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Abstract
This paper studies the effective behavior of piezoelectric and piezomagnetic circular fibrous
composites with imperfect interfaces under longitudinal shear with in-plane electromagnetic
fields. Two kinds of imperfect contact are investigated: mechanically stiff and
dielectrically/magnetically highly conducting interfaces, and mechanically compliant and
dielectrically/magnetically weakly conducting interfaces. For the former case, the potential
field is continuous, while the normal component of the flux undergoes a discontinuity across
the interface. For the latter case, the normal component of the flux is continuous, while there is
a jump of potential field at such a contact. The classic work of Rayleigh (1892 Phil. Mag. 34
481–502) in a periodic conductive perfect composite is generalized to the current coupled
magnetoelectroelastic composites with imperfect interfaces. It is shown that the expression of
the effective property has exactly the same form as that in the ideal coupling composite.
Finally, this method is used to study BaTiO3–CoFe2O4 composites and provide insights into
enhancing the effective magnetoelectric voltage coefficient by properly choosing the interface.

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetoelectricity (ME) in multiferroic composites, which is
related to inducing an electric polarization by a magnetic field
or conversely inducing a magnetization by an electric field,
has been the topic of a number of theoretical and experimental
investigations in recent years. The coupling between the
electric and magnetic fields provides opportunities for
technological applications in sensing, actuation, and data
storage (Fiebig 2005, Ramesh and Spaldin 2007, Kumar et al
2009). A state of the art of recent development can be found
in Eerenstein et al (2006), Nan et al (2008), and Bichurin
et al (2010). The ME effect in the multiferroic composite is
achieved through the product property: an applied magnetic
field generates a strain in the ferromagnetic material, which in
turn induces a strain in the ferroelectric material, resulting in a
polarization. Each phase possesses either magnetostrictive or
piezoelectric properties, and the product ME effect is a new
property determined by the mechanical interaction between
the two phases. Therefore, the interface is critical in achieving
the giant magnetoelectricity.

In earlier investigation the interface between the
ferroelectric and ferromagnetic constituents was primarily
assumed to be perfect or ideal coupling (see, for instance,
Harshé et al 1993, Nan 1994, Benveniste 1995, Li and
Dunn 1998, Liu and Kuo 2012, Kuo and Bhattacharya
2013). However, measured ME coupling coefficients may
be notably discrepant with the above theories for both the
ME particulate composites and laminates. To explain the
discrepancies, an interface coupling parameter that defines the
degree to which the deformation of the piezoelectric layer
follows that of the magnetostrictive layer was introduced
by Bichurin et al (2003). Nan et al (2003) studied the
influence of the interfacial bonding on the ME effect in the
multiferroic PZT–Terfenol-D laminated composite by means
of the Green’s function approach. Chang and Carman (2007)
proposed a quasistatic theoretical model including shear lag
and demagnetization effect for predicting the ME effects in
an ME laminate. Wang and Pan (2007) used the complex
variable approach together with the Mori–Tanaka mean field
method to derive the effective moduli of multiferroic fibrous
composites. All the above studies were primarily concerned
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with the soft interface at which different tangential strains or
electromagnetic fields may occur. On the other hand, owing to
the minimization of components, the surface elasticity theory,
which describes the membrane-type stiff interface, has been
recently developed to account for the effects of surfaces and
interfaces at nanoscales (Benveniste and Miloh 2001, Sharma
et al 2003, Chen et al 2007). Pan et al (2009) generalized this
idea to the field of the multiferroic fibrous nanocomposite with
a size effect along its interface.

For the general problem of a transversely isotropic
multiferroic composite, Benveniste (1995) has shown that it
can be decomposed into two independent problems, plane
strain with transverse electromagnetic fields and anti-plane
shear with in-plane electromagnetic field. The anti-plane
shear deformation therefore serves as part of the contribution
that is present in a three-dimensional situation. Further,
this out-of-plane deformation mode has wide applications
in screw dislocation, in which the slip vector is parallel to
the dislocation line (Zheng et al 2007), and Mode III crack
problems, in which a shear stress acting parallel to the plane
of the crack and parallel to the crack front (Spyropoulos et al
2003, Wang and Mai 2004, Gao et al 2004, Hao and Liu 2006,
Guo and Lu 2010).

Motivated by these advances, and in a departure from
previous work, this paper develops a new formulation
to study the effective behavior of multiferroic fibrous
composites with imperfect interfaces under longitudinal
shear with in-plane electromagnetic fields. Both the fiber
and matrix are assumed to be transversely isotropic. Two
kinds of imperfect interface are considered: (i) mechanically
stiff and electromagnetically highly conducting, which is
a generalization of a membrane-type interface, and (ii)
mechanically compliant and electromagnetically weakly
conducting, which is a general extension of the shear lag
model. For the former case, the potentials (displacement,
electric potential and magnetic potential) are continuous
across the interface, while the normal component of flux
(stress, electric displacement, and magnetic flux) undergoes
a discontinuity which is proportional to the local surface
Laplacian of the potential field. For the latter case, the normal
fluxes are continuous, while the potentials are discontinuous
at such contact. The jumps in potential components are
further assumed to be proportional to their respective interface
flux components. These general imperfect contacts could
model various types of interfacial damage such as debonding,
sliding, cracking, or surface effects across the interface.

This paper is organized as follows. In section 2 the
basic formulation is introduced for a composite medium
made of piezoelectric and piezomagnetic phases arranged
in a microstructure consisting of parallel cylinders in a
matrix subjected to anti-plane shear deformation and in-plane
electromagnetic fields. Following Kuo and Bhattacharya
(2013), each field in each medium is expanded in a
series in section 3. Two kinds of imperfect contact are
studied: mechanically stiff and dielectrically/magnetically
highly conducting interfaces, and mechanically compliant
and dielectrically/magnetically weakly conducting interfaces.
Expressions for effective properties are obtained in section 4.

Numerical results are shown in section 5 using composites
of BaTiO3 and CoFe2O4. It is shown that the effective ME
effect can be substantially enhanced by properly choosing the
interface, providing an opportunity for controlling the ME
effect and other effective moduli of the composites.

2. Formulation

Consider a composite consisting of a periodic array of parallel
and separated prismatic circular cylinders with radius a.
Assume that the cylinders and the matrix are made of distinct
phases: transversely isotropic piezoelectric or piezomagnetic
materials. A Cartesian coordinate system is introduced with
the xy-axes in the plane of the cross-section and the z-axis
along the axes of the cylinders.

Now assume that the composite is subjected to anti-plane
shear strains ε̄zx, ε̄zy, in-plane electric fields Ēx, Ēy and
magnetic fields H̄x, H̄y at infinity. Thus the composite is in
a state of generalized anti-plane shear deformation and can be
described by Benveniste (1995)

ux = uy = 0, uz = w(x, y),

ϕ = ϕ(x, y),

ψ = ψ(x, y),

(2.1)

where ux, uy, and uz are the mechanical displacements along
the x-, y-, and z-axes, and ϕ and ψ are the electric and
magnetic potentials, respectively.

The constitutive laws of the kth phase for the non-
vanishing fields can be recast in the compact form as

Σ(k)
j = L(k)Z(k)j , j = x, y, (2.2)

where for ease of terminology k = ‘m’ (k = ‘i’) refers to the
matrix (inclusion) phase,

Σ(k)
j =

σzj

Dj

Bj


(k)

,

L(k) =

C44 e15 q15

e15 −κ11 −λ11

q15 −λ11 −µ11


(k)

,

Z(k)j =

 εzj

−Ej

−Hj


(k)

.

(2.3)

In equations (2.3), σzj and εzj are the shear stress and
strain; Dj and Ej are the electric displacement and electric
field vectors; Bj and Hj are the magnetic flux and magnetic
field vectors. The material constants C44, κ11, µ11, and λ11
are the elastic modulus, dielectric permittivity, magnetic
permeability, and magnetoelectric coefficient, while e15 and
q15 are the piezoelectric and piezomagnetic coefficients.

The shear strains εzx and εzy, in-plane dielectric fields Ex

and Ey, and in-plane magnetic fields Hx and Hy can be derived
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from the gradient of elastic displacement w, electric potential
ϕ, and magnetic potential ψ as follows:

Zj = Φ,j =

w,j
ϕ,j

ψ,j

 . (2.4)

Here the subscript j following a comma denotes the derivative
with respect to x or y. In the absence of body force, electric
charge density, and electric current density, the equilibrium
equations are given by

L∇2Φ = 0, (2.5)

where ∇2
= ∂2/∂x2

+ ∂2/∂y2 is the two-dimensional
Laplace operator for the variables x and y. Since L is a
nonsingular matrix, equation (2.5) can be decoupled into three
independent Laplace equations,

∇
2Φ = 0, (2.6)

in the interior of each phase. In other words, the three
fields—displacement, electrostatic potential and magneto-
static potential—are completely decoupled in the interior of
each phase.

3. Circular cylinders with imperfect interfaces

Consider a situation where the composite is subjected to a
macroscopically uniaxial loading along the positive x-axis

Φext = Z̄xx, (3.1)

where Z̄x = (ε̄zx,−Ēx,−H̄x)
t. Under the above generalized

anti-plane shear deformation, the potential field for the
circular cylinder and its surrounding matrix can be expanded
with respect to its center O in polar coordinates (r, θ) as (Kuo
and Bhattacharya 2013)

Φ(m)(x) = a0 +

∞∑
n=1

(anrn
+ bnr−n) cos nθ (3.2)

for the matrix, and

Φ(i)(x) = c0 +

∞∑
n=1

cnrn cos nθ (3.3)

for the inclusion, where

an =

Aw
n

Aϕn
Aψn

 , bn =

Bw
n

Bϕn
Bψn

 ,

cn =

Cw
n

Cϕn
Cψn

 .
(3.4)

The coefficients an,bn, and cn are unknown constants to
be determined from the interface and boundary conditions.
Note that the sine terms that would be present in a general
expansion are missing since a uniaxial loading along the
x-direction is imposed.

In order to treat the imperfect interface effect, we first
resort to a more general three-phase composite of a similar
distribution in which the inclusions possess a concentric
elastic coating of thickness t and material parameter Lc =

diag(C44,−κ11,−µ11) (Torquato and Rintoul 1995, Hashin
2001, Miloh and Benveniste 1999). By passing to the limit
where t → 0 and either L−1

c → 0 (mechanically stiff and
dielectrically/magnetically highly conducting interface) or
Lc → 0 (mechanically soft and dielectrically/magnetically
weakly conducting interface), we recover the distribution of
interest in which the interfacial property is characterized by
the parameters α and β given by

α = lim
t→0

L−1
c →0

(Lct) =

α
w 0 0

0 αϕ 0

0 0 αψ

 (3.5)

for the mechanically stiff and dielectrically/magnetically
highly conducting case, and

β = lim
t→0

Lc→0

(Lc/t) =

β
w 0 0

0 βϕ 0

0 0 βψ

 (3.6)

for the mechanically soft and dielectrically/magnetically
weakly conducting case.

Now consider that the interface is mechanically stiff
and dielectrically/magnetically highly conducting. It has been
shown that in this case, with α given by (3.5), the potential Φ
is continuous across the interface ∂V , while there is a jump in
the normal component of the current (Miloh and Benveniste
1999, Pan et al 2009). Specifically, one has

Σ(m)
j nj|∂V −Σ(i)

j nj|∂V = α∇
2
s Φ

(i)
|∂V ,

Φ(m)
|∂V = Φ(i)

|∂V ,
(3.7)

where∇2
s =

1
r2

∂2

∂θ2 is the surface Laplace operator, n is the unit
outward normal to the interface ∂V: r = a, and the repeated
index j denotes the summation over the components x and
y. The case where α = 0 corresponds to a perfect interface,
whereas α−1

= 0 describes an isoexpansion and equipotential
interface.

Using the orthogonality properties of trigonometric
functions, the interface conditions (3.7) provide

an = a−2nTnbn,

cn = a−2n(Tn + I)bn, n ≥ 1,
(3.8)

and a0 = c0, where an,bn, cn are defined in (3.4), I is the 3× 3
identity tensor, and

Tn = (L(m) − L(i) +Λn)
−1(L(m) + L(i) −Λn), (3.9)

Λn = a−1nα. (3.10)

When α = 0, the results reduce to the perfectly bonded case
(Kuo and Bhattacharya 2013).

Next, consider the interface is mechanically soft and
dielectrically/magnetically weakly conducting with interfacial
imperfection matrix β given by (3.6). It can be shown that in

3
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Figure 1. The predicted ME voltage coefficients for composites of BaTiO3 fibers in a CoFe2O4 matrix: (a) mechanically stiff imperfect
interfaces characterized by αw

= αw
0 aC(i)44, α

ϕ
= 0, αψ = 0 and (b) mechanically soft imperfect interfaces characterized by

βw
= βw

0 a/C(i)44, β
ϕ
= 0, βψ = 0. Here αw

0 and βw
0 are dimensionless parameters. In both (a) and (b), the solid line ‘–’ is based on the

presented solution for a hexagonal array. The dashed line ‘- -’ is from Pan et al (2009) for (a) and is from Wang and Pan (2007) for (b).

this case the potential Φ has a jump on the interface boundary
∂V , which is proportional to the normal component Σjnj of
the current, which is continuous across the interface (Miloh
and Benveniste 1999, Wang and Pan 2007),

Σ(m)
j nj|∂V = Σ(i)

j nj|∂V ,

Φ(m)
|∂V −Φ(i)

|∂V = βΣ
(i)
j nj|∂V .

(3.11)

The case where β = 0 corresponds to a perfectly bonded
interface, whereas β−1

= 0 describes a completely debonded
and electric charge-free (insulating) interface.

Analogous to (3.8), the interface conditions (3.11) give
constraints

an = a−2nTnbn,

cn = a−2n
[(I−Πn)Tn + I+Πn]bn, n ≥ 1,

(3.12)

and a0 = c0, where an,bn, cn are defined in (3.4), and

Tn = (L(m) − L(i) +Λn)
−1(L(m) + L(i) +Λn), (3.13)

Λn = a−1nL(i)βL(m), Πn = a−1nβL(m). (3.14)

Again, when β = 0, the equation recovers the previous
results of the ideal coupling contact.

Finally, imposing the periodicity conditions yields a
generalized Rayleigh identity

an +

∞∑
m=1

(
m+ n− 1

n

)
Sm+nbm = Z̄xδn,1, (3.15)

where δn,1 is the Kronecker delta, and the quantities

Sm =
∑
l 6=O

Re(Xl + iYl)
−m (3.16)

are the lattice sums characterizing the geometry of the
periodic structure, and Xl+ iYl is the center of the lth cylinder
when measured at the central point O. The index l runs over
all cylinders’ centers underlying the periodic array except the
central one. A list of non-zero normalized lattice sums for
square and hexagonal arrays can be found in Berman and
Greengard (1994).

Equations (3.15) and (3.8)1 or (3.12)1 constitute an
infinite set of linear algebraic equations. Upon appropriate
truncations of the expansion terms at some finite order m=M,
the expansion coefficients an,bn, and cn can be determined.

4. Effective moduli

Now we turn to obtain the effective moduli of the composite
from the solution of (3.15). The major distinction from
previous studies is that the inclusions have interfacial
imperfections. The effective material properties are defined in
terms of average fields,

〈Σj〉 ≡ L∗〈Zj〉, (4.1)

where the angular brackets denote the average over the
representative volume element V (or unit cell in the periodic
case), i.e.,

〈Σj〉 =
1
V

∫
V
Σj dV, 〈Zj〉 =

1
V

∫
V

Zj dV, (4.2)

and L∗ denotes the effective magnetoelectroelastic parameters
of the composite.

When (3.1) is prescribed, statistical homogeneity in the
fields Zx simply implies

〈Zx〉 = Z̄x. (4.3)

For a mechanically stiff and dielectrically/magnetically
highly conducting interface, the average flux, 〈Σx〉, is now
given by Miloh and Benveniste (1999)

〈Σx〉 =
1
V

[∫
Vm

Σ(m)
x dV +

∫
Vi

Σ(i)
x dV

+

∫
∂V
(Σ(m)

j −Σ(i)
j )njxds

]
, (4.4)

which contains an additional integral involving the normal
flux jump across the interface ∂V . Substituting (3.7)1, (4.2)2,
(4.3), and the constitutive relation (2.2) into the above

4
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Figure 2. The contour plots of the ME voltage coefficient α∗E,11 versus BaTiO3 volume fraction and different interface parameters for a
composite of BaTiO3 fibers in a CoFe2O4 matrix. The interface imperfections include (a) mechanically stiff interface (αw

= αw
0

aC(i)44, α
ϕ
= 0, αψ = 0), (b) electrically highly conducting interface (αw

= 0, αϕ = −αϕ0 aκ(i)11 , α
ψ
= 0), (c) magnetically highly conducting

interface (αw
= 0, αϕ = 0, αψ = −αψ0 aµ(i)11), (d) mechanically compliant interface (βw

= βw
0 a/C(i)44, β

ϕ
= 0, βψ = 0), (e) dielectrically

weakly conducting interface (βw
= 0, βϕ = −βϕ0 a/κ(i)11 , β

ψ
= 0), and (f) magnetically weakly conducting interface

(βw
= 0, βϕ = 0, βψ = −βψ0 a/µ(i)11). Here αw

0 , α
ϕ

0 , α
ψ

0 , β
w
0 , β

ϕ

0 , and βψ0 are dimensionless parameters.

equation yields

〈Σx〉 = L(m)
{

Z̄x −
1
V
(L(m))−1

[
(L(m) − L(i))

×

∫
∂V

xΦ(i)
,r ds− α

∫
∂V
1sΦ(i)xds

]}
. (4.5)

Here the subscript r following a comma denotes the derivative
with respect to the r variable. Using multipole expansions
of the potential fields in the inclusion (3.3) and recalling the
relation (3.8)2, one obtains

〈Σx〉 = L(m)(Z̄x − 2a−2f b1), (4.6)

where f is the volume fraction of the inclusion defined as
f = πa2/V for square arrays and is f = 2π

√
3

a2/V for hexagonal
arrays.

On the other hand, for a mechanically compliant and
dielectrically/magnetically weakly conducting interface, the
average intensity, 〈Zx〉, is now given by Benveniste and Miloh
(1986)

〈Zx〉 =
1
V

[∫
Vm

Φ(m)
,x dV +

∫
Vi

Φ(i)
,x dV

+

∫
∂V
(Φ(m)

−Φ(i))nx ds

]
, (4.7)
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which contains an additional integral involving the potential
jump across the interface ∂V . Substituting (3.11)2, (4.2)2,
(4.3), and the constitutive laws (2.2) into (4.2)1 yields

〈Σx〉 = L(m)
{

Z̄x −
1
V

[
β−1L(i)

∫
∂V

Φ(i)
,r nx ds

+ (I− (L(m))−1L(i))
∫
∂V

xΦ(i)
,r ds

]}
. (4.8)

Making use of (3.3) and (3.12)2, one obtains again (4.6).
Putting together (4.1) and (4.6) and noting that the

coefficients b1 depend linearly on the applied field Z̄x, a set
of equations is then obtained for the effective property L∗.
By applying different loading combinations between ε̄zx, Ēx
and H̄x, all the components of L∗ can be determined. Note
that, although the inclusions now have imperfect interfaces,
equation (4.6) has exactly the same form as that in the perfect
case (Kuo and Bhattacharya 2013), but here the coefficients
b1 incorporate the effect of the imperfect contact.

5. Results and discussion

The above framework is applied below to the
BaTiO3–CoFe2O4 (BTO–CFO) multiferroic composite,
which has been studied by other researchers. The hexagonal
array, and both BTO fibers in a CFO matrix and CFO
fibers in a BTO matrix, are considered. The independent
material constants of BTO are C44 = 43× 109 N m−2, e15 =

11.6 C m−2, κ11 = 11.2 × 10−9 C2 N−1 m−2, µ11 =

5 × 10−6 N s2 C−2; while those of CFO are C44 =

45.3 × 109 N m−2, q15 = 550 N A−1 m−1, κ11 = 0.08 ×
10−9 C2 N−1 m−2, µ11 = 590 × 10−6 N s2 C−2 (Wang and
Pan 2007). Here the xy-plane is the isotropic plane and the
unique axis is along the z-direction. Note that in both materials
ME coefficients are zero, i.e. λ11 = 0. A material property of
particular interest is the ME voltage coefficient

α∗E,11 = λ
∗

11/κ
∗

11, (5.1)

where λ∗11(κ
∗

11) is the effective ME coefficient (dielectric
permittivity) of the composite. It relates to the overall electric
field that is generated in the composite when it is subjected to
a magnetic field and is the figure of merit for magnetic field
sensors.

To check the correctness of the formulation, the ME
voltage coefficients for a composite of BTO fibers in a CFO
matrix is studied first. Figure 1 shows how the ME voltage
coefficient depends on the BTO volume fraction and different
mechanical interfacial imperfections. The order of truncation
is M = 4. Figure 1(a) is for mechanically stiff imperfect
interfaces characterized by αw

= αw
0 aC(i)44 and αϕ = 0, αψ = 0

while figure 1(b) is for mechanically soft imperfect interfaces
characterized by βw

= βw
0 a/C(i)44 and βϕ = 0, βψ = 0. Here

αw
0 and βw

0 are dimensionless parameters. The curves vary
nonlinearly with volume fraction, and they stop around f =
π/(2
√

3) when the inclusions begin to touch each other for
hexagonal arrays. The ME voltage coefficient decreases as
αw

0 (βw
0 ) increases. For comparisons, figure 1 also plots the

effective moduli with those predicted by Pan et al (2009) (for

the mechanically stiff case) and Wang and Pan (2007) (for
the mechanically soft case) who used the complex variable
approach and the Mori–Tanaka method. In the Mori–Tanaka
method, there is no upper limit on the volume fractions. Still,
the overall magnitudes and trends agree well between the
present periodic and their Mori–Tanaka method.

Figure 2 shows the ME voltage coefficient for a
composite of BTO fibers in a CFO matrix as a function of
inclusion volume fraction for different interfacial imperfec-
tions: (a) mechanically stiff interface (αw

= αw
0 aC(i)44, α

ϕ
=

0, αψ = 0), (b) electrically highly conducting interface
(αw
= 0, αϕ = −αϕ0 aκ(i)11 , α

ψ
= 0), (c) magnetically highly

conducting interface (αw
= 0, αϕ = 0, αψ = −αψ0 aµ(i)11),

(d) mechanically soft interface (βw
= βw

0 a/C(i)44, β
ϕ
=

0, βψ = 0), (e) dielectrically weakly conducting interface
(βw
= 0, βϕ = −βϕ0 a/κ(i)11 , β

ψ
= 0), (f) magnetically weakly

conducting interface (βw
= 0, βϕ = 0, βψ = −βψ0 a/µ(i)11).

Here αw
0 , α

ϕ
0 , α

ψ

0 , β
w
0 , β

ϕ
0 , and βψ0 are dimensionless param-

eters. It is observed that except for the magnetically highly
conducting interface (figure 2(c)), all the coupling constants
are reduced as compared to that for a perfect case. The ME
voltage constant in figure 2(c) is substantially enhanced as
α
ψ

0 increases. When αψ0 changes from 0 to 10, the maximum
value of 0.3240 V cm−1 Oe−1 at f = 0.35 is ten times higher
than 0.0306 V cm−1 Oe−1 (f = 0.35), which is the optimal
value of the perfectly bonded case. Further, the optimal value
of the BTO volume fraction, at which the maximum ME
voltage coefficients occurs, basically remains the same as αψ0
increases. Because αψ = −αψ0 aκ(i)11 is size dependent, this
provides an excellent chance for enhancing the ME effect in
nanocomposites using the size-dependent feature.

Now turn to the composite of CFO fibers in a BTO
matrix. Figure 3 shows the ME voltage coefficient as a
function of inclusion volume fraction for different interfacial
imperfections, and is the counterpart of figure 2. Similarly,
in most cases ((a), (c)–(f)) the ME coupling coefficient is
reduced as compared to that for a perfect contact. However,
for the composite with electrically highly conducting interface
(figure 3(b)), the ME effect is substantially enhanced as αϕ0
increases. When αϕ0 changes from 0 to 100, the maximum
value of 0.0842 V cm−1 Oe−1 at f = 0.90 is around 7.39 times
higher than 0.0114 V cm−1 Oe−1 (f = 0.9069), which is the
optimal value of the perfectly bonded contact. In addition,
the optimal value of the CFO volume fraction, at which the
maximum ME voltage coefficients occurs, decreases as αϕ0
increases. This also provides an alternative way to enhance
the magnetoelectricity.

Note that the numerical results above show that, for
a BTO–CFO composite, the mechanically compliant and
dielectrically/magnetically weakly conducting interface all
causes a decrease in the ME coupling.

6. Conclusions

A framework based on Rayleigh’s formalism is developed
for predicting the field distributions and effective properties

6
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Figure 3. The contour plots of the ME voltage coefficient α∗E,11 versus CoFe2O4 volume fraction and different interface parameters for a
composite of CoFe2O4 fibers in a BaTiO3 matrix. The interface imperfections include (a) mechanically stiff interface (αw

= αw
0

aC(i)44, α
ϕ
= 0, αψ = 0), (b) electrically highly conducting interface (αw

= 0, αϕ = −αϕ0 aκ(i)11 , α
ψ
= 0), (c) magnetically highly conducting

interface (αw
= 0, αϕ = 0, αψ = −αψ0 aµ(i)11), (d) mechanically compliant interface (βw

= βw
0 a/C(i)44, β

ϕ
= 0, βψ = 0), (e) dielectrically

weakly conducting interface (βw
= 0, βϕ = −βϕ0 a/κ(i)11 , β

ψ
= 0), and (f) magnetically weakly conducting interface

(βw
= 0, βϕ = 0, βψ = −βψ0 a/µ(i)11). Here αw

0 , α
ϕ

0 , α
ψ

0 , β
w
0 , β

ϕ

0 , and βψ0 are dimensionless parameters.

of the multiferroic composite consisting of regular arrays of
circular cylinders with imperfect interfaces under general-
ized anti-plane shear deformation. Both mechanically stiff
and dielectrically/magnetically highly conducting interfaces,
and mechanically compliant and dielectrically/magnetically
weakly conducting interfaces, are considered. Expressions
for the elastic, electric, and magnetic potentials for the
cylinders and the matrix are derived, and used to compute the
macroscopic behavior. It is shown that the effective properties
solely depend on one set of particular constants b1, and
the formula of the effective property has exactly the same
form as that in the perfectly bonded interface, although now
the inclusions are with interfacial imperfection. Finally, as
a practical example, the ME effects in BaTiO3–CoFe2O4

composites are presented and discussed. This example shows
the important difference between two kinds of imperfect
contact. The present theoretical framework provides a
general guideline and an alternative way for enhancing the
magnetoelectricity.
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