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Abstract
The comprehensive ρ(T) measurements and the consequent resistivity curvature mapping (RCM) on
Y0.7Ca0.3Ba2Cu3O7−δ thin films (doping levels p = 0.08–0.21) elucidate a phase diagram for the whole
doping range. This phase diagram further strengthens a view that the ‘normal’ phase in hole-doped
cuprates should be divided into a strong superconducting (SC) fluctuation phase and the ‘real’ normal
phase in which there is no significant influence of SC. The temperature of superconducting fluctuations
Tf as a function of p was calculated using the Ginzburg–Landau model for layered superconductors.
Comparisons between Tf and the Nernst temperature establish the origin of the Nernst effect as SC
fluctuations. Some of the details in ρ(T) cannot be fully understood by the existing models and call for a
more sophisticated theory of carrier dynamics in cuprates.

(Some figures may appear in colour only in the online journal)

1. Introduction

The investigation of high-Tc superconductors has provided a
long list of unexpected results on the path to elucidate the
mechanism of superconductivity. However, various physical
phenomena complicate this task: the unconventional d-wave
superconducting gap symmetry, quasi-2D nature of the Fermi
surface, pseudogap (PG) and the large thermal fluctuations
among others.

Recently an unexpectedly large Nernst signal (voltage
induced by the temperature gradient under magnetic fields)
well above Tc was observed in both low-Tc (but strongly
fluctuating) [1, 2] and high-Tc [3, 4] superconductors. The
Nernst effect is caused by the combination of at least three
factors: (1) the motion of vortices in the vortex-liquid regime,
(2) superconducting fluctuations in the normal state and (3) a
quasiparticle contribution. The disentanglement of (2) and (3)
was just achieved not long ago (see, e.g. [4]). More recently
the AC conductivity and diamagnetic signal have further
strengthened a view that the normal phase in these materials
should be divided qualitatively into a strong superconducting
(SC) fluctuations phase (extending up to a certain crossover
temperature Tf > Tc) and the ‘real’ normal phase in which

there is no significant influence of SC [5–8]. Tf most probably
is not related to other normal state crossover temperatures
like the PG temperature (T∗). The determination of Tf as
function of doping concentration p in various compounds
is therefore an important physical question. One wonders
whether more conventional transport experiments like the
DC conductivity measurement are as sensitive to Tf(p) as
they are to T∗(p). Recently, the onset temperatures Tf for
three different doping levels in YBCO single crystals were
identified by microwave absorption experiments with applied
magnetic fields [5]. These results demonstrated the opposite
tendency of Tf(p) compared to that of T∗(p), especially in the
deeply underdoped region (for example Tf = 80 K � T∗ ∼
270 K at p = 0.10). The high field resistivity studies in both
YBCO [9] and LSCO [10] have also suggested the opposite
trends of Tf(p) and T∗(p).

Unfortunately, the doping dependence of T∗(p) of
hole-doped cuprates has not been determined until now.
The PG line determined by a variety of techniques has
been generally classified into three types. In the first type,
the PG line T∗(p) intersects the superconducting dome at
about optimum doping po [11]; in the second type, T∗(p)
merges gradually with the superconducting transition line
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Figure 1. Temperature dependence of the in-plane resistivity
ρab(T) for Y0.7Ca0.3Ba2Cu3O7−δ thin films with various hole
concentration p = 0.08–0.21; downward (blue), T-linear (green)
and upward (red) curves at high temperature stand for underdoped,
optimally doped, and overdoped samples, respectively.

Tc(p) in the heavily overdoped regime [12]; most recently,
for the third type, investigations in Nd-LSCO, Eu-LSCO and
YBCO, [13–15] presented the T∗(p) somewhat between the
former two types. Therefore, the study of resistivity as a
function of temperature in the overdoped regime may shed
light on this issue as well as on the SC fluctuations.

In this paper, the temperature dependence of electric
resistivity of a series of Ca-doped YBCO (Y0.7Ca0.3Ba2Cu3
O7−δ) films has been measured over a wide range of
doping concentrations as shown in figure 1. Tf(p) was
determined using the phenomenological Ginzburg–Landau
(GL) fluctuation theory from conductivity data. The use of
the GL renormalized theory, instead of other models that
depend on the (still uncertain) microscopic mechanism, makes
it possible to capture the universal properties of thermal
fluctuations parameterized mostly by the Ginzburg number
Gi [16]. Finally, a comprehensive survey of the resistivity
curvature mapping (RCM) [17] was conducted for tracking
the PG line and other previously unresolved issues.

2. Sample preparation and characterization

In general, there are two methods to alter the hole
concentration on the CuO2 planes of YBCO. One is to take
away the oxygen from Cu–O chains in YBCO. The other

provides extra holes by replacing Y3+ with Ca2+, which
increases the hole concentration. In this study, the Ca was
doped into YBCO to provide a wider tunable range of the
hole concentration. A nominal Ca-doped YBCO target was
prepared following the solid-state reaction from high-purity
(4N) Y2O3, CuO, BaCO3 and CaCO3 powder. The Ca-doped
YBCO thin films were prepared on (100) SrTiO3 substrates
using pulsed laser deposition (PLD) at 760 ◦C with the
oxygen pressure of 0.3 Torr. The pulse energy density and
repetition rate of KrF excimer laser (λ = 248 nm) are
approximately 3 J cm−2 and 5 Hz, respectively. The thickness
of (001)-oriented Ca-doped YBCO thin films on SrTiO3(100)
substrates is approximately 3000 Å. After deposition, the
film was cooled in the chamber full of oxygen to room
temperature with the heater off. The crystallinity of the
film was analyzed by measuring the x-ray diffraction (XRD)
pattern. In order to ascertain the resistivity, the thin film was
further etched to a micro-bridge via photolithography. The
temperature-dependent resistivity ρ(T) of Ca-doped YBCO
films with various hole concentration p were systematically
measured by a standard four-probe method as shown in
figure 1. The hole concentration of these films was estimated
using the empirical formula Tc

Tc,max
= 1−82.6(p−0.16)2 [18],

where Tc,max = 84 K is the critical temperature of Ca-doped
YBCO at optimal doping. The oxygen content of a single
film can be repeatedly changed by controlling temperatures
and oxygen pressures inside the quartz tube surrounded by
the furnace [19]. After the annealing process, the quartz tube
was immediately quenched to room temperature to avoid
the long-range oxygen ordering phenomenon [20]. According
to the method as mentioned above, all the measurements
with various oxygen deficiencies from the overdoping to
underdoping regimes can be achieved on just a few Ca-doped
YBCO thin films. For this reason, any changes in the
superconducting properties will arise mainly from the effects
of the oxygen contents. Possible complications originating
from individual film structures are minimized.

3. Methods of analysis

3.1. The Ginzburg–Landau theory of thermal fluctuations

Here, we use the self-consistent Ginzburg–Landau (GL)
fluctuation theory recently developed to discuss the con-
ductivity [21]. The SC order parameter 9 contribution to
conductivity is given by the Kubo formula

σ =
1
T

∫
∞

0
〈J(0)J(t)〉 dt (1)

calculated within the Gaussian approximation. The supercur-
rent is

J =
ie∗h̄
2m∗

(
9∗∇9 −9∇9∗

)
. (2)

An equation of motion for 9 can be obtained from the
time-dependent Ginzburg–Landau equation [16, 21, 22],
which describes the relaxation process of the condensate:

0
∂9

∂t
= −

δF[9]

δ9∗
. (3)
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Here 0 is the temperature-dependent relaxation time, and F is
the GL free energy of the system.

The orthorhombic Ca-doped YBCO is anisotropic in the
crystallographic ab and c directions, and its superconducting
CuO2 layer is situated between insulating layers. In the
superconducting state, Josephson coupling is the dominant
mechanism for the maintenance of a global coherent
condensate among the superconducting layers. According
to the XRD measurement, the films are well aligned and
the crystallographic c-axis is perpendicular to the surface.
Therefore, the anisotropy of Ca-doped YBCO crystal is well
preserved. As was mentioned in the previous section, the
benefit of Ca-doped YBCO is that one can alter the hole
concentration in CuO2 planes without modifying significantly
the lattice structure of the Ca-doped YBCO system.

The Lawrence and Doniach (LD) model takes into ac-
count both the Josephson coupling between superconducting
layers and the effect of anisotropy, which provide a good
approximation and are useful in the study of Ca-doped
cuprates. The LD free energy is written as

F = Lz

N−1∑
`=0

∫
S

d2r

{
h̄2

2mab
|∇9`|

2

+
h̄2

2mcs2
|9` −9`+1|

2
+ αTcε |9`|

2
+
β

2
|9`|

4

}
.

(4)

Each effective superconducting layer normal to the z axis is
indexed by `. The effective coupling is controlled by s, the
distance between two successive superconducting layers, the
anisotropy of the sample is parameterized by γ ≡

√
mc/mab,

and Lz is the thickness of each superconducting layer. The α
and β are material parameters which can be obtained from
microscopic theory and ε = T/Tc−1. The current in our case
of a thin film is uniform. Expanding the order parameter in
a Fourier mode, 9`(x, y) =

∑
kψkeikxx+ikyy+ik``, where k` =

2π`s/L. Here, the thickness of the sample, L, is considered
large compared with both s and the coherence length. The
correlation function can be written as〈

Jy(0)Jy(t)
〉
=

(
e∗h̄

m∗

)2∑
k,k′

kyk′y
〈
|ψk(0)|2 |ψk′(t)|

2
〉
. (5)

Since ψk are statistically independent at different k′, only
terms with k′ = k contribute.

The effect of thermal fluctuations can be calculated
from the corresponding free energy f = −kBT log Z, where
the partition function Z =

∫
D9 exp (−F[9]/kBT). The

functional integral of the partition function, Z, is calculated by
Gaussian approximation [21–24]. If the effect of the thermal
fluctuations were small, one could take them into account
perturbatively, as Aslamazov–Larkin did in the framework
of the BCS theory. The perturbative calculation has been
done for the Lawrence–Doniach model and the results were
given in [16] and applied to magnetization in [25] (the fit
however was criticized in [26]). In high-Tc superconductors
one is limited to the GL approach. In regions where the lowest
Landau level approximation is valid, one generally performs

the self-consistent calculations (see for example the recent
magnetization fit [8]). At temperatures in our experiments
that are higher than Tc the perturbation theory does not
work as was explained in [27]. Therefore one has to use a
more complicated nonperturbative self-consistent calculation
as sketched below.

The propagator is

Pk(ε) =
〈
|9k|

2
〉
∝

1

k2 + εξ2
ab

(6)

where ξ2
ab = h̄2/2m∗abαTc is the coherence length in the

ab-plane at T = 0, and ε is the variational parameter. As we
will discuss shortly, ε renormalizes ε in the GL free energy
equation (4). By minimizing the free-energy with f respect to
ε we obtain a self-consistent gap equation and the first-order
expansion on interaction is

ε = ε + 4
∑

k

Pk(ε). (7)

Note that the summation diverges at large k and renormaliza-
tion is required. We introduce a cut-off in momentum space
to regularize this divergence (see details in [22]) and then
renormalize the quadratic term in equation (4). In terms of the
renormalized Tc rather than the ‘mean field’ one, Tf is related
by

Tf =
Tc

1−1t
;

1t = 4
∑

k

Pk(0) = 4
√

2Gi ln
(
πr +

√
π2r2 + 1

)
.

(8)

The dimensionless Ginzburg number characterizing the
fluctuations strength is defined by [16, 21, 22] Gi =
16π3κ4T2

c /8
3
0Hc2 and r = s/ξc, where κ = λ/ξ , and λ is the

penetration depth. The renormalized gap equation takes the
form

ε =
T

Tc
− 1+ 4

√
2Gi

T

Tc
ln
(

2
√
εr2 +

√
εr2 + 4

)
. (9)

Returning to the time-dependent correlator in equation (5),
this can be obtained from equation (3) by means of the
Wiener–Khintchine theorem:〈

ψ∗k (0)ψk(t)
〉
=

〈
|ψk|

2
〉

e−t/τk , (10)

where

τk =
2m∗ab0

h̄2

1

k2 + εξ−2 . (11)

Solving equation (9) and substituting into equation (10),
we make use of the Kubo formula equation (1) to find the
conductivity of the superconducting component

σs =
e2

16h̄Lz

T/Tc√
ε
(
ε2r2 + 4

) . (12)

This expression is used to fit the conductivity. This should be
complemented by the normal electrons contribution.

3
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3.2. Experimental determination of the fluctuation
conductance above Tc

In 2003, Hussey et al [28–30] proposed a phenomenological
scattering model based on the results of angle-dependent
magneto-resistance to qualitatively understand the transport
properties in Tl2Ba2Cu3O6+δ . The resistivity can be divided
into two components. One is the isotropic term with T2

behavior related to the electron–electron scattering, while the
other is the anisotropic linear term in T . The behavior of the
resistivity as a function of temperature can be controlled by
the competition between these two kinds of components. For
example, the effect of isotropic term is greater than that of
the anisotropic term while the doping level extends to the
overdoped regime, and ρ(T) presents the upward curvature
in the normal state.

In order to figure out the normal state ρ(T) in the
presence of superconducting fluctuations, as a first step, we
adopted an earlier approach of Ando et al [17] for the
boundary of superconducting fluctuations. This appears in the
blue region below the lower yellow short-dashed line as shown
in figure 2. Then a fitting range in T between the two yellow
lines (1T = 50 K) was chosen to determine the normal state
contribution. Following the model of Hussey et al [28–30], we
used a phenomenological quadratic resistivity fit:

ρe = ρ0 + a1T + a2T2. (13)

The usual Fermi liquid theory accounts the electron–electron
scattering which gives the ρ ∝ T2 dependence; the additional
T-linear dependence results from the non-Fermi liquid
scenario that accounts for the effect of anisotropic Fermi
surface. Combined with equation (12), the total conductivity
is then

σ = σs + 1/ρe. (14)

The total conductivity as a function of temperature
was explored within the temperature range of T/Tc =

1.05 ∼ 1.4–2.1 (i.e., from T/Tc = 1.05 to the lower yellow
short-dashed line as shown in figure 2). At temperatures closer
to Tc the abrupt increase in conductivity hinders our analyses.
The fitting results are discussed next.

4. Results and discussion

4.1. SC fluctuations and the Nernst effect

In figure 1, the blue curves represent underdoped samples
(p = 0.08, 0.085, 0.10, 0.105 and 0.145), the green curves are
optimally doped (p = 0.15, 0.16 and 0.17), and the red curves
are overdoped (p = 0.175, 0.185, 0.19, 0.195, 0.20 and 0.21)
samples. The doping level of a sample was determined from
its critical temperature [31] and covers a wide range from
underdoped to overdoped, which is well beyond the previous
studies of YBCO [17]. Above the critical temperature, the
resistivity of the optimally doped samples shows a linear
asymptotic behavior, the underdoped samples display an
upward curvature, and the overdoped samples exhibit a
downward curvature.

Figure 2. Phase diagram of ρab(T) for Y0.7Ca0.3Ba2Cu3O7−δ :
curvatures of in-plane resistivity, d2ρn

ab/dT2, as a function of T and
p. The resistivity of all 14 samples is normalized to 1 at T = 290 K.
The pseudogap temperature T∗(p) depicted by a light-blue dashed
line is a guide to the eyes, indicating a quantum critical point at
pc ∼ 0.21 (see text). Green open symbols denote the Tc of our
measured samples. The dome-shaped area below the green line is
the superconducting region. Two yellow short-dashed lines show the
fitting range for the normal state contribution in resistivity. The
orange points Tf denote the upper temperature of fluctuation region
estimated from the superconducting fluctuation theory, where the
orange dashed line is a guide to the eyes. The gray rectangular area
is the hopping region under the influence of the stripe phase effect.
The open symbols stand for the Nernst temperatures measured on
YBCO (square [36], triangles [37], diamond [38], pentagon [39]
and star [40]) and Ca-doped YBCO (hexagon [41]).

In this section, we analyze the effects of thermal
fluctuations in Ca-doped YBCO. Figure 3 shows the summary
of the SC fluctuation fitting on conductivity at different doping
levels, e.g. p= 0.10 (underdoped), 0.16 (optimally doped) and
0.20 (overdoped). In order to investigate the influence of SC
fluctuations in the normal state, two fitting parameters were
obtained from the fitting. The first is the Gi number and the
second is the anisotropy parameter r defined in section 3.1.
The Gi number describing the strength of fluctuations varies
from 1.2 × 10−4 (p = 0.10) to 5 × 10−5 (p = 0.20).
This is consistent with the previous values deduced from
the thermodynamic experiments (magnetization and specific
heat) [27, 32] and the melting line [33]. The Gi number and
anisotropy parameter as a function of p are shown in figure 4.
The anisotropy parameter has a minimum in the vicinity of
optimally doped regime, while the Gi number is the highest
at this regime. The values of Gi can also be inferred from the
recent detailed study [33] of YBCO at various doping levels
(including the vortex lattice melting). They are denoted as red
solid triangles in figure 4. Despite the fact that the materials
are slightly different (ours is the Ca-doped YBCO, unlike their
YBCO), the present values of Gi are of the same order of
magnitude as those derived in [33]. For small p, from 0.08
to 0.105, the Gi value fluctuates in our data but is consistent
with that in underdoped YBCO. In the overdoped regime, our
results indicate a decreasing Gi with p. In the p = 0.11–0.14
regime that we did not explore, the data in [33] suggest that
the Gi has a minimum. This non-monotonic p dependence

4
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Figure 3. The resistivity and conductivity of the in-plane Y0.7Ca0.3Ba2Cu3O7−δ for (a), (b) p = 0.10, (c), (d) p = 0.16 and (e), (f) p = 0.20
plotted as a function of temperatures normalized at Tc. The blue lines are numerical fits to ρ(T) = ρ0 + a1T + a2T2 with a fitting range as
mentioned in section 3.2. The red curves are the theoretical calculations using Ginzburg–Landau description of thermal fluctuations.

Figure 4. Doping dependences of Ginzburg number Gi (red squares: the present work; red triangles: derivations from [33]) and anisotropy
parameter r (blue circles) in (001)-oriented Y0.7Ca0.3Ba2Cu3O7−δ thin films. The red dashed line is a guide to the eyes. The red triangles
represent the values of Gi of YBCO derived from [33] for comparison. The gray area is the stripe phase regime.

of Gi is similar to that of Hc2 observed in [4] and [33],
and could manifest competing orders in the underdoped
regime. With those two parameters, one can estimate Tf
as the upper temperature limit of the fluctuation-dominated
region. Tf is defined as the temperature region where the
effective mass term in LD functional,

∑3
k=0Pk(0), is zero.

The momentum cut-off, 3 = 2π/ξab, is determined by the
coherence length. The thickness of superconducting layer
d = 3.4 Å was estimated from the neutron experiments
[34, 35]. The estimated fluctuation Tf dominated area above Tc
is marked with the orange circles in figure 2. In calculations,

we assumed that the normal current fluctuations are unaffected
by the superconducting fluctuations and we disregard any
vortex contribution.

Mean field temperature Tf can be compared with the
Nernst temperature from the Nernst signal measurements in
YBCO systems [36–41], marked by various open symbols. It
is seen that Tf and the Nernst temperature are located in the
same temperature range. In general, the Nernst temperature is
close to Tf except in the strong stripe phase regime. Therefore,
the present comparison suggests a SC fluctuation origin of the
Nernst effect. Furthermore, Tf is generally slightly higher than

5
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the Nernst temperature above which the Nernst signal is too
small to detect. Consequently, conductance is more sensitive
to SC fluctuations than the Nernst voltage is, and serves as a
more appropriate tool to study SC fluctuations.

4.2. YBCO phase diagram from RCM

Unlike a sharp resistive transition commonly observed in
the conventional superconductors, figure 1 demonstrates the
characteristic ρ–T curves in Ca-doped YBCO thin films in a
wide doping range. The critical temperature is determined by
the middle point transition of ρ(T). The critical temperatures
of our samples vary from ∼45 to 85 K. In the vicinity of
critical temperature the curvature of ρ(T) varies with the
doping. Here we present the analysis of the phase diagram
in cuprates following Ando et al [17] using the resistivity
curvature mapping (RCM) in Ca-doped YBCO.

In figure 2, the curvature (d2ρn
ab/dT2) of the resistivity

curves of Ca-doped YBCO are indicated by colors: the
red and blue colors correspond to the positive and the
negative curvatures, respectively. The white color represents
the curvature close to zero, thereby indicating the linearly
temperature-dependent resistivity near the optimally doped
regime. The part of phase diagram within the range of p =
0.11–0.14 is not presented due to the stripe phase effect [42]
which causes the error in the estimation of p. It is also noted
that charge order has been recently proven in YBCO. The
charge order has bi-axial structure which is different from the
uni-axial stripe order found in the La-based cuprates [43–46].
Using this conductance method alone cannot further explore
the extent of the superconducting state and the vicinity of Tc
where SC fluctuations cause an abrupt decrease in resistivity.
However, the tendency of T∗(p) (light-blue dashed line in
figure 2), if extrapolated into the superconducting dome,
seems to have a quantum critical point at pc ∼ 0.21. This
is consistent with the conclusions of Naqib et al [11]. Since
the extrapolation is qualitative, a higher pc ∼ 0.24 due to
the recent results by the Nernst effect and resistivity for
hole-doped cuprates cannot be excluded [12].

In [17], RCM was only applied to the underdoped
and optimally doped regimes. For the present study, RCM
was extended from the underdoped to overdoped regimes.
Therefore, figure 2 carries more information than the similar
plot did in [17]. For example, it was noted in [17] that,
departing from being linear in T, ρ(T) is more complicated
near room temperature at p ∼ 0.16. This anomaly was
attributed to the complications due to Cu–O chains [17].
The same phenomenon was also observed in the present
study near optimal doping. Nevertheless, while the Ca-doped
YBCO was optimally doped, it is also highly oxygen deficient.
A significant amount of oxygen in Cu–O chains must be
removed before the number of doped holes decreases down
to optimal doping (δ ∼ 0.4 in this case). This is in contrast to
the nearly full oxygenation case of YBCO at optimal doping
in [17]. Since the similar anomaly in ρ(T) that appeared at
p = 0.16 was observed for both the fully oxygenated and
highly empty Cu–O chains, it is likely associated with the

Figure 5. d2ρn
ab/dT2 for Y0.7Ca0.3Ba2Cu3O7−δ as a function of p

within the overdoped region at T = 180, 230 and 270 K,
respectively. The middle figure emphasizes the sign changes of
d2ρn

ab/dT2 versus hole concentration, different from the behaviors
of the other two.

intrinsic dynamics of holes on the CuO2 planes rather than
with the contributions from Cu–O chains.

ρ(T) is actually very complicated in the doping regime
of p = 0.15–0.20. Careful analysis reveals that ρ(T) is not a
simple curve with a positive curvature as previously thought.
The complications are especially manifested by the isolated
blue region in the upper right corner in figure 2. For overdoped
samples with p = 0.18–0.19, as temperature decreases from
room temperature, the curvature of ρ(T) changes sign
twice before becoming negative near Tc. Only for heavily
overdoped samples with p > 0.2 does the curvature of ρ(T)
remain always positive above Tc. For further quantitative
understanding of ρ(T), we used a model proposed by Hussey
et al [28–30] to analyze the temperature dependence of
d2ρn

ab/dT2 as a function of p at three temperatures (T = 180,
230 and 270 K) in overdoped samples with p = 0.16–0.21
(see figure 5). According to the model briefly outlined in
section 3.2, the curvature of ρ(T) is expected to increase
as p increases. This prediction is consistent with the results
of T = 180 and 270 K as shown in figures 5(a) and (c).
However, at T = 230 K, the curvature switches back and
forth between positive and negative, as shown in figure 5(b).
(This unexpected behavior was also observed in [47], but
might have been overlooked then.) Therefore, the complete
description of ρ(T) requires a more sophisticated model,
albeit that [28–30] might serve as a qualitative approximation.
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5. Summary

The comprehensive ρ(T) measurements on Ca-doped YBCO
thin films with various hole concentrations from underdoped
to overdoped regions (doping levels p = 0.08–0.21) reveal
fruitful physics. We have calculated the temperature of
superconducting fluctuations Tf as a function of hole
concentration p using the Ginzburg–Landau model for
layered superconductors [16, 21, 22]. Our descriptions of
the curvature d2ρn

ab/dT2 in the fluctuation-dominated region
(above the transition temperature, see the orange curve in
figure 2) provide the material parameters like the Ginzburg
number and the anisotropy parameter. These results can be
considered as evidence that SC fluctuations play a dominant
role in this temperature region far above Tc. Comparisons
between Tf and the Nernst temperature establish the origin of
the Nernst effect as SC fluctuations.

RCM provides a convenient way to analyze the doping-
dependent evolution of pseudogap in the whole doping range.
The doping dependence of the pseudogap points to the
existence of a quantum critical point at pc ∼ 0.21–0.24, in
agreement with recent results from resistivity and the Nernst
signal for Nd-LSCO and YBCO [11, 13–15]. Due to the de-
pleted Cu–O chains near optimal doping for Ca-doped YBCO,
the positive curvature of the resistivity appearing at high
temperatures likely manifests the intrinsic carrier dynamics
of CuO2 planes, instead of the effects of Cu–O chains. An
anomalous sign change of the ρ(T) curvature that appeared
near T ∼ 230 K for p ∼ 0.18 cannot be accounted for by
the argument based on the scattering model [28–30]. More
sophisticated theoretical models are needed to fully describe
the experimental results from the curvature analysis of ρ(T).
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