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This paper presents an approach to recognize jump patterns in human moving trajectory, differentiating
jump tracks from planar moving tracks. Since human moving trajectory is one of the most informative
representations for content understanding and event detection, trajectory-based video analysis has been
gaining popularity. However, a jump action typically leads to violent change in human moving trajectory,
since the person suddenly leaves the original plane on which he/she has been moving. The abnormal
tracks of the trajectory would influence the performance of trajectory-based video analysis. Hence, differ-
entiating jump tracks from planar moving tracks is of vital importance, not to mention that jump actions
typically imply significant events, especially in sports games. In this paper, volleyball videos are used as
case study to demonstrate the effectiveness of our proposed jump pattern recognition approach. We
derive player trajectory by head tracking, analyze the movement of each player, and recognize potential
jump tracks in player trajectories based on two important characteristics: (1) jumps cause pulse-like
tracks in the trajectory and (2) the extensions of such tracks go through the vanishing point of vertical
lines in the scenes. Finally, the jump positions/heights are estimated, in addition to the planar moving
trajectory of each player on the court ground. The experiments show that satisfactory results can be

obtained with the proposed recognition scheme.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Motivation

The rapid advance in video production technology inspires
manifold research issues, including content-based media analysis
[1,2], copyright protection [3,4], video coding [5], etc. Especially,
the proliferation of digital videos necessitates the development of
automatic systems and tools for sematic video content under-
standing, analysis, and retrieval. Most of the traditional approaches
rely on low-level features. However, humans interpret video in
terms of semantics rather than low-level features. The demand
for automatic video understanding and interpretation requires
the mid-level representations mapping from low-level features to
high-level semantics, such as shot class, camera motion pattern,
color layout, object shape and object trajectory [1,2,6,7]. Object tra-
jectory is one of the most informative representations which are
frequently used by humans to analyze events. Hence, trajectory-
based video analysis [8-14] has been gaining popularity. In human
moving trajectory, a jump action typically leads to a violent change
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since the person suddenly leaves the original plane on which he/
she has been moving. The abnormal tracks of the trajectory are
likely to influence the trajectory-based video analysis. Hence, dif-
ferentiating jump tracks from planar moving tracks is of vital
importance. Furthermore, jump actions typically imply significant
events, especially in sports games. For example, jump is related
to attack—the most effective way to score in volleyball. As an
important multimedia content, sports video has attracted consid-
erable research efforts due to commercial benefits, and demands
of entertaining functionality from the audience [6,7,12-24]. While
some approaches of event detection and tactic analysis in sports vi-
deo have been developed based on player trajectory, the situation
of player jumping has rarely been considered in the literature.
Hence, we are motivated to recognize jump patterns in human
moving trajectory so as to differentiate jump tracks from planar
moving tracks.

1.2. Related works

Object trajectory is one of the most informative mid-level rep-
resentations which can bridge the semantic gap between low-level
features and high-level events. Piciarelli et al. [8] propose a trajec-
tory clustering method for video surveillance and monitoring sys-
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tems wherein the clusters are dynamic and built in real-time. The
obtained trajectory clusters can provide proper feedback to the
low-level tracking system and collect valuable information for
the high-level event analysis modules. Su et al. [9] link the local
motion vectors across consecutive video frames to form “motion
flows,” which are recorded and stored in a video database. For vi-
deo retrieval, noise motions are filtered out and the retrieval pro-
cess is triggered by query-by-sketch or query-by-example.
Assuming trajectory information is already available, Bashir et al.
[10] present an efficient motion trajectory-based indexing and re-
trieval mechanism for video sequences, aiming at solving the prob-
lem of trajectory representation when only partial trajectory
information is available due to occlusion. Hsieh et al. [11] propose
a hybrid motion-based video retrieval system through trajectory
matching. First, a curve fitting technique is used by a sketch-based
method to interpolate some missing data for the associated control
points so that the visual distance between a pair of trajectories can
be measured. Then, a string-based scheme is adopted to compare
the two trajectories according to their syntactic meanings. With
the help of the syntactic distance, a large number of inappropriate
candidates can be filtered out and the accuracy of video retrieval
can be greatly enhanced.

There has been an explosive growth in the research area of
sports video analysis due to the large audience base and the tre-
mendous commercial value. Zhu et al. [12] analyze the tempo-
ral-spatial interaction among the ball and the players to
construct a tactic representation, aggregate trajectory, based on
multiple trajectories in soccer video. The tactical patterns are ana-
lyzed using the tactic representations which include play region
and aggregate trajectory. Yu et al. [13,14] present a trajectory-
based algorithm for ball detection and tracking in soccer video.
The ball size is first estimated from reference objects (goalmouth
and ellipse) so that sequences of ball candidates can be detected
and connected into potential trajectories. Finally, the true trajec-
tory is extracted from these potential trajectories by a Kalman fil-
ter-based verification procedure. Analyzing tennis video, Han et al.
[15] detect the court net and court lines for camera calibration.
Players are tracked by the mean-shift method with their real-world
positions being used to classify events of service, net approach, and
baseline rally. Based on the camera modeling of [15], Han et al. fur-
ther propose a mixed-reality system in [16]. By changing the
parameters of the original camera, a variety of mixed-reality
scenes can be synthesized for scene visualization on mobile de-
vices. Luo et al. [17] interpret and analyze human motion in sports
video using video object extraction, semantic event modeling, and
the Dynamic Bayesian Network (DBN) for characterizing the spa-
tial-temporal nature of the semantic objects. Zhu et al. [18,19] rec-
ognize the player actions by considering the movement of body
parts for semantic and tactic analysis in tennis video. The affective
features which simulate a user’s emotion are extracted from player
actions and trajectories for highlight ranking. Our previous works
[20-22] perform physics-based ball tracking in sports video to pro-
vide trajectory-based game analysis, such as pitch evaluation in
baseball, set type recognition in volleyball, and shooting location
estimation in basketball.

To meet the sports-professional’s requirement, Hu et al. [23]
propose a robust camera calibration method for broadcast basket-
ball video, which extracts player trajectories by a CamShift-based
tracking method and maps player trajectories to the real-world
court model. The player position/trajectory information is further
utilized for professional-oriented applications, including wide-
open event detection, trajectory-based target clips retrieval, and
tactic inference. However, they do not mention the case of player
jumping, which often happens in basketball. Thomas et al. [24]
present a particle filter-based approach to track players in beach
volleyball using a single camera. With camera calibration, the

Fig. 1. Player tracking result of [24].

player trajectory can be mapped to real-world court plane. How-
ever, the players are off the ground plane during jumps, resulting
in incorrect estimation of the real-world player positions. Fig. 1
gives a sample result of [24]. One can see that a jump leads to an
abnormal track in the trajectory, which may be misinterpreted as
a movement of the player across the center line of the court.

1.3. System framework and contribution

With regard to the foregoing limitations of existing works, we
propose a video analysis system for jump pattern recognition in
this paper. Fig. 2 illustrates the flowchart of the proposed frame-
work, which contains three main components: camera calibration,
head tracking, and the core module—jump pattern recognition. Uti-
lizing a set of corresponding points, the camera calibration aims to
compute the geometric transformation between image positions
and real-world coordinates. Assuming that the information of each
player’s height is available, the “ground” trajectories of players
over frames are derived by mapping the tracked head positions
onto the court plane with the above transformation. Then, the
jump patterns in these trajectories are recognized, with the associ-
ated jump points/heights estimated. Since this paper mainly fo-
cuses on the approach of jump pattern recognition and validates
the effectiveness of the proposed method, we choose less complex
test sequences of 2-on-2 volleyball games where players rarely oc-
clude one another.

The main contributions of our work are summarized as follows.
Jump is an important and frequent action, especially in sports
games, but it is rarely mentioned and considered in the literature.
Hence, we put forward a jump pattern recognition framework
based on some important characteristics. First, it is well known
that the extensions of vertical lines in the video frame intersect
at a vanishing point. In this paper, we further identify that exten-
sions of pulse-like tracks caused by jumps in a player’s moving tra-
jectory will also go through the same vanishing point. To the best
of our knowledge, this characteristic has never been used or even
been mentioned in the literature. Thus, an effective jump track
detection approach based on this newly observed characteristic
is designed. Furthermore, considering the theorem of gravitational
acceleration and Newton’s Second Law of Motion, a physics-based
approach is proposed to validate the detected jump tracks for pos-
sible reduction of false alarms. In general, jump pattern recognition
can be extensively applied to many domains to detect jump-re-
lated events, such as attack in volleyball, dunk in basketball, etc.
On the other hand, the ability of differentiating the jump tracks
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Fig. 2. Flowchart of the proposed jump pattern recognition framework.

and the planar ones will greatly assist the existing as well as future
research on trajectory-based video analysis.

The rest of the paper is organized as follows. Section 2 describes
player trajectory computation, including head tracking and camera
calibration. Section 3 elaborates the processing steps of jump pat-
tern recognition and physics-based validation. In Section 4, exper-
imental results are reported and discussed. Finally, Section 5
concludes this paper. Note that in the following explanation of
each processing module, we use the word “trajectory” to designate
the linked positions of a moving object (a person), to show the
complete movement, and the word “track” to designate a part of
a trajectory. Jump tracks indicate the parts of a trajectory where
the person jumps, and moving tracks are for the remaining planar
movements.

2. Player trajectory computation

In this section, we produce player trajectories via head tracking
wherein the skin and hair colors are used as features for head posi-
tion adjustment. The trajectories are then mapped onto the real-
world court plane by homographic transformation so as to facili-
tate trajectory-based event detection.

2.1. Head tracking

Owing to its effectiveness, the background subtraction method
[25] is adopted for foreground object segmentation in our work,
with the processing steps shown in Fig. 3. The background model,
original frame and segmented foreground objects are presented in
Fig. 3(a)-(c), respectively. In most cases, it is reasonable to assume
that the top point of each foreground object is the player’s head po-
sition. However, a player’s hand might be higher than his/her head
when he/she makes a spike or tosses the ball. Hence, we include
another feature—“color” for head detection. We compute the dis-
tribution of “hair color” from numerous training head images,

which are pre-segmented manually, and set the range of hair color.
The foreground pixels of which the colors are not within the hair-
color range are discarded. Then, we can take the top hair-colored
point of each foreground object as the head position. Fig. 3(d)
shows the obtained hair-colored pixels from Fig. 3(c), and (e) pre-
sents the result of head detection, where red rectangles indicate
the detected head positions.

The head position may not be detected accurately in some
cases, such as when a player is occluded by another player or if a
foreground object is not segmented correctly. To cope with such
problems, head positions in consecutive frames can be checked.
Consider the limitations of human kinematics. If the distance of
the head positions between two consecutive frames is greater than
a threshold, there must be some errors in the detected head posi-
tions and certain adjustment or correction process is required.

For head position adjustment, we use a 9 x 9 search window to
find the location near the head position in the previous frame such
that the window contains the most skin- and hair-colored pixels.
The range of skin color is set in the way similar to that for the hair
color. The setting for the hair and skin color ranges will be ex-
plained in detail in the experimental section. An example is shown
in Fig. 4. Fig. 4(a) and (b) are two consecutive video frames, and the
current head position of the player indicated by an arrow in
Fig. 4(b) is mis-detected due to the incorrect player segmentation.
The red point in Fig. 4(c) is the player’s head position in the previ-
ous frame and the green rectangle indicates the location of the
search window containing the most skin- and hair-colored pixels
(presented in white). The green point which is the top point of
the search window is then taken as the adjusted head position.
Fig. 4(d) shows that reasonable head position can thus be obtained.

2.2. Camera calibration

Camera calibration is an essential task to establish geometric
transformations for mapping the positions of the players in the vi-
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Fig. 3. Illustration of head detection. (a) Background model. (b) Original frame. (c) Segmented foreground objects. (d) Hair-colored pixels. (e) Result of head detection.

Fig. 4. Head position adjustment. (a) and (b) Consecutive video frames. (c) Search window for skin- and hair-colored pixels. (d) Adjusted head position (green rectangle). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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deo frames to the real-world coordinates or vice versa. Since the
volleyball court is planar, the mapping from a position
p=(x,y,1)" in the court model coordinate system to the image
coordinates p’ = (u,4,1)" can be described by a plane-to-plane map-
ping (a homography) p’ = Hp, where H is a 3 x 3 homography
transformation matrix [26], i.e.,

hoo  ho1  hox X
=| ho hi hi y (1)
hy ha hy 1

Since homogeneous coordinates are scale-invariant, we can re-
duce the degrees of freedom for the matrix H to only eight. To com-
pute the eight independent parameters, we need at least four pairs
of corresponding points—the points whose real world coordinates
and image coordinates are both known.

As illustrated in Fig. 5, we set four reference poles, which are
100 cm in height and perpendicular to the ground, in the court
for camera calibration. Taking the top and foot points of the refer-
ence poles as corresponding points, we compute the homography
transformation Hy between the image plane and the real-world
ground plane as well as the H;qp between the image plane and
the real-world plane at a height of 100 cm. Assuming that player
height information is available, now we can derive the homogra-
phy transformation H, between the image plane and the real-
world plane at the height of the player as a linear combination of
Hj and Hj 0. With Hp, the head positions tracked over consecutive
frames can be mapped onto the court plane to produce the moving
trajectory of the player.

-t =

3. Jump pattern recognition

In this section, we attempt to recognize jump patterns in the
player trajectory derived in the previous section and differentiate
jump tracks from other planar moving tracks. A physics-based val-
idation approach is also proposed to identify reasonable jump
tracks and filter out abnormal ones.

3.1. Observation

Consider the player location along a trajectory under the con-
stant height assumption. As a player is jumping above the ground
plane, the player seems to have a sudden shift in location in the
“planar” trajectory, as shown in Fig. 6. This phenomenon is likely
to cause troubles in trajectory-based event detection if the associ-
ated jump tracks are not differentiated from other planar moving
tracks.

RO \i’\\\\'Personal height plane
SO SNER T~
3 ~
N e S
b b
()

-~

= ~ Ground plane

e
Sudden shift

Fig. 6. Illustration of the sudden shift in location when the player jumps.

To investigate the characteristics of jump actions, a video clip of
a person walking counterclockwise in a room with jumps at five
locations is considered. Fig. 7(a) shows the initial frame of the vi-
deo. The reconstructed top-view image of the moving trajectory
is shown in Fig. 7(b), where red points indicate jump locations. It
can be seen that jumps cause pulse-like tracks in the trajectory.
An important characteristic of such tracks is that their extensions
intersect at the vanishing point of vertical lines in the scenes, which
is also the vertically projected camera location, as shown in
Fig. 7(c).

3.2. Jump track detection

Based on the foregoing observation, we adopt the distance from
the above mentioned vanishing point to each tracked player posi-
tion as the main feature for jump track detection. Fig. 8 illustrates
the schematic diagram of jump track detection.

In the proposed approach, for each calibrated player location
L(t), the distance d(t) to the vanishing point C is computed, as
shown in Fig. 8(a) and (b), where t represents the elapsed time.
For noise reduction, Gaussian smoothing is applied to d(t). Since
a jump typically causes a sudden increase followed by a sudden de-
crease in the distance from C to L(t), a peak in d(t) corresponds to a
possible jump. Thus, we search for zero-crossing points of d'(t)—
the first derivative of d(t), and locate peaks at the zero-crossing
points of “positive-to-negative.” Based on kinematics, a player
would squat slightly before and after a jump. Thus, to determine
the start and end points of a jump track, we locate the nearest val-
leys before and after each peak (termed V, and V,, respectively) by
finding the zero-crossing points of “negative-to-positive,” as
shown in Fig. 8(c).

Assume P, Vj, and V, are associated with time ¢, t,, and t,,
respectively. According to physics, rising and falling in a jump
should take the same time, i.e., t, — t, = t, — t,. However, in some
cases, the player may move away from the vanishing point before
a jump, which causes continuously increase in d(t) toward the peak
of a jump, as exemplified in Fig. 9(a) that the precedent valley

Geometric
ransformatio

Image plane

Ground plane

Fig. 5. Camera calibration using four reference poles.
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(vanishing point)
(b) (c) N

Fig. 7. lllustration of jump patterns. (a) Initial frame of a video clip of a person

walking counterclockwise in a room with jumps at five locations. (b) Moving

trajectory mapped on the ground plane. (c) Extensions of jump tracks and the
vanishing point.

point is located away from the jump track. Fig. 9(b) shows the
player trajectory with the red part indicating the detected jump
track. One can see that the track before the jump where the player
moves away from the vanishing point is mistakenly identified as a
part of the jump track due to the incorrect location of the valley
point Vj,.

To resolve the foregoing problem, we refine our approach of
finding the start and end points of a jump track, as illustrated in
Fig. 10(a). For a peak P, we find the nearest valley V;, e.g., at time
t, +At, and then we locate another feature point V, on the opposite
side of P, e.g., at time t, — At. The pattern “V; — P — V5" can be re-
garded as a jump candidate if the temporal distance At between P
and V; (or V,) is within a range [7q,72]. The determination of
[71,72] along with the physics-based jump pattern validation will
be presented in Section 3.4. Fig. 10(b) shows the rectified result
of jump track extraction, where we can see that the track before
the jump as the player moves away from the vanishing point is
no longer considered as a part of the jump track.

3.3. Jump point locating and jump height estimation

With the start and end points (V; and V5) of a jump track, we
can determine the “jump point”—the player location mapped onto
the ground plane when the player reaches the top during a jump.
Based on the symmetry of V; and V, (as mentioned in the previous
section), we connect V; and V, on the player trajectory and con-
sider the midpoint to be the jump point, as shown in Fig. 11.

On the other hand, the information of jump height is of vital
importance in semantic/tactic analysis of volleyball video since
the higher a player jumps, the better chance of scoring he/she
has. Fig. 12 presents the illustration of jump height estimation
based on the geometry, where A is the position of the camera pro-
jected onto the personal height plane, B is the jump point, C is the
camera location, and D is the peak point of the jump track. Since

distance d(t)

time t

(b)

: camera l(oc)ation (vanishing point) ‘
a

Search for zero crossings of d'(t)
d' (t): 1st derivative of d(t)
1. find the peak : zero crossing of positive-to-negative

P

Vo 2. find valleys: zero crossings of negative -to-positive

————>time t
1, b t, (c)

Fig. 8. Schematic diagram of jump track detection.
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(a) (b)

Fig. 9. Example of a player moving away from the vanishing point before a jump.
(a) Distance function d(t) and feature points P, V}, and V,. (b) Player trajectory,
where the red part indicates the extracted jump track. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

distance d(1)

time t

1,+At

(a)

Fig. 10. Illustration for refined approach of finding the start and end points of a
jump track. (a) Distance function d(t) and feature points P, V4, and V5. (b) Player
trajectory, where the red part indicates the extracted jump track. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

distance d(t)

Fig. 11. Example of jump point locating.

the 3D camera position and the player height are known, we can
calculate the height difference hc between the camera and a player.
Then, the jump height h; can be estimated by

jump height: h,

C (camera)

personal height plane

,,,,,,,, N -.ground plane

Fig. 12. Illustration of jump height estimation.

BD
hy = h, x 22 2
I x5 (2)

3.4. Physics-based jump pattern validation

The foregoing processing steps detect jump candidates via iden-
tification of pulse-like patterns in the player trajectory. However,
similar patterns which are not associated with jumps may also
be extracted. Hence, we propose a physics-based validation ap-
proach to filter out false candidates of jump tracks.

In theory, the relation between the jump height h and the time
duration of the player jumping in the air is based on the theorem of
gravitational acceleration and Newton’s Second Law of Motion:

_1

=3

g x At? 3)

where g is the acceleration of gravity, and At is the time duration
from the peak P to the nearest valley, V; or V>, (see Fig. 10). Initially,
we set the minimum jump height h,;;, = 20 cm, that is, it cannot be
regarded as a jump if the player leaves the ground at a distance of
no more than 20 cm. As far as is known, the greatest jump height of
a professional volleyball player is about 120 cm. So, we set the max-
imum jump height h;;,4, = 130 cm. By Eq. (3) we can derive the range
[t1,72] =[0.202,0.515] (in second), or approximately [6,16] (in
frame difference) to judge whether a “V; — P — V" pattern can be
a jump candidate. To meet the practical requirement and specific
user needs, our proposed system allows user to designate the range
of jump height, and accordingly the range [, 73].

For jump pattern validation, we compute the deviation E be-
tween the jump height h; estimated in the previous section and
the jump height h derived by the theorem of gravitational acceler-
ation, i.e.,

E=hy—h=h g x AP (@)

A jump candidate is deemed false if its deviation E is larger than
a threshold. With the aid of the physical characteristics, several
false jump candidates can be filtered out, which greatly enhances
the effectiveness of the proposed jump pattern recognition
scheme.

4. Experimental results and discussion

To evaluate the effectiveness of the proposed head tracking and
jump pattern recognition approaches, we conduct experiments on
the video data (MPEG-2, 640 x 488, 29.97 fps) of 2-on-2 volleyball
games played by the members of the school volleyball team of Na-
tional Chiao Tung University, Taiwan. Ten offensive clips (3559
frames in total) are manually selected to test the proposed meth-
ods. Our system is implemented in C++ with OpenCV libraries
[27], and run on a Dell notebook (Intel Core i5-3317U CPU
@1.70 GHz, 8 GB RAM, Windows 7 64-bit OS).
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Fig. 13. Color histograms of (a) head images and (b) skin images.

Fig. 14. Result of head position detection with adjustment for frames #343, #349, #373, #384, #396, and #412 of a test clip, where red rectangle indicates the initially
detected head positions and green rectangles indicate the head positions after adjustment. (a) and (e) The head positions are detected correctly without adjustment. (b)-(d)
and (f) The two players on the left interfere with each other but reasonable head positions can be obtained through the process of head position adjustment. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1. Parameter setting

For player trajectory computation, the hair and skin colors are
used as features. The ranges of hair and skin colors are determined
statistically. To obtain the color distribution of the hairs (skins) in
video frames, 50 hair (skin) images are segmented manually from
various videos to produce the color histograms in RGB, YCbCr, and
HSI color spaces, as shown in Fig. 13. Due to its superior ability to
discriminate the above color features, YCbCr color space is chosen.
Assuming that the hair color is black, the hair color range is set to
Y <50, which covers 99% of the pixels of the 50 hair images, as
shown in Fig. 13(a). For the skin color, peaks of Cb and Cr histo-
grams in Fig. 13(b) are at 108 and 152, respectively. Centered at
the peaks, the Cb and Cr ranges of the skin color are determined
to cover 99% of the pixels of the 50 skin images, i.e., 90 < Cb < 126
and 133 < Cr < 171 in our experiments.

4.2. Results of head tracking and player trajectory computation

Since head positions may not be detected accurately in all
frames, head position adjustment is required. Fig. 14 demonstrates
the effect of head position adjustment, where red rectangles indi-
cate the detected head positions and green rectangles indicate

- = =« before adjustment
Accuracy (%)
100

Player 1

Clip#

the head positions after adjustment. In Fig. 14(a) and (e), all the
head positions are detected correctly. In Fig. 14(b)-(d) and (f),
occlusions occur between the two players on the left, resulting in
incorrect segmentation of foreground objects. Through the process
of head position adjustment, reasonable head positions, as indi-
cated by the green rectangles, can be obtained. In general, the color
of the player’s jersey may influence the result of head position
adjustment. For example, in Fig. 14(b), (c) and (f), the black jersey,
being close to the hair region in color, results in some deviation in
the head positions after adjustment.

For performance evaluation, an experienced volleyball player is
asked to manually check the head tracking results (on the basis of
hit and miss) of each frame in the test video clips. A hit or a miss
means the head position of a player is detected correctly or
incorrectly, respectively, in a frame, and the accuracy is defined
by Eq. (5).

#hit

Statistics of the accuracy of the proposed head tracking and
adjustment algorithm for two players are shown in Fig. 15 for a to-
tal of ten test clips, where the horizontal axis indicates the clip ID,
the dotted (solid) line shows the accuracy results obtained without

after adjustment
Accuracy (%) Player 2
100
90 v 0\ -
80 = e

70
60
50
40
30 -
20
10

1 2 3 4 5 7 8 9 10

6
Clip#

Fig. 15. Accuracy of the proposed head tracking and adjustment algorithm for test clips.

Player.2

Fig. 16. Visual comparison between the player trajectory produced by our method (in blue) and the manually labeled trajectory (in red) for test clip #1. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Performance of jump pattern recognition.

Player 1 Player 2 Overall

#total 10 11 21
#correct 9 10 19
#false 2 1 3
Precision (%) 81.82 90.91 86.36
Recall (%) 90.00 90.91 90.48

Estimated jump height= 71.9 cm
(Max jump height of this player~95 cm)

e e e et

distance

d(t)

Fig. 17. An example of jump pattern recognition.

(with) the process of head adjustment. Overall, the average accu-
racy rate (after adjustment) is about 90%. Fig. 16 presents the vi-
sual comparison between the player trajectories produced by our
method (in blue) and the manually labeled trajectories (in red)
for two players in test clip #1. Although the two trajectories do
not coincide completely, the main directions of motion of the tra-
jectories are matched very well.

(b)
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4.3. Results and discussion of jump pattern recognition

The performance of jump pattern recognition is presented in
Table 1, where the row “#total” indicates the total number of
jumps in the video clips. The terms “#correct” and “#false” repre-
sent the numbers of correct recognitions and false alarms, respec-
tively. The precision and recall are defined by Eqs. (6) and (7).

o #correct
Precision = #correct + #false ®)
_ #correct
Recall = ~Ztotal (7)

The experiments show that our preliminary work of jump pat-
tern recognition achieves encouraging results on 2-on-2 volleyball
videos. The average precision and recall rates are up to 86.36% and
90.48%, respectively.

An example of jump pattern recognition is illustrated in Fig. 17.
Fig. 17(a) presents the frames of V;, P and V>, which are also
marked along the distance curve shown in Fig. 17(b). It is easy to
see that V; and V; are the start and end points of a detected jump
track and P corresponds to the peak of the jump. Fig. 17(c) shows
the coordinates of V;, P and V, mapped on the real-world court
plane. In this example, V; and V;, correctly indicate the moments
at which the player is leaving the ground and then landing, respec-
tively, and P indicates the moment when the player is reaching the
highest point to hit the ball. More results of jump pattern recogni-
tion are demonstrated in Figs. 18-21.

Fig. 18(a) shows the player trajectory projected on the court
plane. The planar moving track of the player trajectory is produced
by cutting the jump track (from V; to V,) and connecting V; and V,
with a line segment, as presented in Fig. 18(b). Fig. 18(c) shows the
close-ups of the jumping player at the frames of V;, P and V5, as
well as the estimated jump height. Since we are unable to measure
the jump height of the player during the game, the max jump
height of the player is also provided as a reference. The max jump
height of the player is obtained via measuring the distance be-
tween the highest point the player can reach when he stands on
the ground and the point when he jump to the best of his ability.
In general, the jump height of the player during the game will be
smaller than his max jump height because instead of an upward
jump of maximum height, he should consider the ball motion
and jump with a particular height/direction when attempting to
hit the ball. That is the reason why the corresponding shift in loca-
tion does not always result in a sharp peak in the player trajectory.

Estimated jump height=85.7 cm
(Max jump height of this player~ 95 cm)

Fig. 18. Demonstration of jump pattern recognition. (a) Player trajectory projected on the court plane. (b) Planar moving trajectory without the jump track. (c) Close-ups of
the jumping player at the frames of Vi, P, and V5, as well as the estimated jump height.
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Fig. 19. Demonstration of jump pattern recognition. (a) Player trajectory projected on the court plane. (b) Planar moving trajectory without the jump track. (c) Close-ups of
the jumping player at the frames of Vy, P, and V5, as well as the estimated jump height.

Estimated jump height=71.9 cm
(Max jump height of this player~95 cm)

(@ )

Fig. 20. Demonstration of jump pattern recognition. (a) Player trajectory projected on the court plane. (b) Planar moving trajectory without the jump track. (c) Close-ups of
the jumping player at the frames of V;, P and V5, as well as the estimated jump height.

| Estimated jump height=89.9cm |
1(Max jump height of this player~87 cm)

(a) ) (b)

Fig. 21. Demonstration of jump pattern recognition. (a) Player trajectory projected on the court plane. (b) Planar moving trajectory without the jump track. (c) Close-ups of
the jumping player at the frames of V;, P, and V>, as well as the estimated jump height.
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correct head detection

Incorrect head detection

Resultant player
trajecto

Fig. 22. Illustration of an error case of jump pattern recognition. (a) The head of the jumping player is correctly detected. (b) The jumping player is merged with the opponent

player. (c) and (d) Head detection is incorrect. (e) The resultant player trajectory.

Although it may not be so accurate, the results of jump height esti-
mation in Figs. 18-20 are reasonable and acceptable. As for Fig. 21,
the estimated jump height of the player is more than his max jump
height, which is not correct.

Note that inaccurate player trajectory is the major cause of
incorrect results of jump pattern recognition and jump height esti-
mation, which may due to errors in camera calibration and image
feature extraction, etc. An error case is shown in Fig. 22. Initially,
the head of the jumping player is correctly detected, as shown in
Fig. 22(a). Later on, the player is merged with the opponent player
in Fig. 22(b) resulting in erroneous head detection and player tra-
jectory, as shown in Fig. 22(c), (d) and (e), respectively, causing the
failure in jump pattern recognition. In this paper, we choose a less
complex case of the 2-on-2 volleyball video, wherein player occlu-
sion rarely occurs, to test and verify our proposed jump pattern
recognition approach. For more complex cases with frequent
player occlusion, such as the 6-on-6 volleyball video and 5-on-5
basketball video, more robust player tracking, trajectory computa-
tion, and even shadow removal approaches may be required. We
will focus on such cases in our future work.

5. Conclusion

For video analysis and content understanding, human moving
trajectory is one of the most informative representations. However,
a jump action typically leads to a violent change in human moving
trajectory, since the person suddenly leaves the original plane on
which he/she has been moving. The abnormal changes in the tra-
jectory might cause errors in trajectory-based video analysis.
Hence, differentiating jump tracks from planar moving tracks is
indispensable. Moreover, jump actions typically imply significant
events, especially in sports games.

In this paper, we design a jump pattern recognition approach by
utilizing the important characteristic that extensions of pulse-like
tracks caused by jumps in the trajectory will go through a vanish-
ing point. Furthermore, we propose a physics-based validation,
which considers the relation between the jump height and the
time duration while the player is in the air, based on the theorem
of gravitational acceleration and Newton’s Second Law of Motion.
Many false jump candidates can be filtered out through this valida-
tion process. The proposed framework is experimented on 2-on-2
volleyball video clips and encouraging results of 86.36% and
90.48% are obtained for the precision and recall rates, respectively,
for jump pattern recognition. It is our belief that the recognized

jump pattern, the located jump position and the estimated jump
height will greatly assist the existing or even the oncoming re-
search on trajectory-based video analysis.
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