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Abstract In this paper, we firstly develop fractional-
degree Hénon maps with increasing and decreasing ar-
gument n. Yin and Yang are two fundamental opposites
in Chinese philosophy. Yin represents the moon and is
the decreasing, negative, historical, or feminine prin-
ciple in nature, while Yang represents the sun and is
the increasing, positive, contemporary, or masculine
principle in nature. Chaos produced by increasing n

is called Yang chaos, that by decreasing n Yin chaos,
respectively. The simulation results show that chaos
appears via positive Lyapunov exponents, bifurcation
diagrams, and phase portraits. In order to examine
the existence of chaotic behaviors in fractional-degree
Yin–Yang Hénon maps, Feigenbaum’s constants are
measured in this paper. It is found that the Feigen-
baum’s constants in fractional-degree Yin–Yang Hénon
maps are of great precision to the first and second
Feigenbaum’s constants. A detailed analysis of the
chaotic behaviors is also performed for the fractional-
degree Hénon maps with increasing (Yang) and de-
creasing (Yin) argument n.
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1 Introduction

Chaos, as an interesting nonlinear phenomenon, has
been intensively investigated in the last three decades
[1–8]. It is well known that chaotic systems have sen-
sitive dependence on initial conditions, and chaotic be-
haviors have become an important research subject in
nonlinear sciences [9–13]. These nonlinear phenom-
ena have been applied in many fields, such as se-
cure communication [14–18], chemical reactions [19],
and biological systems [20]. Chaos exists in both con-
tinuous and discrete nonlinear systems. Hénon map
[21–23], is the classical, well-known discrete nonlin-
ear systems, and its chaotic behaviors have been stud-
ied via a large number of researchers.

I Ching, is known as the Classic of Changes, is the
first of the Five Classics in Chinese culture. It is a col-
lection of ethical experiences from ancient people and
has been used as a guide of being a good person. On
the meaning of the name I Ching, it is an ancient docu-
ment that describes the philosophy of the universe via
the changes of the moon and the sun. The moon and
the sun are represented as Yin and Yang, respectively.

In 1975, Feigenbaum discovered two constants,
which are called Feigenbaum’s constants δ and α,
where δ = 4.66920 . . . , and |α| = 2.5029 . . . when

mailto:zmg@cc.nctu.edu.tw


440 C.-Y. Ho et al.

Fig. 1 The fractional-degree Yang Hénon map with q1 = q2 = 1, b1 = 0.3: (a) phase portrait with a1 = 1.4, bifurcation diagrams with
a1 is varied: (b) 0 ≤ a1≤1.5, (d) 0.86 ≤ a1≤0.9, (c) the largest Lyapunov exponent with a1 = 0 ∼ 1.4

Table 1 Bifurcation points for each case

Case q1 q2 a(1) a(2) a(3) a(4) a(5) a(6)

1 1 1 0.368042 0.769134 0.849731 0.866331 0.869884 0.870645

2 0.99 1.9 0.579137 1.099208 1.219609 1.246652 1.252507 1.253753

3 0.9 1 0.429799 0.805855 0.869892 0.882955 0.885755 0.886355

4 1 0.9 0.368252 0.720598 0.785837 0.799428 0.802341 0.802965

5 0.98 0.98 0.373616 0.767808 0.84597 0.86194 0.865362 0.866095

6 0.94 0.94 0.38549 0.766374 0.834148 0.84875 0.851875 0.852544

7 1 1 1.267114 1.846424 1.951662 1.972614 1.977059 1.978011

8 0.99 1.9 0.917653 1.387428 1.501890 1.527159 1.532665 1.533842

9 0.9 1 1.233279 1.724023 1.827632 1.849776 1.854514 1.855529

10 1 0.9 1.344044 1.962335 2.061627 2.081358 2.085490 2.086375

11 0.98 0.98 1.281236 1.842318 1.94647 1.967451 1.972007 1.972982

12 0.94 0.94 1.309129 1.833289 1.934771 1.955761 1.960208 1.961156



A new study of chaotic behavior and the existence of Feigenbaum’s constants in fractional-degree 441

Table 2 Measurement results of Feigenbaum’s constants and errors for each case

Case i δi Percentage error of δi |αi | Percentage error of |αi |

1 1 4.976512 6.581 % 3.034366 21.23 %

2 4.855240 3.984 % 2.848865 13.82 %

3 4.672108 0.062 % 2.570944 2.718 %

4 4.668856 0.007 % 2.501618 0.051 %

2 1 4.319490 7.489 % 2.793279 11.6 %

2 4.452205 4.647 % 2.542469 1.58 %

3 4.618787 1.079 % 2.519736 0.67 %

4 4.699036 0.638 % 2.507169 0.17 %

3 1 5.417083 16.01 % 3.174695 26.84 %

2 5.226943 11.94 % 2.906941 16.14 %

3 4.99557 6.989 % 2.532188 1.17 %

4 4.666666 0.054 % 2.503681 0.03 %

4 1 5.043269 8.011 % 3.149333 25.82 %

2 4.894301 4.820 % 2.810731 12.29 %

3 4.666861 0.050 % 2.500140 0.11 %

4 4.668485 0.015 % 2.501854 0.041 %

5 1 5.043269 8.011 % 3.149333 25.82 %

2 4.894301 4.820 % 2.810731 12.29 %

3 4.666861 0.050 % 2.500140 0.11 %

4 4.668485 0.015 % 2.501854 0.041 %

6 1 5.372258 15.057 % 3.202252 27.94 %

2 4.821805 3.268 % 2.716627 8.53 %

3 4.672640 0.073 % 2.511764 0.35 %

4 4.671150 0.041 % 2.503639 0.029 %

7 1 5.504760 17.895 % 2.582036 3.16 %

2 5.022814 7.573 % 2.55625 2.13 %

3 4.713610 0.951 % 2.529411 1.059 %

4 4.669117 0.001 % 2.5 0.11 %

8 1 4.104200 12.100 % 2.738127 9.39 %

2 4.529740 2.986 % 2.454444 1.93 %

3 4.589357 1.710 % 2.492268 0.42 %

4 4.677994 0.188 % 2.505338 0.097 %

9 1 4.736499 1.441 % 3.039444 21.43 %

2 4.678874 0.207 % 2.810799 12.3 %

3 4.673701 0.096 % 2.516620 0.54 %

4 4.667980 0.026 % 2.505288 0.095 %

10 1 6.226997 33.363 % 2.559420 2.25 %

2 5.032284 7.776 % 2.530434 1.1 %

3 4.775169 2.269 % 2.5 0.11 %

4 4.668926 0.005 % 2.504878 0.079 %

11 1 5.387145 15.376 % 2.731021 9.11 %

2 4.964110 6.316 % 2.602681 3.98 %

3 4.605136 1.372 % 2.508035 0.205 %

4 4.672820 0.077 % 2.505307 0.096 %
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Table 2 (Continued)

Case i δi Percentage error of δi |αi | Percentage error of |αi |

12 1 5.165053 10.619 % 2.776734 10.94 %

2 4.834778 3.546 % 2.657534 6.17 %

3 4.720035 1.088 % 2.517241 0.572 %

4 4.690928 0.465 % 2.502720 0.007 %

Fig. 2 The fractional-degree Yang Hénon map with q1 = 0.9, q2 = 1.99, b1 = 0.3: (a), (b) phase portrait with a1 = 1.8, bifurcation
diagrams with a1 is varied: (c) 0 ≤ a1≤1.9, (e) 1.24 ≤ a1≤1.3. (d) the largest Lyapunov exponent with a1 = 0 ∼ 1.9
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Fig. 3 The fractional-degree Yang Hénon map with q1 = 0.9,
q2 = 1, b1 = 0.3: (a) phase portrait with a1 = 1.4, (b) phase
portrait with a1 = 1.2. Bifurcation diagrams with a1 is varied:

(c) 0 ≤ a1≤1.6 (e) 0.91 ≤ a1≤0.95 (d) the largest Lyapunov ex-
ponent with a1 = 0 ∼ 1.6

the dynamical system approaches chaotic behavior via
period-doubling bifurcation [24]. Feigenbaum’s con-
stants were found in many chaotic systems [25–29].
The measurement of Feigenbaum’s constants in a con-
tinuous time fractional-order system was firstly per-
formed in detail by Chen et al. [29]. Ge and Li [30]
investigated the dynamics of continuous time chaotic

system with negative time and the chaotic behavior of
continuous time nonlinear system with negative time
is called “Yin chaos.” Contrarily, the classical positive
time counterpart is called “Yang chaos.” Ho, Chen, and
Ge [31] investigated Yin and Yang chaos of discrete
time maps. In order to make the research of Yin and
Yang chaos more complete, we firstly study the Yin and
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Fig. 4 The fractional-degree Yang Hénon map with q1 = 1, q2 = 0.9, b1 = 0.3: (a) phase portrait with a1 = 1.3. Bifurcation diagrams
with a1 is varied: (b) 0 ≤ a1≤1.4 (d) 0.79 ≤ a1≤0.85 (c) the largest Lyapunov exponent with a1 = 0 ∼ 1.4

Yang chaos that appeared in fractional-degree maps.
Meanwhile, the Feigenbaum’s constants in this frac-
tional degree map are also measured.

This paper is organized as follows: The fractional-
degree Yang and Yin Hénon maps are introduced in
Sect. 2, together with a review of the definition of the
first and second Feigenbaum’s constants. The chaos
characteristics of the two maps are analyzed using
Lyapunov spectra, phase portraits, and bifurcation di-
agrams in Sect. 3. The measurement of Feigenbaum’s
constants of the two maps is carried out in the same
section. Finally, conclusions are drawn in Sect. 4.

2 Chaos of fractional-degree Yin–Yang Hénon
maps

The research of Hénon map extends to a new era by
replacing the integer degrees to fractional ones. Two

novel fractional-degree Hénon maps are introduced
in the following. Moreover, the definition of Feigen-
baum’s constants is reviewed in this section.

2.1 Fractional-degree Yang Hénon map

The equations of the fractional-degree Yang Hénon
map with increasing n1 are described as follows:

x1[n1 + 1] = −a1
∥
∥x

2q1
1 [n1]

∥
∥ + ∥

∥x
q2
2 [n1]

∥
∥ + 1

x2[n1 + 1] = b1x1[n1]
(1)

where ‖ · ‖ is the norm of a complex number, a1, b1 ∈
R are the system parameters, q1 and q2 are positive
real numbers, n1 = 0,1,2,3, . . . , n, n is a nonnegative
integer sequence, x1 and x2 are the states of the map.
The initial conditions are chosen to be {x1[0], x2[0]} =
{0.63,0.19}, and b1 is fixed as b1 = 0.3 throughout the
paper.
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Fig. 5 The fractional-degree Yang Hénon map with q1 = q2 = 0.98, b1 = 0.3: (a) phase portrait with a1 = 1.4. Bifurcation diagrams
with a1 is varied: (b) 0 ≤ a1≤1.5 (d) 0.86 ≤ a1≤0.95 (c) the largest Lyapunov exponent with a1 = 0 ∼ 1.5

2.2 Fractional-degree Yin Hénon map

The fractional-degree Yin Hénon map with decreasing
n2 is defined as

y1[n2 − 1] = b2y2[n2]
y2[n2 − 1] = a2

∥
∥y

2q1
2 [n2]

∥
∥ + ∥

∥y
q2
1 [n2]

∥
∥ − 1

(2)

where a2, b2 ∈ R, and b2 = 0.3 are the system pa-
rameters, q1 and q2 are positive real numbers, n2 =
−1,−2,−3, . . . ,−n, −n is a nonpositive integer se-
quence, y1 and y2 are the states of the map. The initial
conditions are set as {y1[0], y2[0]} = {0.19,0.63}.

2.3 The first and second Feigenbaum’s constants

The first Feigenbaum’s constant δ is defined in [24] as

δ = lim
i→∞

ai+1 − ai

ai+2 − ai+1
(3)

where ai is the value of the parameter at the ith bifur-
cation point, and the value of δ is 4.66920 . . . .

The second Feigenbaum’s constant |α| is defined as

|α| =
∣
∣
∣
∣

�Mxi

�Mxi+1

∣
∣
∣
∣

(4)

where �Mxi
is the width of the widest bifurcation fork

of ith bifurcation, and |α| = 2.5029 . . . .

3 Chaotic behaviors and measurement of
Feigenbaum’s constants

In this section, the measurement of the first and second
Feigenbaum’s constants and various chaotic behaviors
are studied on different types of q1, q2. The fractional-
degree Yang Hénon map is analyzed in the first 6 cases,
and the Yin Hénon map in the remaining 6 cases.

These 12 cases of q1, q2 can be classified as:
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Fig. 6 The fractional-degree Yang Hénon map with q1 = q2 = 0.94, b1 = 0.3: (a) phase portrait with a1 = 1.4. Bifurcation diagrams
with a1 is varied: (b) 0 ≤ a1≤1.5 (c) the largest Lyapunov exponent with a1 = 0 ∼ 1.5

Case 1, 7: q1, q2 are integer degree.
Case 2, 8: q1, q2 are different fractional degree.
Case 3, 9: q1 is fractional degree and q2 is integer

degree.
Case 4, 10: q1 is integer degree and q2 is fractional

degree.

Case 5, 6, 11, and 12: q1, q2 are same fractional de-
gree.

The values of a at the ith bifurcation point are
shown in Table 1, where i = 1,2,3 . . . ,6. The first
and second Feigenbaum’s constants can be calculated
by Table 1. The measurement results of the first and
second Feigenbaum’s constants for these 12 cases are
listed in Table 2.

3.1 Case 1 Yang Hénon map with q1 = q2 = 1

In this case, the q1, q2 are integer degree and the nu-
merical results are shown in Figs. 1. A phase portrait

is plotted in Fig. 1(a), where a1 = 1.4. Figure 1(b) and
(d) are the bifurcation diagrams of x1, which can be
shown the period-doubling bifurcations clearly. The
largest Lyapunov exponent for a1 = 0 to 1.5 is shown
in Fig. 1(c). The dynamics approaches to infinity when
a1 > 1.426.

The measurement results of the first and second
Feigenbaum’s constants for i = 1, 2, 3, and 4 are
shown in Table 2. It is shown that measurement val-
ues of the first and second Feigenbaum’s constants are
great precision to 4.66920 . . . with error percentage
0.007 % and 2.5029 . . . with error percentage 0.051 %,
respectively when i = 4. More detailed measurement
results of δ and |α| for i = 1, 2, 3 are shown in Ta-
ble 2.

3.2 Case 2 Yang Hénon map with q1 = 0.99, q2 = 1.9

By setting q1 = 0.99, q2 = 1.9 in Eq. (1), the nu-
merical results of the fractional-degree Yang Hénon
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Fig. 7 The fractional-degree Yin Hénon map with q1 = q2 = 1, b2 = 0.3: (a) phase portrait with a2 = 2.5. Bifurcation diagrams with
a2 is varied: (b) 0 ≤ a2≤2.7 (d) 1.97 ≤ a2≤2.1 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.7

map are shown in Figs. 2. A phase portrait is plot-
ted in Fig. 2(a), where a1 = 1.8. Comparing with this
case and case 1, it is found that the chaotic behavior
of this case is squeezed so that the motion is simi-
lar to a parabola pattern (Fig. 2(a)), where Fig. 2(b)
shows an enlarged view of Fig. 2(a). A more com-
plicated chaotic behavior can be seen in the bifurca-
tion diagrams of x1 in Figs. 2(c) and (e). The largest
Lyapunov exponent for a1 = 0 to 1.9 is shown in
Fig. 2(d). Various dynamic behaviors for varied a1 are
shown in Figs. 2(c) and (d), such as the period-3 when
1.602 ≤ a1 ≤ 1.616, and the dynamics approaches to
infinity when a1 > 1.855.

The first Feigenbaum’s constant measures δ =
4.699036, with an error percentage of 0.63 % when
i = 4. The second Feigenbaum’s constant measures
|α| = 2.5071692, with an error percentage of 0.17 %
when i = 4.

3.3 Case 3 Yang Hénon map with q1 = 0.9, q2 = 1

By setting q1 = 0.9, q2 = 1 to the Yang Hénon map,
the numerical results of the fractional-degree Yang

Hénon map are shown in Figs. 3. Figure 3(a) and (b)
show the chaotic motion for a1 = 1.4 and a1 = 1.2, re-
spectively. It is clearly shown that the chaotic motion
of Fig. 3(a) expands wider than Fig. 3(b). Figure 3(c)
and (e) are the bifurcation diagrams of x1. The largest
Lyapunov exponent for a1 from 0 to 1.6 is shown in
Fig. 3(d). The dynamics approaches to infinity when
a1 > 1.523.

The first Feigenbaum’s constant measures δ =
4.666666, with an error percentage of 0.054 % when
i = 4. The second Feigenbaum’s constant measures
|α| = 2.503681, with an error percentage of 0.03 %
when i = 4.
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Fig. 8 The fractional-degree Yin Hénon map with q1 = 0.99, q2 = 1.9, b2 = 0.3: (a) phase portrait with a2 = 2.1. Bifurcation diagrams
with a2 is varied: (b) 0 ≤ a2≤2.2 (d) 1.52 ≤ a2≤1.6 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.2

3.4 Case 4 Yang Hénon map with q1 = 1, q2 = 0.9

By setting q1 = 1, q2 = 0.9 in Eq. (1), the numeri-
cal results of the fractional-degree Yang Hénon map
are shown in Figs. 4. A phase portrait is plotted in
Fig. 4(a), where a1 = 0.3. The bifurcation diagrams
of x1 are shown in Figs. 4(b) and (d). The largest Lya-
punov exponent is shown in Fig. 4(c). The dynamics
approaches to infinity when a1 > 1.351.

Feigenbaum’s constant measure 4.668269 and
2.504215, having error percentage of 0.02 % and
0.05 % when i = 4.

3.5 Case 5 Yang Hénon map with q1 = q2 = 0.98

By setting q1 = q2 = 0.98 in Eq. (1), the numeri-
cal results of the fractional-degree Yang Hénon map
are shown in Figs. 5. A phase portrait is plotted in
Fig. 5(a), where a1 = 1.4. Figure 5(b) and (d) are the

bifurcation diagrams of x1. The largest Lyapunov ex-
ponent for varied a1 = 0 to 1.5 is shown in Fig. 5(c).
The dynamics approaches to infinity when a1 > 1.434.

The first Feigenbaum’s constant measures δ =
4.668485, with an error percentage of 0.015 % and
the second Feigenbaum’s constant measures |α| =
2.5018542, with an error percentage of 0.04 % when
i = 4.

3.6 Case 6 Yang Hénon map with q1 = q2 = 0.94

By setting q1 = q2 = 0.94 in Eq. (1), the numeri-
cal results of the fractional-degree Yang Hénon map
are shown in Figs. 6. A phase portrait is plotted in
Fig. 6(a), where a1 = 1.4. Figure 6(b) and (d) are the
bifurcation diagrams ofx1. The largest Lyapunov ex-
ponent for varied a1 = 0 to 1.5 is shown in Fig. 6(c).
The dynamics approaches to infinity when a1 > 1.447.

The first Feigenbaum’s constant measures δ =
4.671150, with an error percentage of 0.04 % and
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Fig. 9 The fractional-degree Yin Hénon map with q1 = 0.9, q2 = 1, b2 = 0.3: (a) phase portrait with a2 = 2.4. Bifurcation diagrams
with a2 is varied: (b) 0 ≤ a2≤2.5 (d) 1.84 ≤ a2≤1.95 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.5

the second Feigenbaum’s constant measures |α| =
2.5036392, with an error percentage of 0.03 % when
i = 4.

3.7 Case 7 Yin Hénon map with q1 = q2 = 1

The integer degrees are q1 = q2 = 1 for the Yin Hénon
map with decreasing n2. The phase portrait (Fig. 7(a)),
bifurcation diagrams (Figs. 7(b), (d)) and the largest
Lyapunov exponent (Fig. 7(c)) show the chaotic be-
haviors and period-doubling bifurcations with q1 =
q2 = 1. It is found that the dynamics approaches to
infinity when a2 > 2.523.

The first Feigenbaum’s constant measures δ =
4.669117, with an error percentage of 0.0017 % and
the second Feigenbaum’s constant measures |α| = 2.5,
with an error percentage of 0.12 % when i = 4.

3.8 Case 8 Yin Hénon map with q1 = 0.99, q2 = 1.9

By setting q1 = 0.99, q2 = 1.9 in Eq. (2), the numeri-
cal results of the fractional-degree Yin Hénon map are
shown in Figs. 8. The largest Lyapunov exponent for
varied a2 = 0 to 2.2 is shown in Fig. 8(d). Figure 8(b)
and (d) are the bifurcation diagrams of y1. Various
dynamic behaviors for varied a2 can be shown by
Figs. 8(b) and (d), such as the period-3 is shown when
1.869 ≤ a1≤1.884, and the dynamics approaches to in-
finity when a2 > 2.109.

The first Feigenbaum’s constant measures δ =
4.677994, with an error percentage of 0.19 % and
the second Feigenbaum’s constant measures |α| =
2.5053382, with an error percentage of 0.097 % when
i = 4.

3.9 Case 9 Yin Hénon map with q1 = 0.9, q2 = 1

By setting q1 = 0.9, q2 = 1 in Eq. (2), the numer-
ical results of the fractional-degree Yin Hénon map
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Fig. 10 The fractional-degree Yin Hénon map with q1 = 1, q2 = 0.9, b2 = 0.3: (a) phase portrait with a2 = 2.6. Bifurcation diagrams
with a2 is varied: (b) 0 ≤ a2≤2.7 (d) 2.07 ≤ a2≤2.2 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.7

are shown in Figs. 9. A phase portrait is plotted in
Fig. 9(a), where a2 = 2.4. Figure 9(b) and (d) are the
bifurcation diagram of y1, which can be shown the
period-doubling bifurcations clearly. The largest Lya-
punov exponent is shown in Fig. 9(c). The dynamics
approaches to infinity when a2 > 2.413.

The first Feigenbaum’s constant measures δ =
4.66798, with an error percentage of 0.026 % and
the second Feigenbaum’s constant measures |α| =
2.505288, with an error percentage of 0.09 % when
i = 4.

3.10 Case 10 Yin Hénon map with q1 = 1, q2 = 0.9

By setting q1 = 1, q2 = 0.9 in Eq. (2), the numer-
ical results of the fractional-degree Yin Hénon map
are shown in Figs. 10. A phase portrait is plotted in
Fig. 10(a), where a2 = 2.6. Figure 10(b) and (d) are
the bifurcation diagram of y1, which can be shown the

period-doubling bifurcations clearly. The largest Lya-
punov exponent is shown in Fig. 10(c). The dynamics
approaches to infinity when a2 > 2.631.

The first Feigenbaum’s constant measures δ =
4.668926, with an error percentage of 0.006 % and
the second Feigenbaum’s constant measures |α| =
2.504878, with an error percentage of 0.08 % when
i = 4.

3.11 Case 11 Yin Hénon map with q1 = q2 = 0.98

By setting q1 = q2 = 0.98 in Eq. (2), the numeri-
cal results of the fractional-degree Yin Hénon map
are shown in Figs. 11. A phase portrait is plotted in
Fig. 11(a), where a2 = 2.5. Figure 11(b) and (d) are
the bifurcation diagram of y1, which can be shown the
period-doubling bifurcations clearly. The largest Lya-
punov exponent is shown in Fig. 11(c). The dynamics
approaches to infinity when a2 > 2.519.
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Fig. 11 The fractional-degree Yin Hénon map with q1 = q2 = 98, b2 = 0.3: (a) phase portrait with a2 = 2.5. Bifurcation diagrams
with a2 is varied: (b) 0 ≤ a2≤2.6 (d) 1.96 ≤ a2≤2.1 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.6

The first Feigenbaum’s constant measures δ =
4.672820, with an error percentage of 0.078 % and
the second Feigenbaum’s constant measures |α| =
2.5053072, with an error percentage of 0.096 % when
i = 4.

3.12 Case 12 Yin Hénon map with q1 = q2 = 0.94

By setting q1 = q2 = 0.94 in Eq. (2), the numeri-
cal results of the fractional-degree Yin Hénon map
are shown in Figs. 12. A phase portrait is plotted in
Fig. 12(a), where a2 = 2.5. Figure 12(b) and (d) are
the bifurcation diagram of y1, which can be shown the
period-doubling bifurcations clearly. The largest Lya-
punov exponent for varied a2 = 0 to 2.6 is shown in
Fig. 12(c). The dynamics approaches to infinity when
a2 > 2.515.

The first Feigenbaum’s constant measures δ =
4.690928, with an error percentage of 0.465 % and
the second Feigenbaum’s constant measures |α| =

2.502722, with an error percentage of 0.007 % when
i = 4.

4 Conclusions

In this paper, we firstly develop the Yin–Yang fraction-
al-degree Hénon maps and measure the Feigenbaum’s
constants to testify the existence of the chaotic behav-
iors on different types of q1, q2, which can be summa-
rized as follows:

1. The variation of fractional degrees affects the val-
ues of bifurcation points.

2. The variation of fractional degrees affects the
chaotic behaviors; Period-3 motion is found among
them.

3. The measurement precision of Feigenbaum’s con-
stants is independent of q1 and q2, it depends on
the value of i.



452 C.-Y. Ho et al.

Fig. 12 The fractional-degree Yin Hénon map with q1 = q2 = 0.94, b2 = 0.3: (a) phase portrait with a2 = 2.5. Bifurcation diagrams
with a2 is varied: (b) 0 ≤ a2≤2.6 (d) 1.95 ≤ a2≤2.1 (c) the largest Lyapunov exponent with a2 = 0 ∼ 2.6

It is worthwhile to notice that further development
of Yin and Yang systems for real engineering prob-
lems. The extension of the Yin and Yang concept to
other kinds of nonlinear systems like fractional-order
systems may produce even more interesting dynamical
characteristics.

Acknowledgements The research was partially supported by
a grant (NCS101-2221-E-164-008) from the National Science
Council, R.O.C.

References

1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys.
Rev. Lett. 64, 1196–1199 (1990)

2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic sys-
tems. Phys. Rev. Lett. 64, 821–824 (1990)

3. Arnéodo, A., Argoul, F., Elezgaray, J., Richetti, P.: Homo-
clinic chaos in chemical systems. Physica D 62, 134–169
(1993)

4. Igeta, K., Ogawa, T.: Information dissipation in quantum-
chaotic systems: computational view and measurement in-
duction. Chaos Solitons Fractals 5, 1365–1379 (1995)

5. Chen, H.K.: Global chaos synchronization of new chaotic
systems via nonlinear control. Chaos Solitons Fractals 23,
1245–1251 (2005)

6. Lu, J., Wu, X., Lü, J.: Synchronization of a unified chaotic
system and the application in secure communication. Phys.
Lett. A 305, 365–370 (2002)

7. Chua, L.O., Itah, M., Kosarev, L., Eckert, K.: Chaos syn-
chronization in Chua’s circuits. J. Circuits Syst. Comput. 3,
93–108 (1993)

8. Wiggins, S.: Introduction to Applied Nonlinear Dynamical
Systems and Chaos. Springer, Berlin (2003)

9. Bao, J., Yang, Q.: Complex dynamics in the stretch-twist-
fold flow. Nonlinear Dyn. 61, 773–781 (2010)

10. Wu, W., Chen, Z.: Hopf bifurcation and intermittent transi-
tion to hyperchaos in a novel strong four-dimensional hy-
perchaotic system. Nonlinear Dyn. 60, 615–630 (2010)

11. Liu, Y., Pang, W.: Dynamics of the general Lorenz family.
Nonlinear Dyn. 67, 1595–1611 (2012)
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