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Abstract—Sample preparation is one of essential processes in
biochemical reactions. Raw reactants are diluted in this process
to achieve given target concentrations. A bioassay may require
several different target concentrations of a reactant. Both the
dilution operation count and the reactant usage can be minimized
if multiple target concentrations are considered simultaneously
during sample preparation. Hence, in this paper, we propose
a multitarget sample preparation algorithm that extensively
exploits the ideas of waste recycling and intermediate droplet
sharing to reduce both reactant usage and waste amount for
digital microfluidic biochips. Experimental results show that our
waste recycling algorithm can reduce the waste and operation
count by 48% and 37%, respectively, as compared to an existing
state-of-the-art multitarget sample preparation method if the
number of target concentrations is ten. The reduction can be
up to 97% and 73% when the number of target concentrations
goes even higher.

Index Terms—Biochip, digital microfluidic biochip (DMFB),
dilution, multitarget sample preparation, reactant minimization,
waste minimization.

I. Introduction

LAB-ON-A-CHIP (LoC) is one of the emerging applica-
tions in bioelectronics. An LoC is an analysis system

that implements various biochemical protocols or assays in a
small chip, such as sample preparation, injection, separation,
and detection [1]. Compared with conventional biochemical
analysis systems, LoCs offer many advantages like portability,
reagent volume reduction, automation, mass production, fast
analysis, high throughput, and low power consumption [2].
A new type of LoC, digital microfluidic biochip (DMFB),
has been developed in recent years. A DMFB carries out
various bioassays by precisely controlling small volume fluidic
droplets containing biochemical samples or reagents. The
electrowetting-on-dielectrics (EWOD) effect, an electrostatic
actuation method, is utilized to dispense, transport, split,
merge, and mix droplets on DMFBs through a proper voltage
control over on-chip electrodes [3]–[6]. A biochemical assay
can be completed via a series of basic droplet operations men-
tioned above. Since no prefabricated channels and pumps are
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required, the applicability of DMFB is thus greatly enhanced
[3].

Recently, numerous on-chip laboratory procedures, such as
immunoassay, protein crystallization, and DNA sequencing,
have all been successfully demonstrated on DMFBs [7]. Be-
cause the demand continuously grows, the design complexity
of DMFB is accordingly increased. Therefore, related design
automation tools are indispensable for reducing the manual
effort, speeding up the design process, and improving the
design quality. In the past few years, a number of studies have
been conducted to address design automation issues of DMFB,
such as synthesis, placement, routing, control pin assignment,
and testing [8]–[19]. Undoubtedly, the DMFB-related design
automation is one of the emerging research topics nowadays.

Sample preparation is an essential step in biochemical
reactions. Since an assay may require a reactant (sample or
reagent) in a definite concentration, a raw reactant must be di-
luted to that specific concentration, called target concentration,
during sample preparation [20]–[22]. Hence, how to optimize
the dilution process is an issue worth studying. In general,
there are two fundamental minimization goals for a dilution
process: 1) the usage of valuable reactants, and 2) the number
of dilution operations. A valuable reactant can be a limited
amount of sample (e.g., infant’s blood) or a very expensive
reagent. On the other hand, the number of dilution operations
roughly decides the sample preparation time, and thus should
be minimized as well.

Recently, several research works addressing the sample
preparation problem on DMFBs have been proposed [23]–
[33]. Most of the previous techniques concentrate on the
problem of single-target sample preparation, which considers
merely one target concentration at a time. In case multiple
target concentrations are demanded, every target concentration
is still produced by an individual dilution process exclusively.
That is, multiple target concentrations are actually produced
one by one and the whole sample preparation process therefore
becomes time-consuming. Moreover, these methods do not
consider reactant sharing among different targets, which leads
to higher reactant usage and more waste.

The first approach focusing on the problem of concurrent
preparation for multiple target concentrations was presented
in [28]. It is named intermediate droplet sharing algorithm
(IDSA), which minimizes the number of required intermediate
concentrations in dilution for waste reduction. It is gener-
ally assumed that less waste implies faster sample prepara-
tion. Nevertheless, minimizing the number of intermediate

0278-0070 c© 2013 IEEE



HUANG et al.: REACTANT AND WASTE MINIMIZATION IN MULTITARGET SAMPLE PREPARATION 1485

concentrations does not necessarily reduce the number of
waste droplets. Furthermore, in our opinion, minimizing the
usage of valuable reactant is as important as waste reduction.
Therefore, a better alternative that can minimize reactant and
waste simultaneously in multitarget sample preparation should
be further developed.

In this paper, we propose a waste recycling algorithm
(WARA) for multitarget sample preparation on DMFBs.
WARA first utilizes a single-target sample preparation al-
gorithm [32] to create a reactant-minimized mixing tree for
each target concentration. Then, it tries to maximize droplet
sharing and waste recycling among those trees for reactant
and waste minimization. Experimental results demonstrate that
WARA reduces the amount of reactant, waste, and dilution
operations by 10%, 17%, and 16%, respectively, on average
as compared to a reactant-minimized single-target-at-a-time
preparation method even when the number of targets is merely
three. When compared with IDSA, WARA still reduces the
amount of waste and operations by 48% and 37%, respectively,
on average if the number of targets is ten.1 The reduction can
be up to 97% and 73% as the number of target concentra-
tions grows to 100. The results suggest that WARA should
be a better solution for multitarget sample preparation on
DMFBs

The rest of this paper is organized as follows.
Section II describes the sample preparation process and
different mixing models. Section III briefly introduces several
existing techniques and elaborates on the IDSA approach.
Section IV shows the motivation and the problem formulation
of this paper. Section V presents our multitarget sample
preparation algorithm WARA in detail. Experimental results
are then reported and discussed in Section VI. Finally,
Section VII concludes this paper.

II. Sample Preparation

A. Dilution Procedures

The goal of sample preparation is to prepare one or more
specified target concentrations (Ct) through a series of dilution
operations. On biochips, both linear dilution and serial dilution
procedures are commonly used [20]–[21]. However, the linear
dilution is not that suitable as the serial one on DMFBs
because reactants are dispensed as discrete droplets instead of
continuous flows. The serial dilution process dilutes a reactant
droplet repeatedly using a fixed mixing ratio, like 1:1. For
example, if Ct is set to 25%, the serial dilution method first
dilutes a reactant droplet with a buffer droplet to produce a
mixture with the concentration of 50%. Then that mixture,
or intermediate droplet, is again diluted with a buffer droplet
to achieve the target concentration (i.e., 25%). In the above
case, two serial dilution operations are counted. Note that
a whole serial dilution process may need numerous indi-
vidual dilution operations [21]. Therefore, a smaller dilution
operation count usually implies a faster sample preparation
process.

1Since IDSA reported its results by means of bar charts, we have done our
best to compare our work with IDSA as accurately as possible.

B. Mixing Models

Different mixing models are available on various DMFB
architectures. In previous studies, three mixing models are
commonly used. Suppose that the ratio between two sub-
stances for mixing is (x: y), then those three models can be
expressed as: 1) x = y = 1; 2) x = y �= 1; and 3) x �= y. Previous
approaches [26]–[28] adopt the second mixing model by
means of a specially-designed rotary mixer to produce multiple
droplets with the same desired concentration simultaneously.
However, the rotary mixer is not a vital component and occu-
pies significant chip area. Therefore, in most general DMFB
designs, only the first mixing model can be easily implemented
through the use of linear or array mixers [4]. Consequently,
we adopt that mixing model, namely, (1:1) mixing model, in
this paper, just as the previous works [25], [29], [30], [32],
and [33] do. As well, the number of (1:1) dilution operations
is then used to estimate the sample preparation time.

However, no matter whether the first or the second mixing
model is adopted, a difference between the target concentration
and the value that can be actually achieved may exist. The error
is inevitable if the denominator of the target concentration
is not a power of two or even not a rational number, like
3 or

√
3. However, this error can be reduced down to an

acceptable value if the precision level is high enough [25]–
[26]. A precision level n indicates that n fractional bits are used
to represent the target concentration and the error can thus be
limited to 1/2n+1. Users can determine a proper precision level
to keep this error tolerable to their applications.

C. Exponential and Interpolated Dilution

Under the (1:1) mixing model, a dilution operation first
mixes two source droplets into a mixture and then splits it into
two resultant droplets [21]. Hence the two resultant droplets
have the same concentration value (CV). The relation between
these droplets can be expressed as

Cr =
C1 + C2

2
(1)

where C1 and C2 represent the CVs of two source droplets
and Cr is the CV of the resultant droplets. Dilution operations
can be further classified into two types: exponential dilution
and interpolated dilution [26]. For an exponential dilution
operation, one of its source droplets is buffer. If a source
droplet with CV = C is diluted with buffer, the CV of the
resultant droplet is C/2. Keep diluting the resultant droplet
with buffer and repeat the same process by m–1 more times,
the CV of the final resultant droplet eventually becomes C/2m.
In this paper, a concentration value C is called a prime
concentration value (PCV) if C is equal to 1 or can be
produced exclusively through a series of exponential dilutions
starting from a raw reactant droplet (i.e., CV = 1), for example,
1/16. That is, a PCV contains only one bit of ‘1’ in its binary
representation. On the other hand, for an interpolated dilution
operation, none of its source droplets is buffer. Note that both
exponential and interpolated dilution operations are necessary
to achieve an arbitrary target concentration value.
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Fig. 1. Dilution graph.

III. Previous Works

The first method that addresses the dilution control on
DMFBs was proposed in [23]. It focuses on the single-
target sample preparation problem, and adopts a binary search
strategy to guide the dilution process. Other related previous
works include the bit-scanning (BS) method [25], the algo-
rithm for dilution and mixing with reduced wastage (DMRW)
[26], the improved dilution/mixing algorithm (IDMA) [27],
IDSA [28], the ratioed mixing algorithm (RMA) [29], the
De Bruijn graph-based multitarget preparation scheme (DBG)
[30], the reactant minimization algorithm (REMIA) [32], and
the graph-based optimal reactant minimization algorithm [33].
Most of previous approaches address the single-target sample
preparation problem. If multiple targets are required, they must
be produced one by one. So far, IDSA is the first work that
focuses on the multitarget sample preparation problem. The
primary objective of IDSA is to minimize the waste. More
precisely, IDSA actually tries to minimize the number of
intermediate concentrations during sample preparation. The
authors of IDSA assume that the waste amount and operation
count can also be reduced accordingly. The other existing
technique for multitarget sample preparation is DBG [30].
It concentrates on dilution step minimization and ensures no
storage unit is required. Since DBG is not developed for
reactant or waste minimization, we only elaborate IDSA in
the rest part of this section.

IDSA is a two-phased algorithm. In the first phase, an initial
dilution graph is generated to guide the dilution process, as
shown in Fig. 1. In a dilution graph, a node with in-degree of
0 is associated with either raw reactant or buffer; a node with
out-degree of 0 is associated with a target CV; every other
node contains an intermediate CV; the number beside an edge
indicates the count of required droplets; a black dot beside a
node implies a waste droplet.

There may exist multiple source pairs that can lead to a
same target CV after dilution, for example, (1/2, 1/4) and
(0, 3/4) for 3/8. These source pairs are named preceding
pairs of a target CV. IDSA enumerates all preceding pairs
for every CV and then builds a table to store them via
dynamic programming, which is very time-consuming; the

Fig. 2. Dilution graph after (a) sharing and (b) replacement.

time complexity is about O(22n), where n is the precision level.
IDSA traces all feasible preceding pairs recursively starting
from every target CV, selects the intermediate concentrations,
and thus constructs the initial dilution graph.

The second phase of IDSA tries to eliminate the number
of intermediate nodes. Two strategies are adopted in this
phase: node sharing and node replacement. For example, IDSA
shares the common nodes of CV = 384/1024 and 768/1024 in
Fig. 1, and the result after sharing is shown in Fig. 2(a). IDSA
further reduces the number of intermediate nodes through
node replacement. For instance, the preceding pair (352/1024,
960/1024) replaces (384/1024, 928/1024) for the node of
CV = 656/1024, and the node of CV = 928/1024 can thus be
eliminated, as illustrated in Fig. 2(b).

However, Fig. 2(b) demonstrates that the node replacement
technique used in IDSA is not always able to reduce the
number of waste droplets. Moreover, it may even increase the
operation count and reactant usage, also indicated in Fig. 2(b).
Therefore, a more appropriate optimization objective instead
of node minimization should be considered. As well, IDSA is
an exponential algorithm and thus might not be applicable as
the precision level goes higher.

IV. Motivation

A. Tree-Based Approaches

Unlike approaches [26]–[28] and [33] based on the dilution
graph, all of BS [25], RMA [29], DBG [30], and REMIA
[32] adopt another strategy, named mixing tree. Two mixing



HUANG et al.: REACTANT AND WASTE MINIMIZATION IN MULTITARGET SAMPLE PREPARATION 1487

Fig. 3. Mixing trees for Ct = 30/128 and 87/128.

Fig. 4. Reactant-minimal exponential dilution processes for producing leaf
nodes of T1 and T2 shown in Fig. 3.

trees for Ct = 30/128 and 87/128 are shown in Fig. 3. A
node is a PCV node if its value is a PCV. A node with
in-degree of 0 (i.e., leaf node) in a mixing tree must be a
PCV node. Furthermore, a mixing tree must be a full binary
tree, in which every branch node has exactly two children
since a dilution operation always requires two source droplets.
Nevertheless, only one of the two resultant droplets is required
for succeeding operations. As a result, every branch node
implies a waste droplet. The relation between the number
of dilution operations, branch nodes, and waste droplets in
a mixing tree T can be expressed as

#branch node(T ) = #operation(T ) = #waste(T ). (2)

The overall reactant consumption for a mixing tree remains
unknown until the exact process about how the leaf nodes are
produced is determined. Nevertheless, the minimal reactant
usage can be estimated by the essential reactant usage (ERU),
which is equal to the sum of the CVs of all leaf nodes [32].
The minimal number of required reactant droplets can thus be
calculated by further rounding up the ERU. That is, let CV(v)

Fig. 5. Optimal unified exponential dilution process for producing all the
leaf nodes shown in Fig. 3.

denote the CV of a node v, the relation between the minimal
number of reactant droplets and the ERU can be described as

#reactant(T ) ≥ min # reactant(T )

= �ERU(T )� =
⌈∑

v∈leaf (T ) CV(v)
⌉
.

(3)

In this paper, we utilize a reactant-minimal exponential
dilution process that guarantees to produce all required leaf
nodes of a mixing tree T with minimal reactant usage, i.e., #re-
actant(T ) = min#−reactant(T ) [32]. The process is very similar
to the well-known Huffman encoding algorithm [34]. Fig. 4
demonstrates the processes for producing leaf nodes of the
two mixing trees, T 1 and T 2, originally illustrated in Fig. 3,
where #reactant(T1) = [ERU(T1)] = 1 and #reactant(T2) =
[ERU(T2)] = 3.

There may exist several feasible mixing trees for a given
target CV. In this paper, we adopt REMIA [32], which is
the best known method for reactant minimization in single-
target sample preparation, for mixing tree generation. REMIA
utilizes an efficient top-down decomposition strategy to build
a skewed mixing tree (SMT) with extremely low ERU for
a given target CV. In the multitarget preparation problem,
the leaf nodes of all SMTs can be produced jointly through
an optimal unified exponential dilution process. The overall
reactant usage can thus be further reduced because⌈∑

T

ERU(T )

⌉
≤

∑
T

�ERU(T )�. (4)

For example, the two individual reactant-minimal exponen-
tial dilution processes shown in Fig. 4 can be replaced by one
optimal unified dilution process indicated in Fig. 5, and the
total of required reactant droplets is thus reduced from four to
three. The unified dilution process also decreases the amount
of buffer, waste, and operations. Moreover, according to the
property of the ceiling function, it guarantees that the overall
wasted reactant is less than one droplet, as shown below⌈∑

T

ERU(T )

⌉
−

∑
T

ERU(T ) < 1. (5)
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Fig. 6. Result after droplet sharing on the two mixing trees shown in Fig. 3.

Fig. 7. (a) Three SMTs for Ct = 13/64, 27/64 and 29/64. (b) Result after
replacing the branch node with CV = 20/64.

B. Motivation

Every branch node in Fig. 3 implies a waste droplet.
However, those waste droplets can actually be saved if one
waste droplet produced in a mixing tree is useful in the other
mixing tree while preparing multiple targets. For example, if
the two mixing trees shown in Fig. 3 share the same branch
node with CV = 28/128, the overall ERU is reduced from three
to 2.375 and the number of waste droplets is decreased from
seven to four, as depicted in Fig. 6. Hence, sharing branch
nodes between trees can minimize both the reactant usage and
the waste amount.

In addition to the strategy of sharing common branch nodes,
we found that recycling waste droplets can also improve the

Fig. 8. Intermediate result of droplet sharing for the case shown in Fig. 3.

Fig. 9. Pseudo code of droplet sharing.

outcome. For example, Fig. 7(a) illustrates three SMTs for
Ct = 13/64, 27/64, and 29/64. Initially, there is one waste
droplet for the nodes with CV = 13/64 and 27/64 each. Then, a
node with CV = 20/64 can be produced by recycling these two
waste droplets and applying interpolated dilution. The newly
generated droplet can thus be used to replace the original
one with the same CV as depicted in Fig. 7(b). It is obvious
that the method of turning waste droplets into useful ones
can effectively reduce both the waste and the reactant usage.
This recycling-then-replacing optimization strategy is named
droplet replacement.

In this paper, the multitarget sample preparation problem
is formally formulated as follows. Given a set of target
concentration values, determine a dilution process under the
(1:1) mixing model such that the reactant usage and the
waste amount can both be minimized. The proposed algorithm
WARA, which extensively exploits both droplet sharing and
droplet replacement, is detailed in the next section.

V. Proposed Algorithm

A. Algorithm Overview

WARA divides an interpolated dilution process into three
consecutive phases: mixing tree generation, droplet sharing,
and droplet replacement. In the first phase, WARA builds a
forest F that contains a set of SMTs using REMIA; each
SMT is associated with a given target CV. In the second
phase, WARA performs droplet (i.e., node) sharing within F
for preliminary waste and reactant minimization. It further
refines the dilution process via droplet replacement in the
third phase. Finally, the optimal unified exponential dilution
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Fig. 10. (a) Two SMTs for Ct = 27/64 and 13/64. (b) Result after droplet
replacement.

Fig. 11. Example of droplet replacement. (a) Initial graph G. (b) After the
first replacement. (c) After the second replacement.

process, as described in Section IV-A, is followed to produce
all required PCV nodes. In the rest of this section, we elaborate
how droplet sharing and droplet replacement work exactly.

B. Droplet Sharing

A branch node associated with a waste droplet is referred
to as a reusable node. For example, in Fig. 3, the nodes
with CV = 24/128, 28/128, 30/128, 46/128, and 87/128 are all

Fig. 12. Pseudo code of droplet replacement.

Fig. 13. Experimental flow.

reusable nodes. The waste droplet of a reusable node may be
recycled by other dilution operations by either droplet sharing
or droplet replacement. In contrast, a branch node with no
waste droplet is referred to as a reused node. For instance,
the node with CV = 28/128 in Fig. 6 is a reused node. Also
note that every branch node is initially a reusable one before
droplet sharing starts.

The procedure of droplet sharing begins with identifying
sharable node pairs. A node pair (x, y) is sharable if both
nodes are reusable and CV(x) = CV(y). Assume (x, y) is a
sharable node pair and node z represents the dilution operation
taking y as one of its source droplets, then z can take x as its
source droplet instead since CV(x) = CV(y). As a consequence,
x becomes a reused node because it is utilized at two different
places. In the meantime, the nodes in the subtree rooted at y
can thus be safely removed. It is obvious that droplet sharing
can effectively minimize both the reactant usage as well as
the waste amount. Moreover, the operation count can also be
reduced due to a smaller number of branch nodes.

When there exist multiple sharable node pairs at the same
time, the order of pair selection is irrelevant; that is, the
outcome at the end of droplet sharing is eventually identical no
matter what the order is. For example, there are two sharable
node pairs in Fig. 3, one is with CV = 24/128 and the other is
with CV = 28/128. Fig. 8 demonstrates the intermediate result
if the node pair with CV = 24/128 is selected for sharing first.
Since there is still one sharable node pair with CV = 28/128
left in Fig. 8, the second run of droplet sharing is followed and
the final result is given in Fig. 6. However, if the node pair
with CV = 28/128 instead of 24/128 is selected first, the result
of the first run is still the one shown in Fig. 6. Therefore, it
is definite that the order of pair selection has no influence on
the outcome of droplet sharing.
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Fig. 14. (a) Reactant, (b) buffer, (c) waste, and (d) operation count per target for various #Ct .

Nevertheless, the previous example suggests that the order
of pair selection does impact the runtime efficiency of droplet
sharing though it does not affect the final result. It also
points out a trend—the farther a pair is from PCV nodes,
the higher priority it should own since a farther node pair
p can potentially eliminate the need of sharing those node
pairs resided in the fanin cone of p, which improves the
runtime efficiency and is exactly what Figs. 6 and 8 jointly
demonstrate. We further discover that for a node v the number
of nonzero bits in the binary representation of CV(v), referred
to as nzb(v), can help determine the order of pair selection. If
x and y are two fanin nodes of node z, then nzb(z) is equal
to the sum of nzb(x) and nzb(y) due to the inherent nature
of SMT. That is, nzb(x) must be smaller than nzb(z) if x is a
fanin of z. Therefore, when there exist two or more sharable
node pairs, the one with the largest nzb should be first selected
for sharing. The process of droplet sharing is not terminated
until no sharable node pair can be found. Fig. 9 outlines the
proposed droplet sharing flow.

C. Droplet Replacement

After droplet sharing, unpaired reusable nodes may still
exist. Therefore, we further propose a method that can keep
recycling those remaining reusable nodes. Assume x and y

are two reusable nodes and z is a node residing at neither x’s
fanin cone nor y’s fanin cone; then the pair (x, y) is called
a replacement candidate pair (RCP) of z if CV(z) is exactly
equal to the half of the sum of CV(x) and CV(y). That is, the
resultant droplet w obtained by mixing the two waste droplets
of x and y can be utilized to replace z. If the replacement does
take place, z and its exclusive predecessor nodes can thus be
safely removed. Hence, it is apparent that droplet replacement
can also reduce the reactant usage as well as the waste amount
simultaneously.

Unlike droplet sharing, the outcome of droplet replacement
is order dependent. For example, for three reusable nodes x,
y, and z, there may exist three feasible RCPs (x, y), (y, z),
and (x, z) at most. Nevertheless, selecting (x, y) for droplet
replacement would make (y, z) and (x, z) no longer feasible
RCPs. It implies that a considerate strategy for RCP ordering
is demanded. Since the reactant minimization is the primary
optimization objective, it should be a good idea to sort RCPs
by total ERU saving. That is, assume G/G’ are the graphs
before/after an RCP p is selected for droplet replacement, the
gain of p is formulated as

gain(p) = ERU(G) − ERU(G′). (6)
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Fig. 15. Comparisons among WARA, WARA-BS, and IDSA.

Hence, an RCP with the largest gain should be selected first
for droplet replacement to achieve a maximal possible reactant
reduction.

In the previous definition, both nodes within an RCP must
be reusable nodes. Consider the case illustrated in Fig. 10(a),
no more feasible RCPs can be found for reactant minimization.
However, if an additional PCV node is allowed while creating
an RCP, it is likely that the overall ERU can be further
minimized, just as Fig. 10(b) demonstrates. Consequently, the
original definition of RCP is relaxed—for an RCP p, at most
one of its paired nodes can be a PCV node as long as gain(p)
is positive. A loose upper bound on the number of maximum
possible RCPs in a dilution graph G is Ck

2, where k is the
number of all branch and PCV nodes in G.

If two or more RCPs are with the same largest gain, which
is not uncommon, a secondary key for comparison is required
for a better sorting outcome. As mentioned, if an RCP (x, y) is
selected for droplet replacement, neither x nor y can appear in
other RCPs later on since x and y are reused. Suppose that RCP
p = (w, x), RCP q = (w, y), gain(p) = gain(q), x merely appears
in one RCP p, and y appears in several other RCPs besides
q. Under such assumption, p should have higher precedence
over q because of two reasons: 1) p is the only chance for x
to be reused and 2) y still has other chances to be reused later
even though the selection of p automatically invalidates q due
to w.

To better model the above effect, the appearance count of
node x, denoted as ac(x), is defined. If x is a PCV node, then
ac(x) is set to the infinite; otherwise

ac(x) = |{p|p is an RCP and x ∈ p}|. (7)

Obviously, the smaller the value of ac(x) is, the fewer chances
(i.e., RCPs) x gets for being reused. Then, the uniqueness of
RCP p = (x, y), denoted as uniq(p), is accordingly defined as

uniq(p) = min{ac(x), ac(y)}. (8)

As previously explained, the smaller the value of uniq(p) is,
the higher precedence p has. Consequently, the uniqueness of
RCP is used as the secondary key during RCP ordering.

Fig. 11 demonstrates an instance of droplet replacement
utilizing two different types of RCPs. Fig. 11(a) gives an
output right after droplet sharing. In the first run, the best RCP
(i.e., the one with the highest precedence), which consists of
two reusable nodes, is selected and the outcome is shown in
Fig. 11(b). In the next run, the new best RCP, which consists of
a reusable node and a newly introduced PCV node, is chosen
and the result is reported in Fig. 11(c). The process of droplet
replacement is not terminated until no RCP can be identified.
Fig. 12 outlines the proposed droplet replacement flow.

Droplet sharing uses one existing waste droplet to replace an
existing subtree, whereas droplet replacement needs to perform
an extra interpolated dilution operation before replacing an
existing subtree. As a result, if a subtree can be removed by
either droplet sharing or droplet replacement, droplet sharing
should be preferred. That is why WARA performs droplet
sharing before droplet replacement.

VI. Experimental Results

To evaluate the proposed algorithm WARA, we compare it
with an existing state-of-the-art method for multitarget prepa-
ration, IDSA [28]. To ensure the comparisons are appropriate,
we adopt the same experimental environment setup reported in
[28], where various numbers of target concentrations, ranging
from 1 to 100, are considered, and every target concentration
is randomly selected between 1/1024 and 1023/1024 (i.e.,
precision level = 10). To make the results more convincing,
every reported value is an average of 1000 random cases in
this paper instead of 20 in [28].

Fig. 13 illustrates the experimental flow and Table I shows
the results right after the end of three consecutive optimiza-
tion phases, respectively. Recall that the result of the first
phase is also the result of REMIA [32]. Four counts for
reactant (#R), buffer (#B), waste (#W), and operation (#OP),
are reported accordingly. Note that these experimental data
are collected after the unified optimal exponential dilution
(OUED) process is performed. Each row gives the results
for a specified number of target concentrations (#Ct). Note
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Fig. 16. Comparisons among the three phases of WARA and IDSA.

TABLE I

Reactant/Buffer/Waste/Operation Counts After the Three Optimization Phases of WARA

that the first row represents a special case in which only
single target is considered. In this specific case, droplet sharing
and replacement make no improvement at all. However, it is
absolutely correct since it can find neither a pair of branch
nodes x and y in an SMT with CV(x) = CV(y) nor a feasible
RCP. Hence, it is evident that REMIA performs very well in
single-target sample preparation. Besides, the remaining rows
(i.e., multitarget cases) indicate a trend that the improvement
due to droplet sharing and droplet replacement becomes more
significant as #Ct increases.

Fig. 14 basically presents the same set of data as in
Table I but on a per-target basis to highlight this trend.
It is evident that the benefit from the unified exponential
dilution process is generally saturated roughly at #Ct = 20;
however, both droplet sharing and droplet replacement can
constantly improve the outcome as #Ct gradually grows to
100. The difference between the final result and that of the
first phase actually indicates the improvement from REMIA
to WARA in multitarget sample preparation. Furthermore,
droplet replacement contributes more than droplet sharing in
both reactant and waste minimization. Overall, compared with
REMIA, WARA reduces #R/#W/#OP by 10%/17%/16% when
#Ct is merely three. As #Ct increases to 100, the reduction

of reactant usage is 71%; the reduction of operation count is
70%, which should be considered notable since WARA does
not pay extra attention on minimizing the operation count; and
more significantly, the waste amount is reduced by 97%, which
concludes that WARA is very effective in waste minimization.

Fig. 15 illustrates the results of three different multitarget
sample preparation techniques, including WARA, WARA with
BS (WARA-BS), and IDSA. WARA-BS is a variant of WARA
that does not adopt REMIA but applies the BS method [25]
to produce initial mixing trees in the first phase. The BS
method guarantees the minimal number of dilution operations
for single-target preparation. Also note that only the waste
count and operation count were reported as the results of IDSA
in [28]. Fig. 15 shows that all three approaches perform almost
equally well in both waste and operation minimization when
#Ct ≤ 3. As #Ct continues increasing, WARA significantly
outperforms IDSA. Specifically, as #Ct = 10, WARA produces
48% less waste and requires 37% fewer operations than
IDSA; as #Ct = 100, the reduction further becomes 97% and
73%, respectively. Fig. 15(a) reveals that WARA-BS produces
more waste than WARA, which implies REMIA provides a
better starting point than the BS method in waste reduction.
Fig. 15(b) shows that WARA-BS performs slightly better than
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WARA in terms of operation count, and the main reason is that
BS requires fewer operations than REMIA in the first phase.
Fig. 15 also demonstrates that WARA-BS outperforms IDSA
as well, which suggests the contribution jointly from droplet
sharing and droplet replacement is more significant than that
from initial tree generation.

Fig. 16 presents the comparison results among the three
phases of WARA and IDSA. It shows that the first phase (i.e.,
mixing tree generation) of WARA achieves almost the same
quality of result as IDSA, which implies the combination of
REMIA and the optimal unified exponential dilution technique
is already a fairly good solution for multitarget preparation.
Finally, WARA is very time-efficient as well—it can finish a
case of #Ct = 100 in just few seconds.

VII. Conclusion

Sample preparation is a fundamental process in biochemical
reactions. Several techniques have been proposed to address
this issue in past few years, while few of them focus on
the multitarget sample preparation problem. In this paper, we
proposed a new algorithm WARA aiming at both reactant and
waste minimization in multitarget sample preparation. WARA
first generates a set of the reactant-minimized mixing trees
(i.e., SMTs) for each target concentration as its initial solu-
tion, and then successively apply droplet sharing and droplet
replacement (i.e., waste droplet recycling) to further reduce
the reactant usage and waste amount. The experimental results
demonstrated that all three phases of WARA have their own
contributions during optimization. The results also showed
that WARA outperforms the existing state-of-the-art algorithm
IDSA in terms of waste amount and operation count. Lastly,
WARA is also very efficient in runtime. As a consequence, it
is concluded that WARA is a better alternative for multitarget
sample preparation on digital microfluidic biochips.
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