2076	1.3198	1.4319	1.5439	1.6559	1.2020	1.3140	1.4260	1.5379	1.6497
190	1.2046	1.3165	1.4282	1.5399	1.6515	1,1991	1.3109	1.4225	1.5340	1.6455
200	1.2019	1.3134	1.4248	1.5362	1.6475	1,1965	1.3079	1.4193	1.5305	1.6417
C = 1.3	3									
n			k=2					k = 3		
30	1,4261	1.5272	1.6283	1.7294	1.8304	1.4067	1.5073	1.6079	1,7083	1.8087
40	1 3718	1 4690	1 5661	1 6631	1 7602	1 3559	1 4526	1 5493	1 6459	1 7425
50	1 3363	1 4309	1 5253	1 6198	1 7142	1 3226	1 4167	1 5109	1 6050	1 6990
60	1 3108	1 4035	1 4 9 6 1	1 5887	1 6812	1 2986	1 3910	1 4833	1 5755	1.6578
70	1 2915	1 3827	1.4739	1.5650	1.6562	1 2803	1.3713	1.4633	1.5735	1 6440
80	1 2761	1 3662	1 4567	1 5462	1.6362	1 2652	1 2557	1 4455	1 5 3 5 3	1 6750
90	1 2625	1 3507	1 // 1 02	1 5200	1 6200	1 2520	1 3/20	1/210	1 5 2 0 7	1 6006
100	1.2033	1.332/	1, 44 10 1,4207	1 5 1 0 1	1.0200	1.2009	1.3429 1.2000	1,4010	1.5207	1.0090
110	1.200	1.5414	1.429/	1.5101	1.0004	1.2440	1.3322	1.4204	1.3003	1.3900
110	1.2440	1.231/	1.4194	1.3071	1.5948	1.2300	1.5251	1.4100	1.4901	1.5055
120	1.2303	1.3234	1.4106	1.49/6	1.584/	1.2282	1.3152	1.4022	1.4891	1.5/60
130	1.2295	1.3161	1.4027	1.4893	1.5/59	1.2218	1.3083	1.394/	1.4811	1.56/6
140	1.2234	1.309/	1.3958	1.4820	1.5681	1.2161	1.3022	1.3882	1.4/42	1.5601
150	1.2181	1.3039	1.3897	1.4754	1.5611	1.2110	1.2967	1.3823	1.4679	1.5535

Table II	Table II. Continued.										
					I	ז					
	0.10	0.20	0.30	0.40	0.50	0.10	0.20	0.30	0.40	0.50	
160	1.2132	1.2987	1.3841	1.4695	1.5549	1.2064	1.2917	1.3770	1.4623	1.5475	
170	1.2088	1.2940	1.3791	1.4641	1.5492	1.2022	1.2872	1.3722	1.4571	1.5421	
180	1.2048	1.2897	1.3745	1.4592	1.5440	1.1984	1.2831	1.3678	1.4525	1.5371	
190	1.2011	1.2857	1.3703	1.4548	1.5392	1.1950	1.2794	1.3638	1.4482	1.5326	
200	1.1978	1.2821	1.3664	1.4506	1.5349	1.1918	1.2760	1.3601	1.4442	1.5284	
C=1.33											
n	1 2022	1 4025	k=4	1 (0)7	1 7027	1 2020	1 4020	k = 5	1 (02)	1 7000	
30	1.3933	1.4935	1.5937	1.6937	1./93/	1.3829	1.4829	1.5828	1.6826	1./823	
40	1.3448	1.4413	1.5377	1.0340	1.7302	1.3303	1.4325	1.5287	1.0248	1./208	
50	1.3129	1.4009	1.5008	1.5947	1.0885	1.3055	1.3993	1.4931	1.5808	1.0803	
70	1.2900	1.3022	1.4745	1.5005	1.0304	1.2055	1.37.34	1.4074	1.5395	1.0312	
80	1.2725	1.3033	1 / 2 2 0	1.5440	1,0554	1.2005	1.3372	1 / 2 2 2	1.5304	1.0209	
00 00	1.2300	1 3 3 6 1	1.4500	1.5270	1.6023	1.2530	1.3427	1.4522	1.5217	1.0112	
100	1.2472	1 3 2 5 8	1.4138	1.5150	1.5897	1.2420	1 3209	1 4088	1.5001	1.5907	
110	1 2296	1 3170	1 4044	1 4918	1.5097	1 2250	1 3124	1 3997	1 4869	1 5741	
120	1 2225	1 3094	1 3962	1 4831	1 5698	1 2182	1 3050	1 3917	1 4784	1 5651	
130	1.2164	1.3028	1.3891	1.4754	1.5617	1.2122	1.2985	1.3848	1.4710	1.5572	
140	1.2109	1.2969	1.3828	1.4687	1.5545	1.2068	1.2928	1.3787	1.4644	1.5502	
150	1.2060	1.2916	1.3771	1.4626	1.5481	1.2021	1.2877	1.3731	1.4586	1.5439	
160	1.2016	1.2868	1.3720	1.4572	1.5423	1.1979	1.2830	1.3682	1.4533	1.5383	
170	1.1976	1.2825	1.3674	1.4522	1.5370	1.1940	1.2789	1.3637	1.4485	1.5332	
180	1.1939	1.2786	1.3632	1.4478	1.5323	1.1904	1.2750	1.3596	1.4441	1.5285	
190	1.1906	1.2750	1.3593	1.4436	1.5279	1.1872	1.2715	1.3558	1.4400	1.5243	
200	1.1875	1.2716	1.3558	1.4398	1.5238	1.1842	1.2683	1.3523	1.4363	1.5203	
C=1.50											
n			k = 2					k=3			
30	1.4213	1.5112	1.6010	1.6908	1.7805	1.4057	1.4951	1.5846	1.6740	1.7633	
40	1.3663	1.4525	1.5388	1.6250	1.7112	1.3534	1.4394	1.5254	1.6113	1.6972	
50	1.3303	1.4142	1.4982	1.5820	1.6659	1.3192	1.4029	1.4866	1.5702	1.6538	
60 70	1.3045	1.3868	1.4690	1.5512	1.6334	1.2947	1.3767	1.4587	1.5407	1.6227	
70	1.2849	1.3659	1.4468	1.5278	1.6087	1.2760	1.3568	1.4375	1.5183	1.5990	
00	1.2094	1.3493	1.4295	1.5092	1.5691	1.2011	1.3409	1.4207	1.5004	1.5002	
90 100	1.2307	1,3336	1.4149	1.4940	1.5751	1.2490	1.3200	1 2054	1.4039	1.5040	
110	1.2400	1,3245	1.4029	1.4015	1.5597	1.2300	1.3171	1 3856	1.4737	1.5519	
120	1.2370	1 3064	1 3838	1.4705	1.5405	1.2301	1 2999	1 3771	1.4032	1.5409	
130	1 2223	1 2991	1 3760	1.4528	1.5504	1 2161	1.2928	1 3696	1 4463	1.5514	
140	1.2162	1.2927	1.3691	1.4456	1.5220	1.2103	1.2867	1.3630	1.4393	1.5157	
150	1.2108	1.2869	1.3630	1.4391	1.5152	1.2051	1.2811	1.3571	1.4331	1.5091	
160	1.2059	1.2817	1.3575	1.4332	1.5090	1.2004	1.2761	1.3518	1.4275	1.5031	
170	1.2015	1.2770	1.3525	1.4279	1.5034	1.1961	1.2716	1.3470	1.4224	1.4978	
180	1.1974	1.2727	1.3479	1.4231	1.4983	1.1922	1.2675	1.3426	1.4177	1.4928	
190	1.1937	1.2687	1.3437	1.4187	1.4936	1.1887	1.2636	1.3386	1.4135	1.4884	
200	1.1903	1.2650	1.3398	1.4146	1.4894	1.1854	1.2601	1.3349	1.4095	1.4842	
C=1.50											
n			k = 4					k = 5			
30	1.3947	1.4840	1.5731	1.6622	1.7512	1.3863	1.4754	1.5643	1.6532	1.7420	
40	1.3444	1.4302	1.5160	1.6017	1.6873	1.3375	1.4232	1.5088	1.5943	1.6798	
50	1.3114	1.3950	1.4785	1.5619	1.6453	1.3054	1.3889	1.4723	1.5556	1.6388	
6U 70	1.28/7	1.3696	1.4515	1.5334	1.6152	1.2824	1.3642	1.4460	1.5277	1.6094	
/0	1.2697	1.3503	1.4310	1.5116	1.5922	1.2648	1.3454	1.4259	1.5065	1.5869	
8U 00	1.2555	1.3350	1.414/	1.4943	1.5/39	1.2508	1.3304	1.4100	1.4890	1.5091	
90 100	1.2433	1.5224	1.4013	1.40UZ	1.5590	1.2394	1.210Z	1.59/0	1.4/JO 1.4640	1.5545	
100	1.2337	1.5119	1.2201	1.4085	1.5404	1.2298	1.50/9	1.3001	1.4042	1.5422	

W. L. PEARN AND C. H. WU

Table	Table II. Continued.											
						h						
	0.10	0.20	0.30	0.40	0.50	0.10	0.20	0.30	0.40	0.50		
110	1.2253	1.3030	1.3806	1.4582	1.5357	1.2216	1.2992	1.3768	1.4543	1.5318		
120	1.2181	1.2952	1.3723	1.4494	1.5265	1.2146	1.2917	1.3687	1.4457	1.5227		
130	1.2117	1.2884	1.3651	1.4418	1.5184	1.2084	1.2850	1.3616	1.4382	1.5148		
140	1.2061	1.2824	1.3587	1.4350	1.5112	1.2029	1.2791	1.3554	1.4316	1.5078		
150	1.2011	1.2770	1.3530	1.4289	1.5048	1.1979	1.2739	1.3498	1.4256	1.5015		
160	1.1965	1.2722	1.3478	1.4234	1.4990	1.1935	1.2692	1.3447	1.4203	1.4958		
170	1.1924	1.2678	1.3431	1.4185	1.4937	1.1895	1.2648	1.3401	1.4154	1.4907		
180	1.1886	1.2637	1.3389	1.4139	1.4890	1.1858	1.2609	1.3360	1.4110	1.4860		
190	1.1852	1.2601	1.3349	1.4098	1.4846	1.1825	1.2573	1.3322	1.4069	1.4817		
200	1.1820	1.2567	1.3313	1.4060	1.4806	1.1794	1.2540	1.3286	1.4032	1.4778		

Table I	II. Sample	size requir	ed for testin	ng H₀ :S ^M _{pk2} ≼:	S ^M _{pk1} versus I	$H_1: S_{pk2}^M \leq S_{pk2}^N$	$\alpha = 0.0$	5			
			Po	wer					Po	wer	
S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99	S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99
		k	=2					k	k=2		
1.00	1.15	338	429	515	626	1.30	1.45	612	774	930	1129
	1.20	200	254	305	371		1.50	357	452	544	660
	1.25	135	171	205	250		1.55	238	301	361	439
	1.30	98	124	150	182		1.60	171	217	260	316
	1.35	76	96	115	140		1.65	130	165	198	241
	1.40	61	77	92	113		1.70	103	131	157	191
	1.45	50	63	76	93		1.75	85	107	129	157
	1.50	42	54	65	79		1.80	71	90	108	131
	1.55	36	46	56	68		1.85	61	77	92	112
	1.60	32	41	49	60		1.90	53	67	80	97
	1.65	28	36	43	53		1.95	46	59	71	86
	1.70	25	32	39	48		2.00	41	52	63	76
	1.75	23	29	35	43		2.05	37	47	56	69
	1.80	21	27	32	39		2.10	34	42	51	62
	1.85	19	25	30	36		2.15	31	39	47	57
	1.90	18	23	27	34		2.20	28	36	43	52
	1.95	17	21	26	31		2.25	26	33	40	48
	2.00	16	20	24	29		2.30	24	31	37	45
		k	= 2					k	= 2		
1.50	1.65	834	1054	1267	1537	1.67	1.82	1047	1324	1589	1929
	1.70	485	613	736	894		1.87	607	767	921	1118
	1.75	320	405	487	591		1.92	400	505	607	737
	1.80	230	291	349	424		1.97	286	361	434	527
	1.85	174	220	265	322		2.02	216	273	328	398
	1.90	138	174	209	254		2.07	170	215	258	314
	1.95	112	142	170	207		2.12	138	174	210	255
	2.00	93	118	142	173		2.17	115	145	174	212
	2.05	80	101	121	147		2.22	97	123	148	180
	2.10	69	87	105	127		2.27	84	106	128	155
	2.15	60	76	92	112		2.32	74	93	112	136
	2.20	54	68	81	99		2.37	65	82	99	120
	2.25	48	61	73	89		2.42	58	73	88	107
	2.30	43	55	66	80		2.47	52	66	80	97
	2.35	39	50	60	73		2.52	48	60	72	88
	2.40	36	46	55	67		2.57	44	55	66	81
	2.45	33	42	51	61		2.62	40	50	60	73

Table III. Continued.											
			Pc	ower					Ро	wer	
S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99	S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99
	2.50	31	39	47	57		2.67	36	46	55	67
1.00		224	k=3	12.6	504	4.20	4.45	k	= 3		4000
1.00	1.15	286	362	436	531	1.30	1.45	553	/00	841	1022
	1.20	1/0	215	259	316		1.50	323	410	493	599
	1.25	114	145	1/5	213		1.55	215	2/3	328	399
	1.30	84 65	100	128	100		1.00	100	197	237	288
	1.35	00 50	82	99	121		1.00	118	150	181	175
	1.40 1.45	JZ //2	55	60 66	97 Q1		1.70	9 4 77	08	144	1/3
	1.45	36	46	56	69		1.75	65	82	99	170
	1.50	31	40	49	59		1.85	55	70	85	103
	1.60	28	35	43	52		1.90	48	61	74	90
	1.65	25	31	38	46		1.95	42	54	65	79
	1.70	22	28	34	42		2.00	38	48	58	70
	1.75	20	26	31	38		2.05	34	43	52	63
	1.80	18	23	28	35		2.10	31	39	47	58
	1.85	17	22	26	32		2.15	28	36	43	53
	1.90	16	20	24	30		2.20	26	33	40	48
	1.95	15	19	23	28		2.25	24	30	37	45
	2.00	14	17	21	26		2.30	22	28	34	42
			k=3					k	= 3		
1.50	1.65	772	977	1174	1425	1.67	1.82	984	1244	1495	1815
	1.70	450	569	683	831		1.87	5/1	/21	867	1053
	1./5	297	3/6	453	550		1.92	3/6	4/6	5/2	695
	1.80	213	270	325	395		1.97	269	340	409	497
	1.05	102	203	2 4 7 105	200		2.02	205	203	244	206
	1.90	120	102	150	103		2.07	130	165	198	290
	2 00	87	110	133	162		2.12	108	105	165	201
	2.05	74	94	113	138		2.22	92	117	140	170
	2.10	64	81	98	119		2.27	79	101	121	147
	2.15	56	71	86	105		2.32	70	88	106	129
	2.20	50	63	76	93		2.37	62	78	94	114
	2.25	45	57	68	83		2.42	55	70	84	102
	2.30	41	51	62	75		2.47	50	63	76	92
	2.35	37	47	56	69		2.52	45	57	69	84
	2.40	34	43	52	63		2.57	41	53	63	77
	2.45	31	39	48	58		2.62	38	48	58	70
	2.50	29	37 k=4	44	54		2.67	36 k	45 = 4	55	67
1.00	1.15	251	319	384	468	1.30	1.45	513	. 650	781	949
	1.20	149	190	229	279		1.50	301	381	458	557
	1.25	101	129	155	190		1.55	200	254	306	372
	1.30	74	94	114	139		1.60	145	183	221	269
	1.35	57	73	88	108		1.65	110	140	169	206
	1.40	46	59	71	87		1.70	88	111	134	164
	1.45	38	49	59	73		1.75	72	91	110	134
	1.50	33	42	50	62		1.80	60	77	93	113
	1.55	28	36	44	54		1.85	52	66	79	97
	1.60	25	32	39	47		1.90	45	57	69	84
	1.65	22	28	34	42		1.95	40	50	61	74
	1.70	20	25	31	38		2.00	35	45	54	66
	1.75	1ð 17	23 21	28 26	22 22		2.05 2.10	52 20	41 27	49 11	0U 57
	1.85	17	21	20	52 29		2.10	29	37	44 41	50
	1.00	15	20	27	27		2.15	20	JT	וד	50

S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99	S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99
	1.90	14	18	22	27		2.20	24	31	37	46
	1.95	13	17	21	26		2.25	23	29	35	42
	2.00	12	16	19	24		2.30	21	27	32	39
		K	=4					K	= 4		
1.50	1.65	730	924	1111	1349	1.67	1.82	941	1190	1429	1735
	1.70	425	538	647	787		1.87	546	690	830	1008
	1.75	282	356	429	521		1.92	360	456	548	665
	1.80	202	256	308	375		1.97	258	326	392	476
	1.85	154	195	234	285		2.02	195	247	297	361
	1.90	121	154	185	225		2.07	154	194	234	284
	1.95	99	126	151	184		2.12	125	158	190	231
	2.00	83	105	126	154		2.17	104	132	158	193
	2.05	71	89	108	131		2.22	88	112	135	164
	2.10	61	77	93	114		2.27	76	97	116	142
	2.15	54	68	82	100		2.32	67	85	102	124
	2.20	48	60	73	89		2.37	59	75	90	110
	2.25	43	54	65	80		2.42	53	67	81	98
	2.30	39	49	59	72		2.47	48	60	73	89
	2.35	35	45	54	66		2.52	43	55	66	81
	2.40	32	41	49	60		2.57	40	50	61	74
	2.45	30	38	45	56		2.62	36	46	55	67
	2.50	28	35	42	51		2.67	33	42	50	61
		k	= 5					k	= 5		
1.00	1.15	226	287	346	422	1.30	1.45	483	612	736	895
	1.20	135	172	207	253		1.50	283	359	432	526
	1.25	91	117	141	172		1.55	189	240	289	351
	1.30	67	86	104	127		1.60	137	173	209	254
	1.35	52	67	81	99		1.65	104	133	160	195
	1.40	42	54	65	80		1.70	83	105	127	155
	1.45	35	45	54	67		1.75	68	87	104	127
	1.50	30	38	46	57		1.80	57	73	88	107
	1.55	26	33	40	49		1.85	49	62	75	92
	1.60	23	29	35	44		1.90	43	54	66	80
	1.65	20	26	32	39		1.95	38	48	58	71
	1.70	18	24	29	35		2.00	34	43	52	63
	1.75	17	21	26	32		2.05	30	39	47	57
	1.80	15	20	24	30		2.10	28	35	42	52
	1.85	14	18	22	27		2.15	25	32	39	48
	1.90	13	17	21	25		2.20	23	30	36	44
	1.95	12	16	19	24		2.25	21	27	33	41
	2.00	11	15	18	22		2.30	20	25	31	38
		k	=5					k	= 5		
1.50	1.65	698	884	1063	1291	1.67	1.82	908	1148	1380	1675
	1.70	407	515	620	754		1.87	527	666	802	974
	1.75	270	342	411	500		1.92	348	440	529	643
	1.80	194	246	295	360		1.97	249	315	379	461
	1.85	147	187	225	273		2.02	188	239	287	349
	1.90	116	148	178	217		2.07	148	188	226	275
	1.95	95	121	145	177		2.12	121	153	184	224
	2 00	79	101	121	148		2.12	101	128	154	187
	2.05	68	86	104	126		2.22	86	108	131	159
	2.05	59	75	90	100		2.22	74	94	112	137
	2.10	50	65	70	96		2.27	65	27 80	00	120
	2.15	46	58	70	90 86		2.52	57	73	99 87	107
	2.20	<u>41</u>	50	63	77		2.57	51	65	78	05
	2.25	ті	52	05			<u>~,</u> <u>~</u>	51	05	/0	

W. L. PEARN AND C. H. WU

 Table III. Continued.

Power

Quality and Reliability Engineering International

Power

Table	Table III. Continued.												
			Pc	ower					Ро	wer			
S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99	S^M_{pk1}	S^M_{pk2}	0.90	0.95	0.975	0.99		
	2.30	37	47	57	69		2.47	46	59	71	86		
	2.35	34	43	52	63		2.52	42	53	64	79		
	2.40	31	39	48	58		2.57	38	49	59	72		
	2.45	29	36	44	54		2.62	35	44	53	64		
	2.50	27	34	41	50		2.67	31	40	48	58		

6. Supplier selection for thin-film transistor type liquid-crystal display

Manufacturing yield has been the most basic common criterion used in the manufacturing industry for measuring process performance. Because of fiercer competition in the global TFT-LCD industry, the supplier must have very low fraction of defectives, normally measured by parts per million (ppm) or parts per billion (ppb). Therefore, the multiple independent lines yield index S_{pk}^{M} can be used as a criterion to select the suppliers. For the investigated model of TFT-LCD¹⁰, the target thickness value of a glass substrate is set to T = 0.70 mm with upper specification limit USL = 0.77 mm and lower specification limit LSL = 0.63 mm. When the minimum requirement of the supplier is $S_{pk}^{M} = 1.00$, and two suppliers both have k = 4 lines, $n_1 = n_2 = 150$ data are collected for suppliers I and II. The calculated sample means, sample standard deviations and the estimated S_{pki} index values for each line are summarized in Table IV.

6.1. Phase I: select a supplier with higher capability

To determine whether supplier II has a better process capability than supplier I or not, the hypothesis testing: $H_0: S_{pk2}^M \leq S_{pk1}^M$ versus $H_1: S_{pk2}^M > S_{pk1}^M$ is considered. From Table IV, we have $S_{pk1}^M = 1.055755$, $S_{pk2}^M = 1.407204$ and thus R = 1.332889. At $\alpha = 0.05$, k = 4 and $n_1 = n_2 = 150$, from Table I, the critical value is $c_0 = 1.1050$. Because the test statistic R = 1.332889 > 1.1050, we conclude that supplier II is better than supplier I with a 95% confidence level. Next, the second-phase testing would investigate the magnitude of the capability difference between the two suppliers.

6.2. Phase II: magnitude outperformed

The hypothesis testing $H_0: S_{pk2}^M \leq S_{pk1}^M + h$ versus $H_1: S_{pk2}^M > S_{pk1}^M + h$ is performed. For various values of the magnitude h, the decisions of the hypotheses are shown in Table V ($\alpha = 0.05$). The decision maker would replace the existing supplier when supplier II (competition) significantly outperforms supplier I by a magnitude of 0.20. On the basis of the testing result in Table V, we conclude that supplier II (competition) has a manufacturing capability that is significantly better than Supplier I by a magnitude of 0.20, that is, $S_{pk2}^M > S_{pk1}^M + 0.2$. Consequently, the supplier replacement would be suggested.

Table IV. Estimated	Table IV. Estimated values of capability indices for suppliers I and II										
Suppliers	Lines	\bar{X}	S	Ŝ _{pki}							
1	1	0.7098303	0.0192028	1.108760							
	2	0.7104621	0.0215073	0.992385							
	3	0.7104065	0.0192131	1.099091							
	4	0.7140126	0.0187125	1.065612							
Ш	1	0.7001798	0.0142802	1.633835							
	2	0.6969854	0.0166799	1.378086							
	3	0.6976766	0.0172959	1.337498							
	4	0.7001785	0.0137853	1.692482							

Table V. Critical values and decisions of testing the two suppliers ($\alpha = 0.05$, $k = 4$, $n = 150$)											
Test cases	I	Ш	III	IV	V						
S^M_{pk1}	1.00	1.00	1.00	1.00	1.00						
S_{pk2}^{M}	1.10	1.20	1.21	1.22	1.23						
h	0.10	0.20	0.21	0.22	0.23						
<i>c</i> ₀	1.21847	1.33183	1.343152	1.354492	1.365816						
Decision	Reject H _o	Reject H_0	Non-Reject H ₀	Non-Reject H ₀	Non-Reject H ₀						

6.3. Sample size required for designated power

For the cases in which the minimal requirement C = 1.00 and number of lines k = 4, the decision maker would replace the existing supplier with designated power 0.95 when the new supplier has an S_{pk}^{M} index value significantly higher than the existing process by a scale of 0.20. The required sample size is 190 as shown in Table III. In the application example mentioned earlier, because the sample sizes of two suppliers are smaller than the required sample size (150 < 190), the power would be less than 0.95. In fact, the power of test for $S_{pk2}^{M} = 1.20$ is 90.18%. That is, the β risk is up to 9.82%. To reduce the β risk and increase the decision power, we would suggest the decision maker to collect more samples as recommended in Table III.

7. Conclusions

In this article, the supplier selection problem for normal processes with multiple independent lines was investigated; the overall yield index S_{pk}^{M} provided a one-to-one relationship between the specification limits and the overall process yield. A two-phase procedure on the basis of the quotient test statistic was proposed to deal with the supplier selection problem. The probability density function of the test statistic was also established. For applications, some tables of the critical values for decision making were presented under various minimal capability requirements, magnitudes of difference of two suppliers, number of lines, and sample sizes. The required sample sizes to make a reliable decision were also provided for various given power. A TFT-LCD application was presented.

References

- 1. Boyles RA. Process capability with asymmetric tolerances. Communications in Statistics Simulation and Computation 1994; 23(3):615–635. DOI: 10.1080/03610919408813190
- 2. Chen KS, Pearn WL, Lin PC. Capability measures for processes with multiple characteristics. *Quality and Reliability Engineering International* 2003; **19**:101–110. DOI: 10.1002/qre.513
- 3. Pearn WL, Cheng YC. Measuring production yield for processes with multiple characteristics. *International Journal of Production Research* 2010; **48**(15):4519–4536. DOI: 10.1080/00207540903036313
- Pearn WL, Yen CH, Yang DY. Production yield measure for multiple characteristics processes based on S^T_{pk} under multiple samples. Central European Journal of Operational Research 2012; 20:65–85. DOI: 10.1007/s10100-010-0152-9
- Pearn WL, Shiau JJH, Tai YT, Li MY. Capability assessment for processes with multiple characteristics: a generalization of the popular index C_{pk}. Quality and Reliability Engineering International 2011; 27(8):1119–1129. DOI: 10.1002/qre.1200
- Pearn WL, Wu CH, Tsai MC. A note on "Capability Assessment for Process with Multiple Characteristics: A Generalization of the Popular Index C_{pk}". Quality and Reliability Engineering International 2012, Feb 8 Online. DOI: 10.1002/qre.1295
- 7. Pearn WL, Wu CH, Hung HN, Kao CM. An extension of the production acceptance determination for one-sided process with multiple characteristics. *Quality and Reliability Engineering International* 2012, Mar 16 Online. DOI: 10.1002/qre1378
- Tai YT, Pearn WL, Kao CM. Measuring the manufacturing yield for processes with multiple manufacturing lines. IEEE Transactions on Semiconductor Manufacturing 2012; 25(2):284–290. DOI: 10.1109/TSM.2011.2179568
- 9. Tai YT, Pearn WL, You SK. An effective test for supplier selection evaluation with multiple characteristics. *Journal of Testing and Evaluation* 2011; **39**(6):1–9. DOI: 10.1520/JTE103937
- Lin CJ, Pearn WL. Process selection for higher production yield based on capability index S_{pk}. Quality and Reliability Engineering International 2010; 26(3):247–258. DOI: 10.1002/qre.1051
- 11. Lin CJ, Pearn WL. Group selection for production yield among k manufacturing lines. Journal of Statistical Planning and Inference 2011; **141**(4):1510–1518. DOI: 10.1016/j.bbr.2011.03.031
- 12. Yum BJ, Kim KW. A bibliography of the literature on process capability indices : 2000–2009. *Quality and Reliability Engineering International* 2011; 27:251–268. DOI: 10.1002/qre.1115
- 13. Wu CW, Pearn WL, Kotz S. An overview of theory and practice on process capability indices for quality assurance. *International Journal of Production Economics* 2009; **117**:338–359. DOI: 10.1016/j.ijpe.2008.11.008

Authors' biographies

Wen-Lea Pearn received his PhD degree in Operations Research from the University of Maryland, College Park. He is a professor of Operations Research and Quality Assurance at the National Chiao-Tung University (NCTU), Hsinchu, Taiwan. He was with Bell Laboratories, Murray Hill, NJ, as a quality research scientist before joining the NCTU, and others. His current research interests include process capability, network optimization, and production management. Dr. Pearn's publications have appeared in the *Journal of the Royal Statistical Society, Series C, Journal of Quality Technology, European Journal of Operational Research, Journal of the Operational Research Society, Operations Research Letters, Omegal Networks, and the International Journal Productions Research.*

Chia-Huang Wu received his MS degree in Applied Mathematics from National Chung-Hsing University. Currently, he is a PhD candidate at the Department of Industrial Engineering and Management, National Chiao Tung University, Taiwan.