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a b s t r a c t

The state-dependent Riccati equation (SDRE) approach for stabilization of nonlinear affine systems was
recently reported to be effective in many practical applications; however, there is no guideline on the
construction of state-dependent coefficient (SDC) matrix when the SDRE solvability condition is violated,
which may result in the SDRE scheme being terminated. In this study, we present several easy checking
conditions so that the SDRE scheme can be successfully implemented. Additionally, when the presented
checking conditions are satisfied, the sets of all feasible SDC matrices and their structures are explicitly
depicted for the planar system.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the state-dependent Riccati equation (SDRE) ap-
proach for nonlinear system stabilization has attracted consider-
able attention (Bogdanov &Wan, 2007; Bracci, Innocenti, & Pollini,
2006; Çimen, 2010; Cloutier, D’Souza, & Mracek, 1996; Erdem
& Alleyne, 2004; Hammett, Hall, & Ridgely, 1998; Lam, Xin, &
Cloutier, 2012; Liang & Lin, 2011; Shamma & Cloutier, 2003; Sz-
naier, Cloutier, Hull, Jacques, & Mracek, 2000). The SDRE scheme
is known to include the following benefits (Çimen, 2010): (i) the
concept is intuitive and simple, and directly adopts the LQR de-
sign at every nonzero state; (ii) the design can directly affect sys-
tem performance with predictable results by adjusting the state
and the control weightings to specify the performance index (for
instance, the engineer may modulate the weighting of the sys-
tem state to speed up the response, although at the expense of in-
creased control effort); (iii) the scheme possesses an extra design
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degree of freedom arising from the non-unique state-dependent
coefficient (SDC) matrix representation of the nonlinear drift term,
which can be utilized to enhance controller performance; and (iv)
the approachpreserves the essential systemnonlinearities because
it does not truncate any nonlinear terms.Manypractical andmean-
ingful applications successfully performedby the SDREdesignhave
been reported (see Çimen, 2010 and the references therein). The
first solid theoretical contributions on SDRE control have been pro-
vided by Cloutier et al. (1996) andMracek and Cloutier (1998). The
current study attempts to provide further theoretical support of
the SDRE control strategy, as discussed in the recent survey by Çi-
men (2012), with rigorous mathematical proofs.

The SDRE design for nonlinear systems can be described as fol-
lows. Consider a class of nonlinear control systems and a quadratic-
like performance index as (1)–(2) below:

ẋ = f(x)+ B(x)u (1)

and J =
1
2


∞

0


xTQ (x)x + uTR(x)u


dt (2)

where x ∈ Rn and u ∈ Rp denote the system states and control
inputs, respectively, f(x) ∈ Rn, B(x) ∈ Rn×p, f(0) = 0,Q T (x) =

Q (x) ≥ 0, RT (x) = R(x) > 0,Q (x), R(x) ∈ Ck, k ≥ 1, and (·)T de-
notes the transpose of a vector or amatrix. Note that theweighting
matrices Q (x) and R(x) are in general state-dependent. The pro-
cedure of the SDRE scheme is summarized as the following three
steps (Çimen, 2010):
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(i) Factorize f(x) into the SDC matrix representation as f(x) =

A(x)x, where A(x) ∈ Rn×n.
(ii) Symbolically check the stabilizability of (A(x), B(x)) and the

observability (resp., detectability) of (A(x), C(x)) to ensure the
existence of a unique positive definite (resp., semi-definite)
solution of the following SDRE:

AT (x)P(x)+ P(x)A(x)+ Q (x)

−P(x)B(x)R−1(x)BT (x)P(x) = 0 (3)

where C(x) ∈ Rq×n has full rank and satisfies Q (x) =

CT (x)C(x).
(iii) Solve for P(x) from (3) to produce the SDRE controller

u = −K(x)x and K(x) = R−1(x)BT (x)P(x). (4)

It should be noted that the SDRE scheme is performed pointwise
in x and the resulting closed-loop SDC matrix ACL(x) := A(x) −

B(x)R−1(x)BT (x)P(x) is pointwise Hurwitz everywhere; however,
it does not imply global stability of the origin (Tsiotras, Corless,
& Rotea, 1996). In addition, though the SDRE approach provides
satisfactory performance in many practical applications, the sym-
bolic checking conditions stated in (ii) of the SDRE scheme are
generally not easy to implement, especially when the system dy-
namics are complicated. Moreover, several authors have provided
various guidelines on how to systematically construct SDC matri-
ces (Çimen, 2010; Cloutier et al., 1996); however, there is no guide-
line on the construction of SDCmatrices when the SDRE solvability
condition is violated, which may result in the SDRE scheme being
terminated. For instance, let f(x) = [−x2, x1]T , B(x) = [0, x2]T ,
R(x) = 1 and Q (x) = I2. Suppose that an SDC matrix representa-
tion is given as a11(x) = a22(x) = 0, a12(x) = −1 and a21(x) =

1, where aij(x) denotes the (i, j)-entry of the matrix A(x). Then,
(A(x), C(x)) is always observable, but (A(x), B(x)) is not stabiliz-
able at the nonzero states where x2 = 0. By direct calculation, the
SDRE given by (3) does not have any positive semi-definite solu-
tion P(x) when x2 = 0, in which case the SDRE scheme will fail to
operate. However, it will become clear later (see Theorem 1) that,
at those nonzero states x of x2 = 0, there always exists a feasible
SDC matrix representation that makes the SDRE (3) solvable and
the resulting ACL(x)matrix a Hurwitz matrix.

It is known that a unique positive definite (resp., semi-definite)
solution P(x) in (3) exists, rendering ACL(x) pointwise Hurwitz, if
(resp., if and only if) both the conditions ‘‘(A(x), B(x)) is stabiliz-
able’’ and ‘‘(A(x), C(x)) is observable (resp., has no unobservable
mode on the jω-axis)’’ are satisfied (Zhou & Doyle, 1998). To avoid
the difficulty of symbolic checking conditions, stated above, of the
SDRE approach, in this article we will study the following three
problems:

Problem 1. Let x ≠ 0 be given. Denote f = f(x), B = B(x) and
C = C(x). Explore the existence condition and, if the existence
condition is satisfied, present all A ∈ Rn×n that satisfy the condi-
tions that Ax = f, (A, B) is stabilizable and (A, C) is observable.

Problem 2. Same as Problem 1, except that the condition ‘‘(A, C)
is observable’’ is replaced with ‘‘(A, C) is detectable’’.

Problem 3. Same as Problem 1, except that the condition ‘‘(A, C)
is observable’’ is replaced with ‘‘(A, C) has no unobservable mode
on the jω-axis’’.

From the discussions above, this study may also provide an
auxiliarymeans to successfully continue the SDRE scheme at states
in which a specific SDC matrix representation fails to operate, but
where Problems 1, 2 or 3 is solvable.

To explore the existence condition of Problems 1–3 and charac-
terize their solution matrices, we introduce the notationsW⊥ and
W⊥ as follows. LetW ∈ Rp×n be given with p < n and rank(W ) =

p. We defineW⊥
= N(W ), null space ofW , andW⊥ ∈ Rn×(n−p) as

a selected constant matrix having orthonormal columns and satis-
fyingWW⊥ = 0. Clearly,W⊥ is a vector space of dimension n − p,
and the column vectors of W⊥ form an orthonormal basis of W⊥.
Similarly, if W ∈ Rn×q and rank(W ) = q < n, we define W⊥

=

{wT
| w ∈ N(W T )} and W⊥ ∈ R(n−q)×n as a selected constant

matrix having orthonormal rows and satisfying W⊥W = 0. Addi-
tionally, we denote Rn∗

= {xT |x ∈ Rn
}, known as the dual space of

Rn, and R− as the set of negative real numbers.
The rest of this article is organized as follows: Section 2 presents

the necessary and sufficient existence conditions for Problems 1–
3; Section 3 includes a description of the parameterization of the
solution matrices A for the planar case when the existence condi-
tions are satisfied; Section 4 presents an illustrative example; and
Section 5 provides the conclusions.

2. Necessary and sufficient existence conditions

Necessary and sufficient existence conditions for Problems 1–3
are stated as Theorem 1 below:

Theorem 1.
(i) Problem1 is unsolvable if and only if {x, f} are linearly dependent

(LD) and Cx = 0.
(ii) Problem 2 is unsolvable if and only if f = kx for some k ≥ 0 and

Cx = 0.
(iii) Problem 3 is unsolvable if and only if f = 0 and Cx = 0.
Proof. The proofs of (i) and (ii) can be found from Liang and Lin
(2011), while (iii) is easily derived from the proof of (ii). Details are
omitted. �

3. Parameterization of all solution matrices

Given that the existence condition of Problems 1, 2 or 3 is sat-
isfied, this section explores their solution matrices. To this end,
we denote Axf,A

c,As, Ao,Ad and Ai as the sets of A such that
Ax = f, (A, B) is controllable, (A, B) is stabilizable, (A, C) is observ-
able, (A, C) is detectable and (A, C) has no unobservable mode on
the jω-axis, respectively. Additionally, we assume hereafter that,
without loss of any generality, both B and C have full rank.

3.1. The solution matrices of Problems 1–3

Define Ap =
1

∥x∥2 fx
T . It is clear that Apx = f and

Axf =

Ap + Kx⊥ | K ∈ Rn×(n−1)

⊂ Rn×n. (5)
Obviously,Axf is a linear variety (i.e., a subspace through a transla-
tion) of dimension n2

− n and K describes the n2
− n free parame-

ters. Additionally, Ap has the minimum Frobenius norm among the
matrices in Axf. To derive Ac,As, Ao,Ad and Ai, we present the
following two resultswhich can be used to reduce the dimension of
checking the system’s controllability, stabilizability, observability
and detectability.

Lemma 2 (Chen, 1999). Let Ā =


Ā11 Ā12
Ā21 Ā22


and B̄ =


0
B̄2


, where

B̄2 ∈ Rp×p is a nonsingular matrix, Ā11 ∈ R(n−p)×(n−p) and Ā22 ∈

Rp×p. Then, (Ā, B̄) is controllable (resp., stabilizable) ⇔ (Ā11, Ā12) is
controllable (resp., stabilizable). In particular, when p < n and Ā12 =

0, then (Ā, B̄) is uncontrollable, and it is stabilizable⇔ λ(Ā11) ⊂ C−.

Corollary 3. Let Ā be partitioned in the form given by Lemma 2 with
Ā11 ∈ R(n−q)×(n−q) and Ā22 ∈ Rq×q. C̄ = [0, C̄2], where C̄2 ∈ Rq×q is
a nonsingular matrix. Then
(i) (Ā, C̄) is observable (resp., detectable)⇔ (Ā11, Ā21) is observable

(resp., detectable).
(ii) (Ā, C̄) has no unobservablemode on the jω-axis⇔ (Ā11, Ā21) has

no unobservable mode on the jω-axis.
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In particular, when q < n and Ā21 = 0, then (Ā, C̄) is unobservable
and

(iii) (Ā, C̄) is detectable ⇔ λ(Ā11) ⊂ C−.
(iv) (Ā, C̄) has no unobservable mode on the jω-axis ⇔ Ā11 has no

eigenvalue on the jω-axis.

To apply Lemma 2 and Corollary 3, we have to transform (A, B)
(resp., (A, C)) into the form of (Ā, B̄) (resp., (Ā, C̄)) as stated in
Lemma 2 (resp., Corollary 3). Such coordinate transformation can
be chosen to be orthogonal as in the form of (6) below:

x = MBx̄ (resp., x = MC x̄) (6)

whereMB andMC are orthogonalmatrices. A candidate ofMB (resp.,
MC ) can be determined by the QR factorization scheme for B (resp.,
CT ) and then interchanges the position of the first p (resp., q)
columns with the last n − p (resp., n − q) columns.

Under the coordinate transformation given by Eq. (6) we have
x̄ = MTx and Ā = MTAM , where M = MB or M = MC . If we let
f̄ = MT f, x̄⊥ = x⊥M and K̄ = MTK , then x̄⊥x̄ = 0, Ax = f ⇔

Āx̄ = f̄, and 1
x̄T x̄ f̄x̄

T
+ K̄ x̄⊥ = MT


1

xT x fx
T

+ Kx⊥


M . That is, Ā ∈

Ax̄f̄ ⇔ A ∈ Axf. Moreover, because controllability, observability,
stabilizability and detectability are invariant under equivalence
transformation (Chen, 1999), we obtain the following theorem.

Theorem 4. Let MB (resp., MC ) be an orthogonal matrix given by
Eq. (6) such that B = MBB̄ (resp., CT

= MC C̄T ), B̄ (resp., C̄ ) is given
by Lemma 2 (resp., Corollary 3), x̄⊥ = x⊥MB and K = MBK̄ (resp.,
x̄⊥ = x⊥MC and K = MC K̄ ). Additionally, A =

1
∥x∥2 fx

T
+Kx⊥ ∈ Axf

and Ā =
1

∥x̄∥2 f̄x̄
T

+ K̄ x̄⊥ ∈ Ax̄f̄. Then

(i) (A, B) is controllable (resp., (A, C) is observable) ⇔ (Ā, B̄) is
controllable (resp., (Ā, C̄) is observable).

(ii) (A, B) is stabilizable (resp., (A, C) is detectable) ⇔ (Ā, B̄) is
stabilizable (resp., (Ā, C̄) is detectable).

(iii) (A, C) has no unobservable mode on the jω-axis ⇔ (Ā, C̄) has
no unobservable mode on the jω-axis.

After deriving the sets Axf,A
s, Ao,Ad and Ai, it is clear that

the solutions of Problems 1–3 are Aso
xf := Axf ∩ As

∩ Ao,Asd
xf :=

Axf ∩ As
∩ Ad and Asi

xf := Axf ∩ As
∩ Ai, respectively.

3.2. Implementation of the case n = 2

The case of n = 1 is trivial; therefore, we only consider the case
of n = 2. When rank(B) = 2 (resp., rank(C) = 2), (A, B) (resp.,
(A, C)) is controllable (resp., observable) and Ac

xf = As
xf = Axf

(resp., Ao
xf = Ad

xf = Ai
xf = Axf). Remaining to be considered is

the case of B = b = (b1, b2)T ∈ R2 and C = c = (c1, c2) ∈ R1×2.
In this case, K = k ∈ R2 and Axf is a 2-dimensional linear variety.
To derive Ac,As,Ao, Ad and Ai, we need the following lemma.

Lemma 5. Consider the two lines L1(k) : ξTk = α1 and L2(k) : ξ⊥k
= α2, where α1, α2 ∈ R and ξ ∈ R2

\ {0}. Then

(i) L1(k) can be parameterized as k(κ) =
α1

∥ξ∥2
ξ + κξT

⊥
, where

κ ∈ R.
(ii) L1(k) and L2(k) are perpendicular and intersect at the point

where k∗
=

α1
∥ξ∥2

ξ +
α2

∥ξ⊥∥2
ξT
⊥
.

(iii) The half line {k | L1(k) = 0 but L2(k) ≥ 0} can be parameter-
ized as {k∗

+ κξ⊥ | κ ≥ 0}.
(iv) The half plane αξ⊥k ≥ 0, α ∈ R \ {0}, can be parameterized as

k(κ1, κ2) = κ1ξ
T
⊥

+ κ2ξ, where sign(α) · κ1 ≥ 0 and κ2 ∈ R.

Define x⊥ =
1

∥x∥ [x2,−x1], b⊥ =
1

∥b∥
[b2,−b1] and c⊥ =

1
∥c∥

[c2,−c1]T . The setsAc,As, Ao,Ad and Ai, and their structures are
explicitly described in the next result.
Theorem 6. Let x, f, b, cT ∈ R2 and x ≠ 0. Then

(i) Ac
xf =


Axf \ Ac̄

xf if {x, b} are LI;
Axf if {x, b} are LD & {x, f} are LI;
∅ if {x, b} are LD & {x, f} are LD,

where Ac̄
xf :=


Ac̄
p + κbx⊥ | κ ∈ R & Ac̄

p =
1

∥x∥2 fx
T
−

(b⊥f)(bT x)
∥x∥2(x⊥b)

bT
⊥
x⊥


is a line in Axf in which (A, b) is uncontrollable.

(ii) As
xf =


Axf if ‘‘{x, b} are LI &

b⊥f
x⊥b

< 0’’ or

‘‘{x, b} are LD & {x, f} are LI;’’

Axf \ Ac̄
xf if {x, b} are LI &

b⊥f
x⊥b

≥ 0;

Axf \ As̄
xf if {x, b} are LD & {x, f} are LD,

where As̄
xf :=


Ap + κ1bT

⊥
x⊥ + κ2bx⊥ | κ2 ∈ R & sign(x⊥bT

⊥
) ·

κ1 ≥ 0

is a half plane in Axf in which (A, b) is unstabilizable.

(iii) Ao
xf =


Axf \ Aō

xf if cx ≠ 0;
Axf if cx = 0 & {x, f} are LI;
∅ if cx = 0 & {x, f} are LD,

where Aō
xf :=


Aō
p + κc⊥x⊥ | κ ∈ R & Aō

p =
fxT
∥x∥2 −

(cf)(xT c⊥)
∥x∥2·∥c∥2(x⊥c⊥)

cTx⊥


is a line in Axf in which (A, c) is unobser-

vable.

(iv) Ad
xf =

Axf \ Ad̄
xf if cx ≠ 0;

Axf if ‘‘cx = 0 & {x, f} are LI’’ or
‘‘cx = 0 & f = µx, µ < 0;’’

∅ if cx = 0 & f = µx, µ ≥ 0,

whereAd̄
xf :=


Aō
p+(κ+cT

⊥
f)c⊥x⊥ | κ ∈ R & κ ·sign(x⊥c⊥) ≥

0

is a half line in Aō

xf in which (A, c) is undetectable.

(v) Ai
xf =


Axf \ Aī

xf if cx ≠ 0;
Axf if cx = 0 & f ≠ 0;
∅ if cx = 0 & f = 0,

whereAī
xf :=


Aō
p+(c

T
⊥
f)c⊥x⊥


is a point inAd̄

xf in which (A, c)
has an unobservable mode on the jω-axis.

Proof. Here, we only derive the setsAc
xf andAs

xf. The setsAo
xf,A

d
xf

and Ai
xf can be similarly derived. LetMb = [bT

⊥

... b
∥b∥

]. It is clear that
Ā = MT

bAMb and b̄ = MT
bb are in the formdescribed in Lemma2. By

direct calculation, Ā12 =
1

∥b∥


1

∥x∥2 (b⊥f) · (bTx)+ (b⊥k) · (x⊥b)]

and Ā11 =
1

∥x∥2 (b⊥f)(b⊥x) + (b⊥k)(x⊥bT
⊥
). From Lemma 2 and

Theorem 4, (A, b) is uncontrollable⇔ Ā12 = 0, and (A, b) is unsta-
bilizable⇔ Ā12 = 0 and Ā11 ≥ 0. Now if x⊥b ≠ 0, i.e., {x, b} are LI,
then the set of k such that Ā12 = 0 can be parameterized using (i)
of Lemma 5with (ξ, α1) being replaced by


bT

⊥
,−

(b⊥f)(bT x)
∥x∥2(x⊥b)


. Com-

bining the parameterization of k with the expression of Axf gives
the setAc̄

xf. Consequently,A
c
xf = Axf\Ac̄

xf. Additionally,withinAc̄
xf

(i.e., Ā12 = 0), k satisfies the relation b⊥k = −
(b⊥f)(bT x)
(x⊥b)∥x∥2 . Inserting

this relation into Ā11 yields Ā11 =
(b⊥f)[(xT b)2+(b⊥x)2]

(x⊥b)∥x∥2 . Thus, Ā11 <

0 ⇔
b⊥f
x⊥b < 0. Therefore, As

xf = Axf if {x, b} are LI and b⊥f
x⊥b < 0,

and As
xf = Axf \ Ac̄

xf if {x, b} are LI and b⊥f
x⊥b ≥ 0. We now consider

the case of x⊥b = 0, i.e., {x, b} are LD. This implies that bTx ≠ 0,
and Ā12 = 0 ⇔ b⊥f = 0 ⇔ {x, f} are LD because x⊥b = 0. As a re-
sult, As

xf = Ac
xf = Axf if {x, f} are LI. When {x, f} are LD (i.e., Ā12 =

0), we have Ac
xf = ∅ and Ā11 = (x⊥bT

⊥
)b⊥k. By (iv) of Lemma 5,

the set of k for Ā11 ≥ 0 is a half plane and can be parameterized as
k(κ1, κ2) = κ1bT

⊥
+κ2b, where sign(x⊥bT

⊥
) ·κ1 ≥ 0 and κ2 ∈ R. In-

serting thisk(κ1, κ2) intoAxf yieldsAs̄
xf. Thus,A

s
xf = Axf\As̄

xf. �

It is interesting to note from Theorem 6 that the set As
xf is

always non-empty, regardless of what nonzero vector b is given.
Moreover, it is easy to see that the results of Theorem 6 agree with
those of Theorem 1. That is, Aso

xf = ∅ ⇔ cx = 0 and {x, f} are LD;
Asd

xf = ∅ ⇔ cx = 0, f = µx and µ ≥ 0; and Asi
xf = ∅ ⇔ cx = 0

and f = 0.
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4. An illustrative example

Consider the following system

ẋ1 = x1x2 and ẋ2 = −x2 + u. (7)

Clearly, this system is in the form of (1) with x = [x1, x2]T , f(x) =

[x1x2,−x2]T and B(x) = [0, 1]T . System (7) is stabilizable and two
global stabilizers, one using the Sontag formula with the control
Lyapunov function V (x1, x2) := (x21e

2x2 + x22)/2 (Sontag, 1989) and
the other adopting the backstepping scheme (Khalil, 1996), have
the following forms:

uSontag =

x22 −


x42 + (x21e2x2 + x2)4

x21e2x2 + x2
(8)

and

uBS = (1 − ψ)x2 − (1 + ψ)x21 − 2x21x2, ψ > 0. (9)

To demonstrate the SDRE design, we choose Q (x) = I2, R(x) = 1
and an intuitive SDC matrix A(x)with a11(x) = a21(x) = 0, a12(x)
= x1 and a22(x) = −1. Obviously, (A(x), B(x)) is stabilizable ev-
erywhere except the X2-axis where the SDRE solvability condition
is violated; however, by Theorem 1, A

sγ
xf ≠ ∅ for γ = o, d, i at

every nonzero state because C(x)x = x ≠ 0. When x = [0, x2]T
and x2 ≠ 0, f = [0,−x2]T = −x and, by (ii) of Theorem 6, Aso

xf =

Asd
xf = Asi

xf = As
xf = Axf \ As̄

xf = {A | a11 < 0, a12 = 0, a21 ∈

R & a22 = −1}. In the following, we will choose a11 = −1 and
a21 = 0 for the SDC matrix of the SDRE scheme when x ∈ X2-axis.

Numerical results for initial states x(0) = [1, 1]T are summa-
rized in Fig. 1 and Table 1, where we have adopted the following
three controllers: uSontag (labeled Sontag), uBS withψ = 2 (labeled
BS) and the SDRE controller (labeled SDRE). It is observed from
Fig. 1 that all of the system states of the three schemes converge to
zero and, from Table 1, the SDRE scheme has better performances
than the other two schemes in the performance indices that are
listed in the table, where ∥u∥∞ := maxt ∥u∥ denotes the maxi-
mum control magnitude that required during the control period
and the integration is evaluated from t = 0 to t = 1000.

It is noted that the solution trajectories of the three schemes
remain on the X2-axis if they start from there because ẋ1 =

x1x2|x1=0 = 0. Thus, the trajectories of the three schemes will
never reach the X2-axis unless they start from there. By direct cal-
culation, uSontag = uSDRE = (1 −

√
2)x2 and uBS = (1 − ψ)x2 if

the system state starts from the X2-axis. The resulting closed-loop
dynamics for x2 are ẋ2 = −ψx2 for the BS design and ẋ2 = −

√
2x2

for both the Sontag and SDRE schemes. It is interesting to note
that, when x ∈ X2-axis, uSDRE remains unchanged regardless of
the choice of A(x) ∈ As

xf; however, if the weighting matrices are
changed to be Q (x) =diag(q1, q2) > 0 and R(x) = r > 0, then
uSDRE = (1 −

√
1 + q2/r)x2 and the resulting closed-loop dynam-

ics for x2 becomes ẋ2 = −
√
1 + q2/r · x2, both are independent of

q1. Moreover, uSDRE ≈ 0 = uBS|ψ=1 when r ≫ q2, which implies
that the control effort should be reduced as much as possible.

5. Conclusions

This article has presented necessary and sufficient conditions
for the existence of SDC matrices in a nonlinear system such that
the SDRE scheme can be successfully implemented. These exis-
tence conditions are easy to verify, and when they are satisfied,
all of the feasible SDCmatrices are explicitly parameterized for the
planar case. An example is also given to demonstrate the use of the
main results. Nevertheless, the application of this study in SDRE
design for better system performance, including optimal control
recovery and basin of attraction estimation, needs further investi-
gation.
a b

c d

Fig. 1. Time history of the system states and control inputs.

Table 1
Performances of the three schemes.

Final time of xTx = 0.01

(xTx + u2)


u2

∥u∥∞

Sontag 3.2 × 103 13.6 3.4 8.3
BS 8.3 × 102 9.7 5.8 6
SDRE 86.3 6.1 2.2 2
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