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Abstract
Objective. This study explores the neurophysiological changes, measured using an
electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy
drivers, and predicts the efficacy of the feedback based on changes in the EEG. Approach.
Eleven healthy subjects participated in sustained-attention driving experiments. The driving
task required participants to maintain their cruising position and compensate for randomly
induced lane deviations using the steering wheel, while their EEG and driving performance
were continuously monitored. The arousing warning signal was delivered to participants who
experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events
(specifically the reaction time exceeded three times the alert reaction time). Main results. The
results of our previous studies revealed that arousing feedback immediately reversed
deteriorating driving performance, which was accompanied by concurrent EEG theta- and
alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback
efficacy assessment system to accurately estimate the efficacy of arousing warning signals
delivered to drowsy participants by monitoring the changes in their EEG power spectra
immediately thereafter. The classification accuracy was up 77.8% for determining the need for
triggering additional warning signals. Significance. The findings of this study, in conjunction
with previous studies on EEG correlates of behavioral lapses, might lead to a practical
closed-loop system to predict, monitor and rectify behavioral lapses of human operators in
attention-critical settings.

(Some figures may appear in colour only in the online journal)

1. Introduction

Fatigue (or drowsiness) has been widely identified as a major
problem in safety-critical work situations as well as in traffic
(Fairclough and Graham 1999, Sexton et al 2000, Hanowski
et al 2003). Although the causes of fatal traffic accidents
are difficult to assess reliably, many studies (Vaca et al
2005, Landrigan 2008) have indicated that drowsiness is a
primary contributing cause. The early detection of drivers’

drowsiness, which often increases the likelihood of behavioral
lapses, to maintain their cognitive capability and thereby
prevent accidents is thus highly desired. The development
of a means of detecting human fatigue or behavioral lapse
to prevent further growth in the number of fatalities caused
by traffic accidents, has increasingly attracted the attention of
transportation safety administration, industry and the scientific
community. Many studies have exploited various methods for
measuring physiological changes, such as changes in blinking
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rate (Caffier et al 2003) and heart rate (Chua et al 2012) as a
means of evaluating human cognitive capability.

Many studies (Makeig and Inlow 1993, Campagne et al
2004, Makeig and Jung 1996, Jung et al 1997, Lal and
Craig 2002, Horne and Baulk 2004, Pastor et al 2006,
Huang et al 2008, 2009, Lin et al 2010, Jap et al 2011)
have also demonstrated that fluctuations in the behavioral
performance of a subject that are caused by drowsiness are
accompanied by spectral changes in electroencephalograms
(EEGs). Furthermore, some studies have also shown EEG
correlates of behavioral lapses (Makeig and Inlow 1993,
Kecklund and Akerstedt 1993, Jung and Makeig 1995, Peiris
et al 2006, Davidson et al 2007). These fundamental findings
of EEG signatures of drowsiness and lapses, including power
spectra (Lal et al 2003, Lin et al 2005, 2006, Peiris et al
2006, Davidson et al 2007, Yeo et al 2009, Johnson et al
2011, Khushaba et al 2011) and autoregressive features
(Rosipal et al 2007, Zhao et al 2011), could then be used
to develop various on-line/off-line neuroergonomic systems
for monitoring drowsiness, fatigue, and behavioral lapse in
task performance.

Much work has also been undertaken to assist individuals
in combating drowsiness and/or to prevent lapses in
concentration. Dingus et al (1997), Spence and Driver (1998)
proposed the use of warning signals to maintain drivers’
attention. The warning signals can be auditory (Spence and
Driver 1998, Lin et al 2009), visual (Liu 2001), tactile (Ho et al
2005) or mixed (Liu 2001). These cited studies all revealed
that arousing warning signals (feedback) considerably improve
task performance. Furthermore, using arousing warning
signals may effectively reduce the number of lapses of
attention and thereby prevent devastating consequences. Our
previous studies (Lin et al 2009) have demonstrated that
an arousing tone-burst with a frequency of 1750 Hz can
help subjects to maintain optimal driving performance. More
recently, we demonstrated EEG dynamics and behavioral
changes in response to arousing auditory signals that were
presented to individuals who were experiencing momentary
cognitive lapses in a sustained-attention task (Lin et al
2010). However, the study also showed that auditory feedback
sometimes failed to arouse drowsy subjects and that the EEG
activity of these non-responsive episodes showed no neural
response to the feedback (Lin et al 2010, Jung et al 2010).
A pilot study (Jung et al 2010) applied machine-learning
algorithms to assess the efficacy of the arousing feedback
on drowsy subjects and showed that the post-stimulus EEG
spectra could be used to estimate the effectiveness of the
arousing signals with a moderate accuracy of 61%.

This study extends the aforementioned works (Lin et al
2009, 2010, Jung et al 2010) to provide a detailed analysis
on EEG spectra of effective and ineffective feedback and
enhance the accuracy of the feedback efficacy assessment
system. The objective of this study was to develop a system
that can accurately detect an ineffective auditory feedback
so that the system can trigger additional arousing signals,
e.g. auditory warning signals or other stimulus modalities,
to reduce the possibility of catastrophic accidents. Integrating
the lapse prediction/monitoring methods proposed in previous

studies (Kecklund and Akerstedt 1993, Jung and Makeig 1995,
Davidson et al 2007, Peiris et al 2011) and a warning system
with a feedback efficacy assessment mechanism, would finally
form a closed-loop system to predict and rectify behavioral
lapses while driving.

2. Methods

This study used the EEG and behavioral data reported in our
previous study (Lin et al 2010), but focused on methods that
can monitor the changes in the EEG following the arousing
warning signal delivered to users experiencing momentary
cognitive lapses to predict the efficacy of arousing feedback.

2.1. Subjects

Eleven healthy participants aged 20–28 years (ten males and
one female) with normal hearing participated in virtual-reality
(VR) based highway-driving experiments. All subjects were
free of neurological and psychological disorders and none
abused drugs or alcohol. No subject reported sleep deprivation
on the day before the experiments, and none had worked
night shifts during the preceding year or traveled through
more than one time zone in the preceding two months. To
accurately evaluate their driving performance, the subjects
were required not to have imbibed alcoholic or caffeinated
drinks or to have participated in strenuous exercise a day before
the experiments were performed. The Institutional Review
Board of the Taipei Veterans General Hospital approved the
experimental protocol. All experiments were performed in the
early afternoon (13:30 ± 1 h) after lunch when the circadian
rhythm of sleepiness was at its peak (Ferrara and De Gennaro
2001). All subjects were informed about the experimental
procedures and the driving task process. All provided informed
consent before they participated. Before the experiments, they
practiced driving in the simulator to get acquainted with it and
with the experimental procedures. After the experiments, they
were also asked to complete a questionnaire.

2.2. Experimental equipment

VR-based monotonous highway-driving experiments were
performed in a driving simulator that mimicked realistic
driving situations in a dark, sound-reduced room. The VR
scenes simulated driving at a constant speed (100 km h−1) on
a four-lane divided highway with the car randomly drifting
away from the center of the cruising lane to simulate driving
on non-ideal road surfaces or with poor alignment. The road
was straight and monotonous and no traffic or other stimuli
appeared in the VR scene, simulating a driving situation that
is likely to induce drowsiness. The scenes were updated at 60
frames per second.

This study recorded 30-channel EEG data referentially
against a linked mastoid reference using the NuAmp system
(Compumedics Ltd, VIC, Australia) with a sampling rate of
500 Hz and a 16-bit quantization level. The EEG electrodes
were placed according to the modified international 10–20
system (Homan et al 1987). The impedance between the skin
and all EEG electrodes was calibrated to be less than 10 k�.
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(a)

(b)

Figure 1. Experimental illustration. (a) Event-related lane-departure driving tasks. The solid arrows represent the driving trajectory.
The empty circle represents the deviation onset. The double circle represents the response onset. The circle with the cross represents the
response offset. The baseline is defined as the 3 s period prior to deviation onset. The RT of a driver is the interval from the deviation to the
response onset. A trial starts at the deviation onset and ends at the response offset. The next deviation begins 8–12 s after the response offset.
(b) The criteria for delivering auditory feedback during driving tasks. The height of an arrow represents the RT in a single trial. The warning
feedback was delivered to the subject when the RT in the trial exceeded three times the mean RT of trials in the first 5 min of the task, when
the subject was presumably alert and fully attentive to lane-departure events. Figure 1 is adapted from figure 1 of Lin et al (2010).

The EEG data were preprocessed, using a low-pass filter
of 50 Hz and a high-pass filter of 0.5 Hz, to remove the line
noise and the baseline drift, respectively, before being down-
sampled to 250 Hz.

2.3. Experimental paradigm

This study implemented an event-related lane-departure
driving paradigm (figure 1(a)) (Huang et al 2009) on
the driving simulator to objectively and quantitatively measure
both momentary event-related brain dynamics following lane-
departure events and task performance fluctuations over long
periods. Lane-departure events were randomly introduced
every 8–12 s, causing drift at a constant speed towards the curb
or into the opposite lane with equal probability. Subjects were
instructed to steer the vehicle back to the center of the original
cruising lane as quickly as possible. During the experiment,
the vehicle trajectory and the time of the lane-departure
event, the onset of response, and the end of response were
recorded. The time interval between the deviation onset and
the response onset was defined as the response time (RT) that
presumably reflected the vigilance/arousal state of the subject
(Huang et al 2008, 2009, Lin et al 2010).

Before the experiment, subjects were instructed to stay
alert as much as possible and respond to the deviation event

as soon as possible. During a 90 min experiment (figure 1(b)),
subjects had to compensate for hundreds of lane-departure
events and their performance tended to fluctuate over time.
The first 5 min of each experiment was considered as the
baseline period during which the subjects were presumably
alert and fully attentive to the given task. Monitoring the
experimental performance via a surveillance camera and
the vehicle trajectory further ensured subject’s alertness. All
RTs in this period were averaged as the mean alert RT
(0.50–0.85 s across subjects). During the remaining 85 min
of the experiment, if the subject’s RTs to lane-departure events
exceeded three times the mean alert RT, the system would
automatically deliver a 1750 Hz tone-burst to the subject in
half of these trials (defined as the ‘current trial’ (CT)). Trials
in which the warning signal was delivered to the subject were
labeled ‘with warning’. Those in which it was not were labeled
‘without warning’. The auditory warning signal volume was
set to a fixed level (∼68.5 dB), which was noticeable, but not
too loud. The following trial (CT+1) is the trial following the
CT in which the participant is drowsy. If the RT of CT+1
was shorter than double the mean alert RT, the warning signal
delivered in the CT was defined as an ‘effective warning’.
On the other hand, if the RT of the CT+1 trial was longer
than three times the mean alert RT, the warning feedback was
defined as an ‘ineffective warning’.

3



J. Neural Eng. 10 (2013) 056024 C-T Lin et al

Figure 2. Procedure for assessing feedback performance. Threshold (TH) is three times the mean alert RT. If RT exceeds TH, warning
feedback is delivered to the driver. The efficacy of a warning feedback action is assessed by a system that uses time–frequency transform,
feature extraction and a machine-learning classifier.

2.4. EEG data analysis

The continuous EEG signals were segmented into 115 s trials,
from 15 s preceding and to 100 s following the arousal
stimuli. The EEG signals that were considerably contaminated
by artifacts (muscle activity, blinks, eyes movement
and environmental noise) were manually eliminated to
minimize their influence on subsequent analysis. Independent
component analysis (ICA) (Bell and Sejnowski 1995, Makeig
et al 1997) implemented in EEGLAB (version 5.03b)
(Delorme and Makeig 2004) was then used to separate the
30-channel EEG signals into 30 independent components
(ICs), based on the assumption that the EEG signals at the
sensors were linear mixtures of the activations of distinct brain
sources whose time courses were statistically independent of
each other.

To find comparable ICs across subjects, components
obtained from various subjects were grouped into component
clusters based on their scalp maps, equivalent dipole locations
and baseline power spectra of component activations (Delorme
and Makeig 2004). Time courses of component activations
were then transferred to the frequency domain by fast Fourier
transforms (FFT). The resultant time–frequency estimates
consisted of 30 frequency bins from 2 to 30 Hz with a frequency
resolution around 0.25 Hz.

2.5. EEG pattern recognition in system for assessing
feedback efficacy

As shown in the previous study (Lin et al 2010), auditory
feedback does not always arouse subjects in a simulated
driving task. An analogy to this situation is that some people
use more than one alarm clock to wake themselves, but
the alarm is still sometimes ineffective even if they physically
have to turn the alarm off. The most important issue is whether
the brain is awake/alert or not. This study proposes a feedback

efficacy assessment system that automatically evaluates the
changes in subjects’ EEG patterns following the delivery of
arousing warning signals. Feedback-induced EEG spectral
features were input to machine-learning classifiers to detect
ineffective warning feedback, enabling an additional warning
signal to be repeatedly delivered to the subjects until an
effective EEG signature (the spectral suppression in the theta-
and alpha-bands of the bilateral occipital component) was
identified (Lin et al 2010, Jung et al 2010).

Across all 11 subjects, the total number of trials with
warnings was 155, of which 30 trials were referred to as
having an ‘ineffective warning’ and 125 trials were referred
to as having an ‘effective warning’ according to the above-
mentioned criteria. The log spectra of component activations
following the onsets of arousing signals were extracted (see
section 3.2) as features for assessing the efficacy of the
arousing feedback. Figure 2 shows the signal-processing
pipeline of the feedback efficacy assessment system. If the
system detects that the warning is not effective, the warning
signals are delivered to users repeatedly.

The IC activities in each trial were first transformed into
time–frequency data (EEG power spectrum in figure 4) using
FFTs with 4 s moving windows, advancing in intervals of 0.7 s,
which approximately equaled the mean short-RTs (alert RTs)
across all subjects. Then, the maximum (dB) power across 17
frequencies bins (4–12 Hz, 0.5 Hz resolution) was selected as
the power at each time point. This procedure resulted in 20
estimates per trial of log EEG power immediately following
the onsets of arousing signals. Several methods of feature
extraction, including principal component analysis (PCA),
linear discriminant analysis (LDA) and orthogonal locality-
preserving projection (OLPP), were then used to extract
the informative features from the 20-dimensional data, to
estimate the efficacy of the arousing feedback. Finally, three
widely-used classifiers—the support vector machine (SVM)
(Chang and Lin 2001), the Gaussian maximum likelihood
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Figure 3. Comparison of RTs following lane-departure events with
and without the delivery of auditory feedback. The black horizontal
dashed line at the CT and CT+1 represents the feedback onset
(three times the mean reaction time). The traces represent the
cumulative percentage (y-axis) of the CTs and the CT+1 that are
sorted by normalized RTs (y-axis). The blue, red, and black traces
represent the sorted trials without a warning, with a warning, and
short-RT (alert), respectively. Figure 3 is adapted from figure 2(a) of
Lin et al (2010).

classifier (ML) (Hoffbeck and Landgrebe 1996) and the
k-nearest neighbor classifier (KNN) (Bay 1999)—were trained
with the input data and their classification performances were
compared. Furthermore, to avoid the confounding issue of
classifying unbalanced numbers of effective and ineffective
trial samples and small sample size, a bootstrap cross-
validation method (Fu et al 2005) was performed to bootstrap
datasets with replacements from all trials, in which each
bootstrap subset had equal numbers (30 for each bootstrap
set of effective and ineffective trials) of samples in every class.
For each bootstrapped dataset, five-fold cross-validation was
utilized to estimate classification accuracies. This procedure
was repeated 30 times.

2.6. Statistical analysis

The RT and EEG power were not normally distributed, so
nonparametric statistical tests were performed to analyze
the data. Bootstrapping (EEGLAB toolbox, University of
California, San Diego) was used to test the statistical
significance of changes in the EEG power in selected frequency
bins from 2 to 30 Hz (with a frequency resolution of 2.5 Hz).
The EEG spectra were also normalized by dividing the spectral
power by the standard deviation of the spectral distribution.
To obtain group statistics, the intrinsic inter-subject RT
differences were normalized by dividing RTs by the mean
RT. The Wilcoxon rank sum test (Matlab statistical toolbox,
Mathworks) was performed to identify significant differences
among combinations of feature extractions and classifiers for
assessing the efficacy of the feedback. The accuracies are
presented as mean ± standard deviation (SD).

3. Results

3.1. Effects of arousing warning signals

Figure 3 shows the comparison of the RTs between trials with
and without the arousing feedback. In both CT (left panel),
and CT+1 (right panel), the RTs in the trials with the warning
signal (red traces) were significantly shorter than those in
the trials without warning signals (blue traces). However, as
shown, in some (∼20%) of the CT+1 trials with the warning
signal (red trace) RTs still exceeded three times the normalized
RT. This result reveals that the arousing feedback was not
effective in all of the trials, and the RT of those trials in which
the signals were ineffective was as long as that in the trials
without feedback, even longer.

3.2. Effects of feedback on brain activities

The left panel of figure 4 compares the baseline power spectra
of bilateral occipital components of the long-RT CTs (red,
light blue, and blue traces) with that of the short-RT CTs
(black traces), where the power spectra are calculated from
the component activities recorded prior to the deviation onset.
Consistently with previous findings (Makeig and Inlow 1993,
Campagne et al 2004, Makeig and Jung 1996, Jung et al
1997, Lal and Craig 2002, Horne and Baulk 2004, Pastor
et al 2006, Huang et al 2008, 2009, Jap et al 2011), the power
spectra exhibited tonic increases in the theta (4–7 Hz), alpha
(8–12 Hz), and beta (13–30 Hz) bands in long-RT trials. The
right panel of figure 4 compares the baseline spectra of the
component activities in the trials immediately following an
ineffective warning (light blue trace), effective warning trials
(red trace) and no warning (blue trace). The spectra of the trials
with effective warning were significantly lower than those
of the trials without warning and with ineffective warning
(bootstrap significance test, size = 5000, EEGLAB toolbox,
UCSD, p < 0.01), suggesting that the auditory warning signals
could induce a spectral decrease in the power baselines.
The statistically significant spectral differences were most
prominent in the theta and alpha bands. Note that the spectra
of the ineffective trials (light blue trace) were similar to those
trials without a warning (blue trace).

Figure 5 shows time courses of the feedback-induced
alpha- (upper panel) and theta-band (lower panel) spectral
changes in the bilateral occipital area for trials following
ineffective warning (light blue trace), effective warning trials
(red trace) and no warning (blue trace), compared to those of
the short-RT trials. Before the feedback/response, the theta-
and alpha-power baselines of the long-RT trials (blue, red
and light blue traces) were considerably higher than those of
the short-RT (alert) trials. After the feedback/response onset,
the alpha- and theta-power abruptly decreased by over 5 and
10 dB, respectively. Following the responses of the subjects,
the spectra of ineffective (blue trace) and non-feedback (dark
blue) trials rapidly rose from the alert baseline to the drowsy
level in 5–10 s. The EEG power of effective trials, however,
remained low for ∼40 s. The green horizontal lines mark the
time points when the difference between the spectra of trials
with effective warning and those of trials without warning
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Figure 4. Component spectra of trials with an effective warning, with an ineffective warning and without a warning and those of the short-RT
(alert) trials. The spectra were calculated from the time series of the bilateral occipital components separated by ICA. The black traces
represent the spectra of the alert trials. A CT is a trial with an RT that exceeds three times the mean RT. Warning feedback is delivered only
in a CT. The red, light blue and blue traces are the component spectra of trials with an effective warning, with an ineffective warning and
without a warning, respectively. For CT+1, the blue horizontal line marks the frequencies at which the spectral differences between the trials
without a warning and with an effective warning were statistically significant (bootstrap significance test, size = 5000, EEGLAB toolbox,
UCSD, p < 0.01). The red horizontal line marks the frequencies at which the spectral differences between the trials with an ineffective
warning and with an effective warning were statistically significant (bootstrap significance test, size = 5000, EEGLAB toolbox, UCSD,
p < 0.01). (Notably, the spectra in this figure were calculated from the EEG data that were recorded 3 s before the onset of land deviation.)

Table 1. The accuracies of estimating efficacy of feedback using
different feature extraction methods and classifiersa.

Feature extraction

Classifier None PCA LDA OLPP

ML 61.5 ± 6.4 77.8 ± 5.4 77.4 ± 5.2 69.6 ± 5.7
KNN 71.9 ± 6.1 74.6 ± 5.3 73.8 ± 4.9 75.8 ± 5.4
SVM 73.7 ± 5.4 76.1 ± 5.4 76.5 ± 4.5 71.7 ± 5.5

a All accuracies are shown as (mean ± standard deviation) for all
trials.

was statistically significant (bootstrap significance test, size
= 5000, EEGLAB toolbox, UCSD, p < 0.01). The spectral
difference between the trials without and with an effective
warning was statistically significant from 5 to 16 s in the
alpha band and from 5 to 18 s in the theta band (bootstrap
significance test, size = 5000, EEGLAB toolbox, UCSD,
p < 0.01). Furthermore, the spectral difference between the
trials with effective and ineffective warnings was statistically
significant from 5 to 14 s in both the alpha and theta bands.

3.3. Performance of the feedback efficacy assessment system

Table 1 and figure 6 show the results of classifying the trials
with effective and ineffective warnings. To avoid bias in
classifying unbalanced numbers of trial samples (125 effective
versus 30 ineffective), each training and testing dataset
comprised equal numbers of randomly selected effective
and ineffective trials. In table 1, most of the classification

Table 2. Confusion matrix of estimating efficacy of feedbacka.

Trials
Trial type

Overall
Classifier classified Effective Ineffective accuracyb (%)

ML Effective 682 218 77.8%
Ineffective 182 718

KNN Effective 664 236 74.6%
Ineffective 222 678

SVM Effective 640 260 76.1%
Ineffective 170 730

a The performance of classifiers through PCA feature extraction.
b The testing was repeated 30 times.

accuracies exceeded 70%, and some even exceeded 75%.
Feature extraction affected the performance of the ML
classifier significantly (no feature extraction: 61.5% versus
with feature extraction: 77.8%, 77.4% and 69.6%) (Wilcoxon
rank sum test, DF = 28, p < 0.05). Using KNN yielded
accuracies that all exceeded 70%. However, the performance
of KNN achieved by using the data without feature extraction
was significantly lower than that with feature extraction.
Overall, using PCA with an ML classifier achieved the best
performance (mean: 77.8% ± 5.4). Using the SVM as the
classifier generally yielded a robust performance, regardless
of whether feature extraction was used.

Table 2 shows the confusion matrices obtained by using
PCA with ML, KNN, and SVM, where the total number
of the testing sample was 900. The sensitivity of the ML
classifier (for effective-feedback trials) was 75.8% (correctly
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Figure 5. Averaged (across subjects, sessions and trials) spectra of
bilateral occipital components following long-RT trials in the
(upper) alpha and (lower) theta bands. All trials were aligned with
the response onset (vertical black solid line). The blue, red, light
blue, and black traces are the averaged spectral time courses of trials
without a warning, with an effective warning (RT < 2 × alert RT)
and with an ineffective warning (RT > 3 × alert RT) as well as
alert trials, respectively. The green horizontal lines mark the time
points when the differences between the spectra in trials with an
effective warning and without a warning were statistically
significant (bootstrap significance test, size = 5000, EEGLAB
toolbox, UCSD, p < 0.01). The brown horizontal lines mark the
time points when the spectral differences between trials with an
effective warning and those with an ineffective warning were
statistically significant (bootstrap significance test, size = 5000,
EEGLAB toolbox, UCSD, p < 0.01).

recognized samples: 682), and its specificity (for ineffective-
feedback trials) was 79.8% (correctly recognized samples:
718). The sensitivity of the KNN classifier (for effective-
feedback trials) was 73.8% (correctly recognized samples:
664), and its specificity (for ineffective-feedback trials) was
75.3% (correctly recognized samples: 678). The sensitivity of
the SVM classifier (for effective-feedback trials) was 71.1%
(correctly recognized samples: 640), and the specificity (for
ineffective-feedback trials) was 81.1% (correctly recognized
samples: 730).

4. Discussion

Many studies (Makeig and Inlow 1993, Campagne et al 2004,
Makeig and Jung 1996, Jung et al 1997, Lal and Craig
2002, Horne and Baulk 2004, Pastor et al 2006, Huang et al
2008, 2009, Jap et al 2011) have shown EEG correlates
of drowsiness (or fatigue) and explored the feasibility of
EEG-based drowsiness detection and monitoring in sustained-
attention tasks. Specifically, theta power increases as task
performance declines (Makeig et al 1993, 1995, 1997, Lal
and Craig 2002). Furthermore, Peiris et al (2006), Davidson
et al (2007) have reported that EEG power increases during
lapses in delta, theta, and alpha bands, although correlations
were moderate. These findings led to foundational insights into
neural correlates of drowsiness and behavioral lapses.

Our previous studies (Lin et al 2009, 2010, Jung
et al 2010) have also explored the use of tone-bursts to
arouse drowsy subjects in a simulated driving task, Lin
et al (2010) showed that, across subjects and sessions,
behavioral performance during drowsiness was accompanied
by characteristic spectral augmentation in the alpha- and theta-
band spectra of a bilateral occipital component. The findings
confirmed the relationship between theta and alpha power
and task performance in simulated driving tasks reported in
Lin et al (2010). This study extended our previous work
(Lin et al 2009, 2010, Jung et al 2010) by providing a
very detailed examination of brain dynamics and behavioral
performance following effective arousing feedback, compared
to that following ineffective feedback. Furthermore, this study
explored the feasibility of using EEG spectra and machine-
learning algorithms to assess the efficacy of arousing feedback.

The results of this study provide direct evidence that the
EEG spectra following effective feedback differ significantly
from those following ineffective feedback. The behavioral
results in this study indicate that auditory feedback stimulated
prompt compensatory responses, arousing the subjects such
that the RT in the following lane-departure trials were
significantly shorter than those of long-RT trials that were not
followed by auditory feedback, demonstrating the advantage of
using arousing feedback in a sustained-attention task (figure 3).

The RTs of trials following feedback were still longer that
those of short-RT trials, suggesting that the subjects were not
aroused to full alertness. This result may follow partially from
the difficulty of adapting the auditory neurons to pure tones
or pure tone-bursts (Ulanovsky et al 2004). Additionally, this
study showed that the RTs of some trials following feedback
were still more than three times longer than the mean alert
RT (threshold), revealing that the auditory feedback was not
always effective.

The baseline power of the bilateral occipital component
was significantly lower in short-RT trials than in long-RT (or
drowsiness) trials (figure 4, left panel) in the lane-keeping
driving task. The bilateral occipital component also exhibited a
considerable decrease in baseline power in the theta and alpha
bands following effective auditory feedback (figure 4, right
panel). The direction of spectral changes following auditory
feedback was expected to be toward the baseline power of the
short-RT trials (trials of alertness), suggesting that auditory
feedback assisted subjects in reducing their drowsiness, as
reflected in both behavioral performance and brain activities.
Furthermore, the (pre-stimulus) baseline theta- and alpha-band
power of the CT+1 trials that were followed by effective
feedback were significantly lower than those of the trials that
were followed by ineffective feedback (figure 4).

The spectral difference between the effective and
ineffective trials was statistically significant at 5–14 s in
the alpha and theta bands (figure 5, brown horizontal line)
following response onset. Furthermore, the spectra of trials
following auditory feedback and of trials without feedback
differed significantly at 4–16 s in the alpha band and at
4–40 s in the theta band (figure 5, green horizontal line).
The lack of a significant spectral difference at 0–5 s and at
16–23 s in the theta band might be attributed to phasic spectral
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(a)

(b)

Figure 6. Comparison of accuracies of estimates of efficacies of feedback for various combinations of feature extraction and classifiers
(Wilcoxon rank sum test, DF = 28, p < 0.05). (a) Comparison of performance of classifiers using different feature extractions.
(b) Comparison of performance of feature extractions using different classifiers.

suppression that is induced by lane-deviation and a subject’s
response onsets. The effects of effective auditory feedback on
the theta-band power suppression could last for at least 35 s.

In summary, spectral changes of the bilateral occipital
component cluster accompanied the behavioral results that
are shown in figure 3. The baseline power of trials following

8
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auditory feedback did not completely return to that of the
trials of alertness. Furthermore, auditory feedback might be
ineffective.

This study then demonstrated the feasibility of assessing
the efficacy of arousing feedback by monitoring spontaneous
EEG spectra with machine-learning algorithms. One might
argue, why not require subjects’ behavioral responses to ensure
the efficacy of the arousing feedback? As in the operation of
any alarm clock, subjects must physically stop the alarm from
buzzing. In our driving experiments, the auditory feedback
always agitated prompt compensatory responses from the
subjects. However, the subjects still failed to respond to
the next lane-deviation event in a timely fashion (which is
the condition that defines an ineffective trial). Thus, a more
reliable approach is to assess the efficacy of the feedback
and the level of alertness by directly measuring their brain
activities. Tables 1 and 2 present the performance of the
proposed feedback efficacy assessment system. Different
combinations of feature extraction methods and classifiers
would affect the performance and applicability of the system.
When no feature extraction is used in assessing feedback
efficacy, the accuracy of classification by ML was worse
than that by KNN and SVM. Feature extraction methods
(particularly PCA and LDA) considerably improved the
performance of ML. OLPP improved the performance of
KNN. The accuracies that were achieved using SVM and KNN
classifiers were all over 70% in any feature extraction, even
without feature extraction. For the SVM classifier, PCA and
LDA outperformed both OLPP and the method without feature
extraction.

Previous studies have demonstrated the feasibility of
using EEG to predict the possibility of lapses (Kecklund
and Akerstedt 1993, Jung and Makeig 1995, Davidson et al
2007, Peiris et al 2011). Combining the proposed methods
and the results of this study, a closed-loop lapse prediction
and management system might be constructed to continuously
assess the cognitive states of drivers by observing their EEG
changes. The system can deliver arousing warning signal
to a driver experiencing momentary cognitive lapses. Then,
feedback-induced EEG spectral features can be extracted
and fed into machine-learning classifiers to detect ineffective
warning feedback, and an additional warning, if needed, can
be delivered to the driver again.

However, a limitation at the present stage is the 14 s
window length of EEG used for accessing the efficacy of
arousing feedback, because the spectral difference between
the effective and ineffective trials were most prominent during
5–14 s in the alpha and theta band after the onsets of arousal
feedback. We are currently exploring an alternative stimulus
and EEG markers that can reduce the estimating time.

5. Conclusion

This study demonstrates that auditory feedback aroused
subjects such that the RTs in the following lane-departure trials
CT+1 were significantly shorter than those in trials without
auditory feedback. This study also shows that the EEG spectra
of trials following effective feedback differed significantly

from those of trials following ineffective feedback. This study
further proposes and demonstrates the feasibility of a feedback
efficacy assessment system that can estimate the efficacy of
arousing feedback by monitoring the changes in EEG spectra
following such feedback.
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