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Abstract: Two recurrence formulas for computing the noncentral beta distribution function and 
the density are proposed. The computations can be carried to any specified accuracy using the 
error bounds obtained. Corresponding algorithms are provided in a step-by-step form. A close 
relationship between the formulas allows joint evaluation of the distribution function and the 
density. The noncentral beta quantile can then be efficiently computed using Newton’s method. 
Its algorithm is also given in a step-by-step form. 
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1. Introduction 

Let F(x; a, b, A) and f(x; a, b, A) denote, respectively, the noncentral beta 
distribution function and the density with shape parameters a, b, and noncen- 
tral&y parameter A, and F(x; a, b) and f(x; a, b) the central beta distribution 
function and the density with shape parameters a and b. It is well known that 
(see, e.g., Tang, 1938) 

F(x; a, b, A) = 5 u,F(x; a +i, b), (1) 
i=o 

and 

f(x; a, b, A) = 2 z$f(x; a + i, b), (2) 
i=O 

whereO<x<l, u>O, b>O, h>O,and Ui=e -A/2(iA>‘/i!. The evaluations of 

F(x; a, b, A), f( x; a, b, A), and the quantile (percentage point) xP satisfying 
F(x,; a, b, A) =p for given p are always of interest. Lenth (1987) developed a 
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recursive algorithm for computing F(x; a, b, A), which was a modification of 
one given in Norton (1983). Given an accurate auxiliary routine for evaluating 
F(x; a, b), both of the algorithms summed up the terms in formula (1) until the 
corresponding error bounds were less than some desired accuracy. Singh and 
Relyea (1992) developed a computer program for computing F(x; a, b, h) 
where 2a and 2b are both integers based on the error bound given in Lenth 
(1987) and exact expressions for F(x; a, b). In this paper, an alternative series 
representation for F(x; a, b, A) in terms of the central beta densities is 
developed by using the method similar to that given in Ding (1992). It is easy to 
compute recursively for all real shape parameters without any auxiliary central 
beta routine. A simple recursive formula for evaluating f<x; a, b, A) is also 
given. The accuracy can be easily controlled by using the error bounds provided. 
The quantile X, is obtained by Newton’s method due to the advantage that the 
proposed computing formulas for F(x; a, b, A) and f(x; a, b, h) are closely 
related, and hence they can be evaluated jointly, rather than separately. 

2. Numerical methods 

Let T(a) (a > 0) denote the Gamma function. It is easy, using integration by 
parts, to show that (see also Abramowitz and Stegun, 1965, p. 944) 

qa + b) 
qx; a, b) = r(a + l)r(b)xa(l -x)” +qx; a + 1, b) 

=f(x; a + 1, b)(l -X)/(U +b) +F(x, a + 1, b). (3) 
The above relation implies that F(x; a + i, b) can be expressed in terms of a 
series given by 

F(x; a+i, b)= f 
(l-4 f( 

k=j (a + b + k) 
x,u+k+l,b)= et,, i=o, l,..., 

k=i 

(4) 
where the terms t, can be obtained recursively by 

r(u + b) 

to = r(u + l)T(b) 
x”(1 -x)b, 

ti=ti_,x(u+b+i-l)/(a+i), i21. (5) 
Substituting (4) into (11, we have a new series representation for F(x; a, b, A), 
which involves the central beta densities: 

F(x;a,b,A)= eui 
i=O 

(6) 
i=O 



C.G. Ding / Computation of the noncentral beta distribution 451 

where the terms are evaluated by 

u0 = u0 = e-*1*, 

Ui = Ui_I + ui, Ui = Ui_$/(2i), i2 1, (7) 

tiY i 2 0, as in (5). 

Considering equation (4) for i = 0, we have 

F(x; a, b) = 2 t, = yt, +qx; a +n, b), (8) 
k=O k=O 

where F(x; a + tz, b) = Cycntk is the error of truncation after II terms. It can 
be shown, by the mean-value theorem, that F(x; a + IZ, b) is less than or equal 
to t,_, x(a+b+n-l)/[(a+n)-(a+b+n)x] if u+n>(u+b+n)x. Let 
EF, be the error of truncation after II terms for the series for F(x; a, b, A) in 
(6). Since ui I 1 for all i 2 0, it follows that, if a + n > (a + b + n>x, 

EF,= &,+tist,,x(u+b+n-l),[(u+n)-(u+b+n)x]. (9) 
i=n 

Note that the error bound given above is a decreasing function of yt when 
a + y1> (a + b + n>x, and is a common one used to control the accuracy of 
evaluations of F(x; a, b, A) and F(x; a, b). The terms in (61, computed 
recursively through (71, can then be summed up until the error bound is not 
greater than a predetermined small number E. In fact, evaluation of F(x; a, b, 
A) through formula (6) requires no central beta routine. Computing the error 
bound is very easy because it relies only upon the factor t,_, of the last term of 
the truncated series Er:J ui ti. 

The noncentral beta density f(x; a, b, A) expressed in (2) is an infinite 
weighted sum of central beta densities. Its terms can be evaluated recursively, 
and are related to those of (6) as follows: 

f(x; a, b, A) = 2 uif(x; a + i, b) = 2 uisi, (10) 
i=O i=O 

where 

r(u + b) 

So = T(u)r(b)x 
a-‘(1 -X)b-l =ut,/x/(l -x), 

si=si_,x(u+b+i-l)/(u+i-l)=ti_,(u+b+i-1)/(1-x), i.21, 

(11) 

ui and ti, i 2 0, are those in (7). 

It is clear that, when a + II > (a + b + n>x, the sequence {sJ(i 2 n) is decreas- 
ing. Letting Ef, be the truncation error after IZ terms for the series in (lo), we 
have, when a + n > (a + b + 11)x, 

Ef,,= &+si< &,s,=s, =x,(1-uu,_i). (12) 
i=n i=n 
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Likewise, the above error bound is a decreasing function of IZ, and is used to 
control the accuracy of evaluation of f(x; a, b, A). It is also easy to compute 
since it relies only upon factors that are computed in the course of evaluating 
(10). 

Let G(x) = F(x; a, b, A) -p. The quantile xp is to be obtained by solving the 
equation G(x) = 0. Since computing formulas for F(x; a, b, A) and G’(x) =f(x; 
a, b, A) are closely related (the terms in (10) involve the factors ui same as those 
for evaluating (6) and the factors si whose computations can be based on t, in 
(7)), their evaluations can be combined. It is this property that makes Newton’s 
method for computing the root x, much more efficient because many redun- 
dant computations are avoided. The process is to repeat the iteration (see, e.g., 
Kennedy and Gentle, 1980, pp. 72-73; and Vandergraft, 1983, pp. 262-264) 

xj+l =xj- 
[F(x;; a, b, “) -P] 

f(xj; a, b, A) ’ 
j=o, 1 

‘***’ (13) 

until the relative absolute difference between two successive iterations is not 
greater than a specified accuracy 6, i.e., 1 x~+~ -xi I I SX~+~. Since G(0) = -p, 

G(1) = 1 -p, and G is strictly increasing in [0, 11, the solution xp of G(x) = 0 is 
unique. It is obvious that xp = 0 for p = 0 and x, = 1 for p = 1. No computation 
is needed for these cases. For 0 <p < 1, perform iterations with the starting 
value x0 = 0.5. Within each iteration, the condition that 0 <xj+r < 1 must be 
satisfied. If not, replace xj+r by ixj if it is nonpositive, and by +(xj + 1) if it is 
greater than or equal to 1. This modified rule is easy to implement, and the 
iterations should converge fast for most cases. Note that evaluations of 
F( x; a, b, A) and f(x; a, b, A) should be precise enough so that the accuracy of 
Newton’s solution can be warranted. Also, the number of iterations needs to be 
controlled. 

3. Algorithms 

Given an accurate routine for computing (the logarithm of) the Gamma 
function (see Pike and Hill, 1966; or Macleod, 1989) the formulas discussed in 
Section 2 lead to three simple algorithms for computing the noncentral beta 
distribution function, the density, and the quantile to any desired accuracy: 

Algorithm A (noncentrul beta distribution function). This algorithm computes the 
noncentral beta distribution function F(x; a, b, A) for given abscissa x, shape 
parameters a, b, and noncentrality parameter A. 

Al (specify the accuracy). Set EPS + E. (E denotes the desired accuracy, e.g., 
10-6.) 

A2 (initialize). Set n + 1, t + (T(u + b)/T(u + l)T(b))xa(l -xjb, u + e-“12, 
v +- u, CDF + vt. 

A3 (compare a + II, (ti + b + n)x). If a + it > (a + b + n)x, go to step A5. 
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A4 (update the term and then accumulate). Set u 6 uh/(2n), u + u + U, 
t + tx(a + b + II - l)/(a + n), CDF t CDF + vt, n + n + 1, and return to step 
A3. 

A5 (find the error bound and check for convergence). Set bound +- tx(a + b 
+ n - l)/((a + n) - (a + b + n)x). If bound I EPS, terminate the algorithm 
(CDF is the answer.) 

A6 (update the term and then accumulate). Set u + uh/(2n), u + u + u, 
t + &(a + b + n - l)/(u + n), CDF + CDF + ut, n +- n + 1, and return to step 
A5. 

Algorithm B (noncentral beta density). This algorithm computes the noncentral 
beta density f(x; a, b, A) for given abscissa x, shape parameters a, b, and 
noncentrality parameter A. 

Bl (specify the accuracy). Set EPS + E. (E denotes the desired accuracy, e.g., 
10-6.) 

B2 (initialize). Set II +- 1, s +- (T(u + b)/r(u)IYb))x”-‘(1 -xjb-‘, u + 
e-‘/=, v + u, PDF + us. 

B3 (compare a + it, (a + b + n>x). If a + it > (a + b + n)x, go to step B5. 
B4 (update the term and then accumulate). Set u + uA/(2n), u + u + u, 

s + sx(u + b + n - l)/(u + II - l), PDF + PDF + us, n + n + 1, and return to 
step B3. 

B5 (find the error bound and check for convergence). Set bound + sx(u + b 
+ n - l)(l - ~)/(a + II - 1). If bound I EPS, terminate the algorithm. (PDF is 
the answer.) 

B6 (update the term and then accumulate). Set u + uA/(2n), u + u + u, 
s + sx(u + b + II - l)/(u + II - 1), PDF + PDF + us, II + II + 1, and return to 
step B5. 

Algorithm C (noncentral beta quuntile). This algorithm computes the noncentral 
beta quantile xP such that F(x,; a, b, A) =p. 

Cl (specify the accuracy and the maximum number of Newton’s iterations). 
Set EPS + E, DELTA + 6, ITRMAx+ N,,. (E denotes the desired accuracy 
(e.g., 10m6) for computing F(x; a, b, A) and f(x; a, b, A), and 6 the desired 
accuracy (e.g., 10-4) for computing x,. N,, is an integer (e.g., 10) used to limit 
the number of Newton’s iterations.) 

C2 (set the constants). Set cOeff+- T(u + b)/T(u + l)T(b), u0 + e-“I’. 
C3 (loop on j, Newton’s iteration). First initialize x by setting x + 0.5. Then 

perform steps C4 through Cl0 for j = 1, 2,. . . , ITRiVZAX. (Steps C4 through Cl0 
constitute one iteration.) 

C4 (initialize within each iteration). Set it + 1, t + coeff*x”(l -x)~, s + 
at/x/(1 -x), u +- ug, v + u, CDF t vt, PDF + us. 

C5 (compare a + ~1, (a + b + n)x>. If a + II > (a + b + n)x, go to step C7. 
C6 (update the terms and then accumulate for both of F(x; a, b, A) and f(x; 

a, b, A)). Set u + uA/(2n), v + v + u, s + t(u + b + II - l)/(l -x), t + tx(u + 
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b + n - l>/(a + n), CDF + CDF + ut, PDF + PDF + us, n + n + 1, and return 
to step C5. 

C7 (find the corresponding error bounds). Set bound1 + tx(a + b + n - 

l>/((a + n) - (a + b + n>x), bound2 + t(a + b + n - l)(l - v)/(l -x). 
C8 (check for convergence). If bound1 5 EPS and bound2 I EPS, go to step 

ClO. 
C9 (update the terms and then accumulate for F(x; a, b, A) and/or f(x; a, 

b, A)). Set u 6 uh/(2n), u +u+u. If boundl<EPS, set s+sx(u+b+n- 
l)/(u+n-11, PDF+PDF+us, n+n+l, bound2+sx(u+b+n-Ml- 
~>/(a + n - l), and return to step C8; otherwise if bound2 I EPS, set t + tx(u 
+ b + n - l)/(u + n), CDF +CDF+ut, n+n+l, boundl+tx(u+b+n- 
l)/((u + n) - (a + b + n>x), and return to step C8; otherwise set s + t(a + b + 
n - l)/(l -x>, t + &(a + b + n - l>/(u + n>, CDF + CDF + vt, PDF +- PDF + 
us, n + n + 1, and return to step C7. 

Cl0 (find new x and check for convergence of Newton’s iterations). Set 
diff+ (CDF -p)/PDF. If x - diffs 0, set x + ix; otherwise if x - diff2 1, set 
x + $(_x + 1); otherwise set x +x - diff. If 1 diff 1 /x I DELTA, terminate the 
algorithm. (x is the answer.) 

Cl1 (output error message). Terminate the algorithm with the message “No 
convergence after iV,, iterations”. 

FORTRAN codes based on the above algorithms are available upon request. 
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