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A special class of Bianchi type I expanding solutions in a string motivated theory with a single scalar

field has been speculated to break the cosmic no-hair theorem that will not approach the late time isotropic

expanding solution. We will show by a new perturbation approach that an unstable mode for the

inflationary solutions exists when an additional phantom field is introduced. The result indicates that

the existence of an unstable mode is closely related to the extra fields that could be present during the very

early Universe.
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I. INTRODUCTION

The inflationary scenario offers a natural explanation for
a number of important phenomenons of cosmic microwave
background radiation (CMB) that has been very well con-
firmed by the Wilkinson Microwave Anisotropy Probe
[1,2]. One of the remarkable predictions of inflation is
the cosmic no-hair conjecture which states that any
classical hair should disappear once the vacuum energy
dominates.

The field equations of any gravitational system with a
cosmological constant � can always be written as

G�� ¼ T�� ��g��: (1.1)

The Einstein tensor G�� on the left-hand-side of the above

equation represents the geometric impact of the gravita-
tional effect driven by the energy momentum tensor T�� on

the right-hand-side of the above equation.
Gibbons and Hawking [3], and Hawking and Moss [4]

conjectured that all models with a positive cosmological
constant will approach a late time de Sitter space. This is
later became known as the cosmic no-hair theorem for the
Einstein gravity. Partial proof was given by Robert Wald
[5] which shows clearly that any model with a positive
cosmological constant will drive the late-time evolution
toward de Sitter spacetime, at least locally, for all non-
type IX Bianchi spaces provided that the matter sources
obey both the dominant energy condition (DEC),
T��t

�t� � 0, and the strong-energy condition (SEC),

ðT�� � 1
2g��TÞt�t� � 0, for all timelike vectors t� [5].

Here T�� and T denote the energy momentum tensor and

its trace for all the fields coupled to the gravitational
system. The type IX Bianchi space behaves similarly if
� is sufficiently large [5].

A number of studies of the cosmic no-hair theorems
have been shown to support the existence of certain con-
straints on the field parameters in order for the cosmic hair
to be absent [5–14]. It is also known, however, that coun-
terexamples exist where these energy conditions do not
hold exactly [15–17]. Many of these solutions have later
been shown to be unstable [10,18–20] which appear to

support Hawking’s no-hair conjecture. In any case, it is
important to check carefully to find out whether all existing
claims that anisotropically expanding solutions are stable
are true or not. These investigations may further our vision
and understanding on the limit and constraints relative to
the evolutionary Universe.
Many of the studies focus on the effect of the higher

derivative gravity theories. Relative higher-order theories
can also be found in Refs. [21–52]. For example, we have
been able to show that the inflationary solutions found [40]
in the Bianchi type II and type VI spaces are in fact
unstable in the presence of anisotropic perturbations
[43,46]. Note that the Bianchi type II solutions (and
some Bianchi type I inflating solutions) were also found
to be unstable by Barrow and Hervik in Ref. [41].
Recently, another example of anisotropic inflationary

solutions has been found that seems to provide one more
counterexample to the cosmic no-hair conjecture [53–58].
Indeed, it was shown that in the presence of a vector field
coupled with the inflaton, there could be a small anisotropy
in the expansion rate, which never decays during inflation.
Furthermore, the anisotropic inflation is also shown to be
an attractor solution [59]. In addition, analytic solutions are
also found in an anisotropic inflationary model with a
single scalar field coupled to the system motivated by
supergravity theory [59]. Anisotropic hair seems to persist
in this model even when a large cosmological constant is
not present. In the hope that the no-hair conjecture could
survive one way or the other, we wish to find out whether
unstable modes could exist in other perturbation directions
not considered in this model. For example, the presence of
additional fields could possibly change the stability prop-
erties of the expanding solutions.
In fact, wewill show that a set of expanding solutions can

also be found in a model with a two scalar field model
[60–62] similar to the one scalar model [59]. For the solu-
tions to be expanding solutions, three independent inequal-
ities will be shown to put strong constraints on the system.
In particular, we will show that the inflationary solutions
requiring stronger constraints on the field parameters will
drive the expanding solutions to collapse as promised.
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Note that the solutions we found will be shown to be the
solutions found in Ref. [59] if we set �2 ¼ 0 and �2 ! 1
together. The result will be that the unstable mode may not
exist in the one scalar model, but the presence of additional
coupling apparently changes the stability pattern of the
expanding solutions. This result will offer a new approach
to the stability analysis in similar systems.

This paper will be organized as follows: (i) a brief
review of the motivation of this research is given in
Sec. I, (ii) in Sec. II, a two scalar model will be introduced
and analyzed, (iii) anisotropic Bianchi type I solutions will
be solved in Sec. III, (iv) we will show that the presence of
the additional scalar field does affect the stability of the
anisotropic expanding solutions. In particular, we will
show that the system is unstable in the inflationary phase,
(v) finally, concluding remarks are given in Sec. V.

II. TWO SCALAR MODEL

We will extend the one scalar model studied by Kanno
et al.’s model [59] to a cosmological model with two scalar
fields that is known as the quintom model [60–62] given by
the action:

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

M2
p

2
R�C1

2
ð@��Þð@��Þ

�C2

2
ð@�c Þð@�c Þ�Vð�;c Þ�1

4
f2ð�;c ÞF��F

��

�
:

(2.1)

Here Vð�; c Þ is a twice continuously differentiable func-
tion, Mp is the Planck mass. The fields � and c are the

scalar and the phantom fields, respectively, if the signs of
the constants are chosen as C1 > 0 and C2 < 0 [61]. We
will set the constants as C1 ¼ 1, C2 ¼ �1, and choose
Vð�; c Þ ¼ V1ð�Þ þ V2ðc Þ [62] along with f2ð�; c Þ ¼
f21ð�Þf22ðc Þ. As a result, the field equations of this model
can be shown to be

@

@x�

� ffiffiffiffiffiffiffi�g
p

f2ð�; c ÞF��

�
¼ 0; (2.2)

€� ¼ �3H _�� @�Vð�; c Þ
� 1

2fð�; c Þ@�fð�; c ÞF��F
��; (2.3)

€c ¼ �3H _c þ @cVð�; c Þ
þ 1

2fð�; c Þ@c fð�; c ÞF��F
��; (2.4)

M2
pðR�� � 1

2Rg��Þ � @��@��þ 1
2g��@

��@��

þ @�c @�c � 1
2g��@

�c @�c þ g��½Vð�; c Þ
þ 1

4f
2ð�; c ÞF��F��� � f2ð�; c ÞF��F

�
� ¼ 0: (2.5)

For the Bianchi type I metric given by

ds2 ¼ �dt2 þ exp½2�ðtÞ � 4�ðtÞ�dx2 þ exp½2�ðtÞ
þ 2�ðtÞ�ðdy2 þ dz2Þ; (2.6)

with gauge field and scalar fields take the form A� ¼
ð0; AxðtÞ; 0; 0Þ, � ¼ �ðtÞ, and c ¼ c ðtÞ which are consis-
tently coupled to each other on the Bianchi type I metric
space. The solution to Eq. (2.2) can be integrated immedi-
ately to give

_AxðtÞ ¼ f�2ð�; c Þ exp½��� 4��pA; (2.7)

with pA a constant of integration [59]. Therefore, Eqs. (2.3)
and (2.4) become

€� ¼ �3 _� _��@Vð�; c Þ
@�

þ f�3ð�; c Þ@fð�; c Þ
@�

� exp½�4�� 4��p2
A; (2.8)

€c ¼ �3 _� _c þ@Vð�; c Þ
@c

� f�3ð�; c Þ@fð�; c Þ
@c

� exp½�4�� 4��p2
A; (2.9)

respectively. As a result, we can obtain the following set of
field equations:

_� 2 ¼ _�2 þ 1

3M2
p

�
1

2
_�2 � 1

2
_c 2 þ Vð�; c Þ

þ 1

2
f�2ð�; c Þ exp½�4�� 4��p2

A

�
; (2.10)

€� ¼ �3 _�2 þ 1

M2
p

Vð�; c Þ þ 1

6M2
p

f�2ð�; c Þ

� exp½�4�� 4��p2
A; (2.11)

€� ¼ �3 _� _�þ 1

3M2
p

f�2ð�; c Þ exp½�4�� 4��p2
A:

(2.12)

III. ANISOTROPIC POWER-LAW SOLUTIONS

For the purpose of our stability analysis, we will choose
the exponential potentials of the form

Vð�; c Þ ¼ V01 exp

�
�1

Mp

�

�
þ V02 exp

�
�2

Mp

c

�
; (3.1)

with the gauge kinetic function of the form

fð�; c Þ ¼ f0 exp

�
�1

Mp

�

�
exp

�
�2

Mp

c

�
: (3.2)

Here V0i, �i, and �i are constant field parameters. We will
try to find expanding or inflationary power-law solutions of
the following form [59]:
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� ¼ 	 logðtÞ;
� ¼ 
 logðtÞ;
�

Mp

¼ �1 logðtÞ þ�0;

c

Mp

¼ �2 logðtÞ þ c 0:

(3.3)

For convenience, we will also define the following new
variables:

u ¼ V01 exp½�1�0�
M2

p

; (3.4)

v ¼ V02 exp½�2c 0�
M2

p

; (3.5)

l ¼ p2
Af

�2
0 exp½�2ð�1�0 þ �2c 0Þ�

M2
p

(3.6)

as a set of new positive parameters. With the ansatz given
by Eq. (3.3), the field Eqs. (2.8), (2.9), (2.10), (2.11), and
(2.12) become a set of algebraic equations:

� �1 þ 3	�1 þ �1u� �1l ¼ 0; (3.7)

� �2 þ 3	�2 � �2vþ �2l ¼ 0; (3.8)

� 	2 þ 
2 þ ð�2
1 � �2

2Þ
6

þ ðuþ vÞ
3

þ l

6
¼ 0; (3.9)

� 	 þ 3	2 � ðuþ vÞ � l

6
¼ 0; (3.10)

� 
þ 3	
� l

3
¼ 0: (3.11)

Note that we have assumed the following constraint
equations:

�1�1 ¼ �2; (3.12)

�2�2 ¼ �2; (3.13)

�1�1 þ �2�2 þ 2	 þ 2
 ¼ 1; (3.14)

such that the potential term Vð�;�Þ and the gauge
coupling terms in the Hamiltonian constraint (2.12) are
all proportional to 1=t2. Setting �1 ¼ �2=�1 and �2 ¼
�2=�2, Eq. (3.14) can be written as


þ 	 ¼ 1

2
þ �1

�1

þ �2

�2

; (3.15)

In addition, we can also show that this set of equations
leads to a polynomial equation of 	 as

ð3	 � 1Þf½6�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ�	
� ½4ð�1�2 þ �2�1Þð2�1�2 þ 3�1�2 þ 3�2�1Þ
þ �2

1�
2
2 þ 8ð�2

2 � �2
1Þ�g ¼ 0: (3.16)

There is hence a trivial solution 	 ¼ 1=3 that leads to the
trivial constraints u ¼ v ¼ l ¼ 0. In addition, there is also
a nontrivial solution given by

	 ¼ 4ð�1�2 þ �2�1Þð2�1�2 þ 3�1�2 þ 3�2�1Þ þ �2
1�

2
2 þ 8ð�2

2 � �2
1Þ

6�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ : (3.17)

As a result, the parameters 
, u, v, l can be parametrized as functions of �i and �i given by


 ¼ �1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ � 4ð�2
2 � �2

1Þ
3�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ ; (3.18)

u ¼ �� ½�2
2ð�1�1 þ 2�2

1 þ 2Þ þ 2�1�2�1�2 þ 4ð�1�1 þ �2�2Þ�
2½�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ�2

; (3.19)

v ¼ �� ½�2
1ð�2�2 þ 2�2

2 � 2Þ þ 2�1�2�1�2 � 4ð�1�1 þ �2�2Þ�
2½�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ�2

; (3.20)

l ¼ �� ½�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ � 4ð�2
2 � �2

1Þ�
2½�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ�2

; (3.21)

with � � 4ð�1�2 þ �2�1Þð�1�2 þ 3�1�2 þ 3�2�1Þ � �2
1�

2
2 þ 8ð�2

2 � �2
1Þ. Note that the solutions found above become

the same set of solutions found for the one scalar model if we take the limit �2 ! 0 and �2 ! 1 [59].
We can also define the average slow-roll parameter given by [59]
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" � � _H

H2
¼ 6�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ

4ð�1�2 þ �2�1Þð2�1�2 þ 3�1�2 þ 3�2�1Þ þ �2
1�

2
2 þ 8ð�2

2 � �2
1Þ
: (3.22)

In addition, the anisotropy is given by

�

H
� _�

_�
¼ 2½�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ � 4ð�2

2 � �2
1Þ�

4ð�1�2 þ �2�1Þð2�1�2 þ 3�1�2 þ 3�2�1Þ þ �2
1�

2
2 þ 8ð�2

2 � �2
1Þ
: (3.23)

Consequently, there is a relation between the average slow-
roll parameter and the anisotropy given by comparing
Eq. (3.22) with Eq. (3.23):

�

H
¼ 1

3
I"; (3.24)

where

I ¼ 3
 ¼ 1� 4ð�2
2 � �2

1Þ
�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ : (3.25)

Hence, �2 > �1 is required if the constraint 0< I < 1 is to
be observed [59].

IV. STABILITYANALYSIS OF THE EXPANDING
SOLUTIONS

Perturbing the field Eqs. (2.8), (2.9), (2.10), (2.11), and
(2.12), we can obtain the following set of perturbation
equations:

� €� ¼ �3
	

t
� _�� 3

�1Mp

t
� _�� �2

1u

t2
��

� �1Mpl

t2

�
2

Mp

ð�1��þ �2�c Þ þ 4ð��þ ��Þ
�
;

(4.1)

� €c ¼ �3
	

t
� _c � 3

�2Mp

t
� _�þ �2

2v

t2
�c

þ �2Mpl

t2

�
2

Mp

ð�1��þ �2�c Þ þ 4ð��þ ��Þ
�
;

(4.2)

2	

t
� _� ¼ 2




t
� _�þ �1

3Mpt
� _�� �2

3Mpt
� _c þ �1u

3Mpt
2
��

þ �2v

3Mpt
2
�c � l

6t2

�
2

Mp

ð�1��þ �2�c Þ

þ 4ð��þ ��Þ
�
; (4.3)

� €� ¼ �6
	

t
� _�þ �1u

Mpt
2
��þ �2v

Mpt
2
�c

� l

6t2

�
2

Mp

ð�1��þ �2�c Þ þ 4ð��þ ��Þ
�
;

(4.4)

� €� ¼ �3
	

t
� _�� 3




t
� _�� l

3t2

�
2

Mp

ð�1��þ �2�c Þ

þ 4ð��þ ��Þ
�
: (4.5)

Instead of taking the exponential perturbation of fields as
�� ¼ �0 exp½nt� that is not compatible with the power-law
solutions here, we will take the power-law perturbation of
fields defined by �� ¼ Atn, �� ¼ Btn, �� ¼ MpCt

n,

�c ¼ MpDtn [59]. As a result, the above set of perturba-

tion equations becomes a set of algebraic equations:

�
6n

�1

� 4�1l

�
A� 4�1lB� ½nðn� 1Þ þ 3	n

þ �2
1uþ 2�2

1l�C� 2�1�2lD ¼ 0; (4.6)

�
6n

�2

þ 4�2l

�
Aþ 4�2lB� 2�1�2lC� ½nðn� 1Þ

þ 3	n� �2
2v� 2�2

2l�D ¼ 0; (4.7)

�
�
2l

3
þ 2	n

�
A�

�
2l

3
þ 2
n

�
B

þ
�
� 2n

3�1

þ u�1

3
� l�1

3

�
C

�
�
� 2n

3�2

� v�2

3
þ l�2

3

�
D ¼ 0; (4.8)

�
�
nðn� 1Þ þ 6	nþ 2l

3

�
A� 2l

3
Bþ

�
u�1 � l�1

3

�
C

þ
�
v�2 � l�2

3

�
D ¼ 0; (4.9)
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�
�
3
nþ 4l

3

�
A�

�
nðn� 1Þ þ 3	nþ 4l

3

�
B

� 2l�1

3
C� 2l�2

3
D ¼ 0; (4.10)

with the identities �1�1 ¼ �2�2 ¼ �2 used to write the
equations above as functions of �i and �i. These equations
can be written as a matrix equation:

D

A
B
C
D

0
BBB@

1
CCCA �

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2
6664

3
7775

A
B
C
D

0
BBB@

1
CCCA ¼ 0;

(4.11)

with

A11 ¼
�
6n

�1

� 4�1l

�
;

A12 ¼ �4�1l;

A13 ¼ �½nðn� 1Þ þ 3	nþ �2
1uþ 2�2

1l�;
A14 ¼ �2�1�2l;

(4.12)

A21 ¼
�
6n

�2

þ 4�2l

�
;

A22 ¼ 4�2l;

A23 ¼ �2�1�2l;

A24 ¼ �½nðn� 1Þ þ 3	n� �2
2v� 2�2

2l�;

(4.13)

A31 ¼ �
�
nðn� 1Þ þ 6	nþ 2l

3

�
;

A32 ¼ � 2l

3
;

A33 ¼
�
u�1 � l�1

3

�
;

A34 ¼
�
v�2 � l�2

3

�
;

(4.14)

A41 ¼ �
�
3
nþ 4l

3

�
;

A42 ¼ �
�
nðn� 1Þ þ 3	nþ 4l

3

�
;

A43 ¼ � 2l�1

3
;

A44 ¼ � 2l�2

3
:

(4.15)

It is known that nontrivial solutions of the Eq. (4.11) exist
only when

detD ¼ 0: (4.16)

Note that we can write the Eq. (4.16) as a polynomial
equation of n:

b8n
8 þ b7n

7 þ b6n
6 þ b5n

5 þ b4n
4 þ b3n

3

þ b2n
2 þ b1n ¼ 0; (4.17)

along with a vanishing constant term b0 ¼ 0 that implies
the existence of a trivial solution n ¼ 0. In addition, we
can also show that b8 ¼ 1. Therefore, we need to solve
the following polynomial equation with nontrivial coeffi-
cients bi,

fðnÞ ¼ n7 þ b7n
6 þ b6n

5 þ b5n
4 þ b4n

3 þ b3n
2

þ b2nþ b1 ¼ 0; (4.18)

for the perturbation solutions. Note that the coefficient b1
can also be calculated and written as

b1 ¼ �2vl½�2
1�

2
2ð5	 � 
� 1Þuþ 2�1�2ð�1�2 þ �2�1Þ

� ð3	 � 3
� 1Þuþ 8�2�
2
1�2ð3	 � 3
� 1Þ

þ 4ð�2
1 � �2

2Þu� 16��1
1 �2�1�2�; (4.19)

For the solutions found in this paper to be expanding
solutions, 	 þ 
 and 	 � 2
 must be all positive. In addi-
tion, the parameters u, v, and l are all defined as positive
parameters. These will put forward a set of constraints on
the field parameters.
It is straightforward to show that, if the parameters �i, �i

are all positive, 	þ
¼1=2þð�1�2þ�2�1Þ=ð�1�2Þ>0
following Eq. (3.15). In addition, it can also be shown
that 	 � 2
> 0 if

4ð�1�2 þ �2�1Þ2 þ 8�2
2 > �2

1�
2
2 þ 8�2

1: (4.20)

It is also straightforward to show that u > 0 if�> 0which
implies that

4ð�1�2 þ �2�1Þð�1�2 þ 3�1�2 þ 3�2�1Þ
þ 8�2

2 > �2
1�

2
2 þ 8�2

1: (4.21)

Note that the inequality (4.21) holds if the inequality (4.20)
holds. Therefore, the above inequality is a redundant in-
equality. Similarly, l > 0 and v > 0 imply, respectively,
that

�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ þ 4�2
1 > 4�2

2; (4.22)

�2
1�2ð�2 þ 2�2Þ þ 2�1�2�1�2 > 2�2

1 þ 4ð�1�1 þ �2�2Þ:
(4.23)

Hence, we have three totally independent inequalities to be
observed: (4.20), (4.22), and (4.23). Note further that we
can write two of the inequalities, (4.20) and (4.23), in a
more comprehensive form as
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2Eþ 1> 2E� 8F� 1> 0 (4.24)

with

E ¼ �1�2 þ �2�1

�1�2

and

F ¼ �2
1 � �2

2

�1�2ð�1�2 þ 2�1�2 þ 2�2�1Þ>� 1

4
:

(4.25)

Furthermore, if the expanding solutions can be used
to represent inflationary solutions, it will require that
	 � 2
 � 1 and 	 þ 
 � 1. As a result, 	 þ 
 � 1
implies that

�1�2 þ �2�1 � �1�2: (4.26)

In addition, 	 � 2
 � 1 together with the constraints
derived above from 	 þ 
 � 1 lead to the following con-
straint:

ð�1�2 þ �2�1Þ2 � �2
1 � �2

2: (4.27)

If we write b1 ¼ �2vlðk1uþ k2Þ, with the k1 term
representing the part linear in u and the k2 term represent-
ing the part independent of u, ki can be written as

k1¼
�
5E�8F�3

2

�
�2
1�

2
2

þ2

�
3E�8F�5

2

�
�1�2ð�1�2þ�2�1Þþ4ð�2

1��2
2Þ

þ�1�2ð�1�2þ2�1�2þ2�2�1Þ>
�
5E�8F�3

2

�
�2
1�

2
2

þ2

�
3E�8F�5

2

�
�1�2ð�1�2þ�2�1Þ; (4.28)

with the last inequality following from the inequality
(4.27). With the help of the inequality (4.24), we can
further write the bound of k1 as

k1 >

�
3E� 1

2

�
�2
1�

2
2 þ 2

�
E� 3

2

�
�1�2ð�1�2 þ �2�1Þ:

(4.29)

In addition, k2 takes the form

k2 ¼
�
3E� 8F� 3

2

�
�1�1 � 2>

�
E� 1

2

�
�1�1 � 2:

(4.30)

Here we have also used the inequality (4.24) to derive the
last inequality.

The above constraint equations, derived from the pos-
itivity of various field parameters can be easily met if
�1�2 þ �2�1 � �1�2 �Oð1Þ. In such cases, the coeffi-
cients ki are all positive and hence b1 is always negative for
inflationary solutions.

Note that the polynomial equation fðnÞ is a degree 7
polynomial equation that goes to infinity when n ! 1.
Since we have shown that b1 < 0 for inflationary solutions,
there is at least a positive root to this polynomial equation.

Indeed, if fð0Þ ¼ b1 < 0 and fð1Þ ! 1, there is at least a
point of intersection where the curve fðnÞ crosses the
positive n axis on the n-fðnÞ plane. Hence, we reach the
conclusion that a positive mode with n > 0 exists for infla-
tionary solutions. The positive mode represents an unstable
mode of the perturbation equations. Therefore, we have
shown that this set of inflationary solutions is unstable.

V. CONCLUSION

With the limit �2 ! 1, �2 ! 0, we can write the per-
turbation equations for the one scalar field model as func-
tions of �1 and �1:

~D
A
B
C

0
@

1
A �

A11 A12 A13

A31 A32 A33

A41 A42 A43

2
64

3
75

A
B
C

0
@

1
A ¼ 0: (5.1)

A nontrivial solution of the Eq. (5.1) exists only when

det ~D ¼ 0: (5.2)

This equation can be shown to give a degree 6 polynomial
equation of n:

~fðnÞ ¼ �n6 þ c5n
5 þ c4n

4 þ c3n
3 þ c2n

2 þ c1n ¼ 0;

(5.3)

with c6 ¼ �1 and c0 ¼ 0 explicitly shown in the above
equation. In addition, the coefficient c1 can also be calcu-
lated and written as

c1 ¼ �2ul½ð5	 � 
� 1Þ�2
1 þ 2ð3	 � 3
� 1Þ�1�1 � 4�:

(5.4)

The leading coefficient of the n6 term changes sign for the
one scalar model solutions. Therefore, the unstable model
no longer persists here. It is apparent that the sign change
of the leading order term coefficient plays an important
role once the phantom field is introduced.
In conclusion, we have shown that a set of expanding

solutions exist in a model with two scalar fields coupled to
the system. For the solutions to be expanding solutions,
three independent inequalities (4.22) and (4.24) are re-
quired and listed clearly in this paper. These inequalities
put constraints on the four parameters space spanned by �i

and �i. In particular, the inflationary solutions require a set
of additional constraints on the four parameters space.
These solutions are shown to be unstable.
As a brief summary, the cosmic no-hair conjecture as-

serts that all expanding solutions will tend to the de Sitter
space asymptotically at time infinity. Formal and rigorous
proof was shown in Ref. [5] showing that all expanding
solutions will tend to de Sitter space asymptotically at time
infinity for any model with a positive cosmological con-
stant if both the SEC and DEC remain valid. A number of
counterexamples are, however, shown to violate the SEC
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and DEC [15–17]. As a result, these expanding solutions
become a potential challenge to the cosmic no-hair
conjecture.

Some of these solutions can be shown to be unstable by
an exponential perturbation method with the perturbation
functions proportional to exp½�t� [10,18–20]. The stability
of some of these solutions are, however, still waiting for
clarifications. Therefore, it is important to find out if there
is any alternative and effective method to study the stability
property of these expanding solutions.

Recently, a model with a scalar field coupled to the
gauge field seems to provide another counterexample to
the no-hair conjecture [59]. This model does not, however,
have a cosmological constant. In addition, the power-law
solutions of the scale factors expand in the form:
exp½�þ �� ¼ t	þ
 and exp½�� 2�� ¼ t	�2
 on the
Bianchi type I space. These anisotropically expanding
solutions appear to be stable. A new set of power-law
perturbations is introduced to study the stability property
of this set of expanding solutions. It can be shown, how-
ever, that inflationary solutions tend to be stable against the
power-law perturbations.

In order to resolve the stability properties of the
scalar-vector model, we introduced an additional phantom
field to the one scalar model with the action given by
Eq. (2.1). As a result, new exponential coupling with addi-
tional field parameters �2 and �2 are introduced accord-
ingly. A generalized set of anisotropically expanding
solutions is also found to agree with the one scalar model
[59] when we set �2 ¼ 0 and �2 ! 1 together. If these
solutions represent a set of expanding solutions, three

independent inequalities (4.22) and (4.24) are required to
be observed. When power-law perturbations are applied to
the field equations, we have shown that unstable mode does
exist for inflationary solutions obeying the constraints
�1�2 þ �2�1 � �1�2 �Oð1Þ.
It is clear at this point that unstable mode does not exist

for the one scalar model. And the presence of the phantom
field perturbation introduces a change of sign to the leading
coefficient b8 of the polynomial equation fðnÞ ¼ 0 repre-
senting the stability equation shown in Eq. (4.18) as com-
pared to the leading coefficient c6 of the polynomial

equation ~fðnÞ ¼ 0 in Eq. (5.3).
Apparently the induced sign flipping of the stability

equation changes the stability property of the expanding
solutions. In particular, we are able to show that the pres-
ence of the phantom field does drive the inflationary solu-
tions off the anisotropically inflationary phase as discussed
in this paper. The proof shown in this paper acts in favor of
the cosmic no-hair conjecture. In addition, it is also a
useful demonstration of a new approach of the stability
analysis of relative models. Indeed, it is also consistent
with the expectation that an additional direction of pertur-
bations, the c field, for example, can introduce an addi-
tional unstable mode of the system. Hopefully the results
shown in this paper can be helpful in a relative study on
stability analysis.
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