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We study the cosmological implications of a ghost-free nonlinear massive gravity theory with a

cosmological constant. We find that the massive terms serve as an effective cosmological constant for a

large class of metric spaces with a compatible fiducial metric associated with the massive terms. A specific

solution is solved as an example for this model under the Bianchi type I space and a compatible Bianchi

type I fiducial metric. A stability analysis indicates that this set of solutions tends to be stable.

Nonetheless, the anisotropically expanding solution will, in general, turn unstable when an additional

scalar field with negative kinetic energy is introduced.
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I. INTRODUCTION

A unique ghost-free linearized massive gravity theory
was formulated by Fierz and Pauli (FP) in 1939 [1]. This
theory is known to propagate 5 degrees of freedom for a
massive spin-2 graviton in the neighborhood of the flat
Minkowski metric space. With an analysis of constraints,
Boulware and Deser (BD) showed that FP theory has an
extra negative energy degree of freedom in the nonlinear
level [2]. This additional negative energy degree of free-
dom was later referred to as the BD ghost.

From 2009 to 2010, de Rham, Gabadadze, and Tolley
proposed a nonlinear massive gravity theory that was later
shown to be free of the BD ghost in 2011 [3,4]. The de
Rham, Gabadadze, and Tolley ghost-free proof was first
shown to be true with a flat reference (or fiducial) metric
[4]. It has also been shown to be free of the BD ghost in the
fully nonlinear level and in the presence of an arbitrary
fiducial metric in 2012 [5,6]. A nice review on this subject
can also be found in Ref. [7].

A consistent theory of massive gravity is also needed
from observational considerations. Incorporating the
recent discovery of dark energy and the associated cosmo-
logical constant problem has inspired investigations of the
long-range corrections of general relativity. Massive grav-
ity is certainly a plausible approach to the quest of a revised
theory of gravity. The existence of a consistent ghost-free
massive gravity theory has resulted in much activity in
the study of all possible implications of this theory to the
evolution of the early universe [5,6,8–23].

In particular, it was shown in Ref. [9] that the nonlinear
massive gravity theory does not admit spatially flat homo-
geneous and isotropic cosmological solutions. It does
admit some spatially open homogeneous and isotropic
cosmological solutions [10,11]. In addition, some aniso-
tropic solutions [9,12,13] and some inhomogeneous solu-
tions [9,14,15] have been found recently. There are also

some studies on the black holes physics [16,17].
Additionally, a ghost-free bimetric theory [19] has been
proposed by Hassan and Rosen in Refs. [20,21], and
ghost-free multimetric theories have been studied in
Ref. [23].
Note that many studies done earlier in Refs. [4–6,8–

18,20,21,23] only focus on the isotropic fiducial metric,
while the physical metric is generalized to the isotropic or
anisotropic metric spaces. On the other hand, the results
shown in Refs. [9,12–15] indicate that the massive gravity
theory will still remain ghost-free for all general fiducial
metrics. Therefore, we propose to study a more general
scenario of the nonlinear massive gravity theory with a
more general fiducial metric. In addition, a cosmological
constant will also be included for heuristic reasons that will
be studied in this paper.
As a result, the reference metric will be treated as addi-

tional auxiliary fields similar to the Stuckelberg fields.
A new model-independent method will be introduced to
derive the field equations for the universal properties asso-
ciated with the complicated structure hidden in the massive
terms. As a result, we will also show that the massive terms
will serve as an effective cosmological constant for a large
class of metric spaces with a compatible fiducial metric
associated with the massive terms.
A specific set of solutions will be solved as an example

for this model under the Bianchi type I space and a com-
patible Bianchi type I fiducial metric. A stability analysis
will also be performed to show that this set of solutions
tends to be stable [21,24–26]. Moreover, we will show that
the anisotropically expanding solution will, in general,
become unstable when an additional scalar field with
negative kinetic energy is introduced.
This paper will be organized as follows: (i) A brief

review of the motivation of this research is given in the
present section. (ii) An introduction and review of the
nonlinear massive gravity theory will be presented in
Sec. II. A heuristic derivation of the field equations will
also be presented in this section. (iii) The analysis of the*gore@mail.nctu.edu.tw
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universal properties associated with a general reference
metric will be presented in Sec. III. In particular, we will
show that the massive terms will serve as an effective
cosmological constant in this section. (iv) The field
equations will be presented in Sec. IV for this model in
the presence of a Bianchi type I physical space and similar
reference metric space. (v) We will solve the reference
metric equations and derive the exact value of the effective
cosmological constant in Sec. V. (vi) A set of anisotropic
solutions and its stability analysis will be presented in
Sec. VI. We will also show that the presence of a scalar
phantom field will affect the stability of the cosmological
solution in this section. (vii) Finally, concluding remarks
and discussions will be given in Sec. VII.

II. THE STÜCKELBERG FORMULATION

It is known that the physical metric g�� can be expanded

around a reference (or fiducial) metric ��� as

g�� ¼ ��� þ h�� (2.1)

along with the introduction of a spin-2 field h��. The field

h�� is not, however, covariant under diffeomorphism. This

is simply because the background reference metric breaks
the diffeomorphism symmetry. In order to preserve
diffeomorphism, we need to introduce a covariant refer-
ence metric that observes diffeomorphism. This can be
done with the help of the Stückelberg fields �a (a ¼ 0,
1, 2, 3). Indeed, we can introduce a background fiducial (or
reference) metric fab in order to define Z�� as [4,8,9]

Z�� � fab@��
a@��

b: (2.2)

As a result, we can expand the metric g�� as

g�� ¼ Z�� þH��: (2.3)

Here the Roman letters a, b, c will denote flat-space
indices to be raised or lowered by the flat Minkowski
metric �ab, while the Greek letters �, �, � will denote
curved space indices to be raised or lowered by the physi-
cal metric g��. Note that�

a ¼ xa þ �a is known to be the

linear expansion of the Stückelberg field around the unitary
gauge�a ¼ xa. It is apparent that Z�� ¼ ��� when (i) the

fiducial metric is taken as the Minkowski flat metric,
namely, fab ¼ �ab, and (ii) the unitary gauge �a ¼ xa is
also adopted.

Note that Z�� and H�� are both covariant under diffeo-

morphism since �a are introduced as scalar fields under
diffeomorphism. In fact, the introduction of the
Stückelberg field �a is known to be useful in the process
of extracting physically relevant massive graviton interac-
tion terms in a covariant way. Indeed, the massive
Lagrangian can be formulated with the help of the
background metric Z�� by defining the tensor field K�

�

as [4,8,9]:

K�
� ¼ ��

� �M�
�; (2.4)

with [27]

Z�
� � g��Z�� � M�

�M
�
�: (2.5)

For convenience, we will occasionally write the above
equations in matrix notation as

K ¼ ��M; (2.6)

M2 ¼ g�1Z: (2.7)

Here � denotes the unit matrix. Note that we have defined a
4� 4 metric A via the relation ðAÞ�� � A�

�. We also

defined the multiplication of two matrices as ðABÞ�� ¼
ðAÞ��ðBÞ�� ¼ A�

�B
�
�.

It is known that the action of the ghost-free nonlinear
massive spin-2 field theory is given by [4–6,8–18,20,21,23]

S ¼ M2
p

2

Z
d4x

ffiffiffi
g

p fR� 2�þm2
gðL2 þ �3L3 þ �4L4Þg;

(2.8)

withMp the Planck mass,� the cosmological constant,mg

the graviton mass, �3;4 the free parameters, and g �
� detg�� the determinant of the physical metric g��. In

addition, the massive terms Li (i ¼ 2� 4) are defined as

L2 ¼ ½K�2 � ½K2�; (2.9)

L3 ¼ 1

3
½K�3 � ½K�½K2� þ 2

3
½K3�; (2.10)

L4 ¼ 1

12
½K�4 � 1

2
½K�2½K2� þ 1

4
½K2�2 þ 2

3
½K�½K3�

� 1

2
½K4�: (2.11)

Here we will use the bracket notation ½A� � trA ¼ P
iA

i
i

to denote the trace of any arbitrary matrix A. For example,
we have [4,8,9] ½K� ¼ trK, ½K�2 ¼ ðtrKÞ2, and
½K2� ¼ trK2.
The variation of the action (2.8) with respect to the

physical metric g�� leads to the modified Einstein field

equation�
R��� 1

2
Rg��

�
þ�g��þm2

gðX��þ�4Y��Þ ¼ 8�GT��;

(2.12)

with X�� and Y�� defined as

TUAN Q. DO AND W.F. KAO PHYSICAL REVIEW D 88, 063006 (2013)

063006-2



X�� ¼ K�� � ½K�g�� � ð�3 þ 1Þ
�
K2

�� � ½K�K��

þ ½K�2 � ½K2�
2

g��

�
þ ð�3 þ �4Þ

�
�
K3

�� � ½K�K2
�� þ 1

2
K��f½K�2 � ½K2�g

�

� �3 þ �4

6
f½K�3 � 3½K�½K2� þ 2½K3�gg��;

(2.13)

Y�� ¼ �L4

2
g�� þ ~Y��; (2.14)

~Y�� ¼ 1

6
½K�3K�� � 1

2
½K�½K2�K��

þ 1

3
½K3�K�� � 1

2
½K�2K2

��

þ 1

2
½K2�K2

�� þ ½K�K3
�� �K4

��: (2.15)

In order to derive the variational equations associated with
the massive terms, we will introduce a new and simple
method to derive the variational equations. We will also
show a few general properties of this model with the new
method that will be presented shortly.

Note first that the massive terms will remain ghost-free
with a more general fiducial metric. Therefore, we will
consider the effect of a more general fiducial metric. By
introducing this metric, an additional set of field variables
and hence more degrees of freedoms will be introduced to
the system. The Lagrangian of the system will then be a
functional of the physical metric g��, the Stückelberg

fields �a, and the fiducial metric fab. The Stückelberg
fields �a and the fiducial metric fab will be treated simi-
larly as extra auxiliary fields here. A complete set of field
equations can thus be obtained by varying the physical
metric g��, the Stückelberg fields �

a, and also the fiducial

metric fab.
We will now show that the reference metric should be

chosen in a consistent way to adopt a consistent set of
solutions to a set of Euler-Lagrange equations derived from
all fields involved. Indeed, we can vary the full Lagrangian
in order to derive the field equations. To be more specific,
we can show that, for the massive terms LM,

�ð ffiffiffi
g

p
LMÞ ¼ 1

2

ffiffiffi
g

p
LMg

���g�� þ ffiffiffi
g

p �LM

�K�
�

�K�
�

¼ 1

2

ffiffiffi
g

p
LM½g�1�g� � ffiffiffi

g
p ½A�M�; (2.16)

with A�
� � �LM=�K�

�. Note that the massive

Lagrangian LM is defined as

LM ¼ L2 þ �3L3 þ �4L4: (2.17)

From the definition M2 ¼ g�1Z in Eq. (2.5), we can show
that

ð�MÞMþM�M ¼ ð�g�1ÞZþ g�1�Z: (2.18)

Therefore, we will have

A�MþAMð�MÞM�1 ¼ Að�g�1ÞZM�1 þAg�1ð�ZÞM�1:

(2.19)

Taking the trace, we can derive the results

2½A�M� ¼ �½MAg�1�g� þ ½MAZ�1�Z�
¼ �2½t�g� þ 2½s�Z�: (2.20)

Here we have used the fact that ½A;M� ¼ 0; namely, A and
M commute with each other. This follows from the fact that
A can be shown to be a polynomial functional of M. Note
that we have also defined some new matrices B, t, and s as

B�
� ¼ M�

�A
�
�; t ¼ ðBg�1 þ g�1BTÞ

4
;

s ¼ ðBZ�1 þ Z�1BTÞ
4

(2.21)

for convenience. We have also written the energy momen-
tum tensors s and t as apparently symmetric tensors. This is
partly why the definitions of t and s are a little bit more
complicated than what we expected. Consequently, we
have

2ffiffiffi
g

p �ð ffiffiffi
g

p
LMÞ ¼ LM½g�1�g� þ ½t�g� � ½s�Z�: (2.22)

The last term in Eq. (2.22) can be expanded as

½s�Z� ¼ s���ðfab@��a@��
bÞ

¼ s��fð�fabÞ@��a@��
b þ 2fab@��

a@���
bg:
(2.23)

Taking the integration-by-parts of s��fab@��
a@���

b,

Eq. (2.23) reduces to

½s�Z� ¼ s��ð�fabÞ@��a@��
b � 2D�ðs��fab@��

aÞ��b:

(2.24)

Here the covariant derivative shows up as an effect of theffiffiffi
g

p
volume factor in the full set of actions. As a result,

we have

2ffiffiffi
g

p �ð ffiffiffi
g

p
LMÞ¼ðLMg

��þt��Þ�g���s��@��
a@��

b�fab

þ2D�ðs��fab@��
aÞ��b: (2.25)

Note that the variational equations of the Stückelberg field
read

D�ðs��fab@��
aÞ ¼ 1

2
s��@��

a@��
cð@�0facÞ�b0: (2.26)
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In addition, the variational equation of the fiducial metric
fab is

s��@��
a@��

b ¼ 0: (2.27)

If the matrix @��
b is nonsingular, the inverse of this matrix

exists. Note that, for example, under the unitary gauge,
@��

b ¼ ��
b is nonsingular. We can then show that the

fiducial metric equation is simply

s�� ¼ 0: (2.28)

It is apparent at this point that, if the matrix @��
b

is nonsingular, the solution to the fiducial metric
equations is simply s ¼ 0. In addition, the solution to
the s ¼ 0 equation is a subset of the solutions to
the Stückelberg field equations D�ðs��fab@��

aÞ ¼
ð1=2Þs��@��

a@��
cð@�0facÞ�b0.

In other words, the solutions to the fiducial metric
equations can be thought of as the most probable or more
stable subset of solutions to the full set of constraint
equations if the matrix @��

b is nonsingular.
In addition, the Stückelberg field �a is introduced to

simulate the effect of a gauge parameter. And a change of
the Stückelberg field can be represented by a change of the
fiducial metric once we allow the fiducial metric fields to
be arbitrary fields. Indeed, it can be shown that we can
transfer the change of �a (! �0a) to f0ab by the relation

Z�� ¼ fab@��
a@��

b ¼ f0ab@��
0a@��0b: (2.29)

In particular, for �a ¼ xa, we have

f�� ¼ f0ab@��
0a@��0b: (2.30)

As a result, we can faithfully embed the dynamics of the
Stückelberg field to the dynamics of a more general fidu-
cial metric field. As a result, the fiducial metric equations
s ¼ 0 can be treated as a set of complete equations govern-
ing the central effect of the massive Lagrangian. We will
show later that the choice of fiducial metric cannot be
random. The choice of fiducial metric has to obey the
variational equations. This will impose a constraint on
the choice of the fiducial metric such that it will work
coherently with the physical metric.

A. Effective cosmological constant

We can also show that s�� ¼ 0 will imply t�� ¼ 0 too.

The proof is quite straightforward. Indeed, we can show
that

B ¼ �Z�1BTZ ¼ �M�2ðg�1BTgÞM2 (2.31)

if s ¼ 0 (or BZ�1 ¼ �Z�1BT). Here we have also used the
definition M2 ¼ g�1Z (hence Z ¼ gM2) to derive the
above equation. Hence we come to the conclusion that

g�1BTg ¼ �M2BM�2 ¼ �B (2.32)

which is equivalent to the statement t ¼ 0 (or Bg�1 ¼
�g�1BT). Note that we have used the commuting property
½B;M2� ¼ 0. This also follows directly from the fact that
BðKÞ ¼ MAðKÞ is also a polynomial functional of M.
Hence we prove that the fiducial metric equation

s�� ¼ 0 implies that part of the massive-related energy
momentum tensor t�� also vanishes automatically. As a
result, the Bianchi identity ensures that the energy momen-
tum tensor associated with the massive terms is conserved:

D�T
��
M � � 1

2
D�ðLMg

�� þ t��Þ ¼ 0 (2.33)

with T��
M � � 1

2 ðLMg
�� þ t��Þ the energy momentum

tensor associated with the massive Lagrangian LM.
Therefore, we are led to the result

@�LM ¼ �D�t
�� ¼ 0 (2.34)

provided that t�� ¼ 0. Therefore, we have shown that for a
large class of fiducial metrics fab, the effect of the massive
action is nothing more than a contribution as an effective
cosmological constant.
In summary, we have shown that the fiducial equation

s�� ¼ 0 will imply t�� ¼ 0. On the other hand, it is also
true that t�� ¼ 0 implies s�� ¼ 0 and hence the fiducial
metric equation will be observed too. Therefore, the van-
ishing of the energy momentum tensor t�� ¼ 0will also be
consistent with the complete set of equations.
Note also that, with the matrix notation and new

approach introduced in this section, we can derive the
variational equations (2.12) and (2.14) straightforwardly.
In conclusion, we are left with the modified Einstein
equation (2.12) of the following form:�

R�� � 1

2
Rg��

�
þ�g�� �

m2
g

2
LMg�� ¼ 0 (2.35)

once an explicit fiducial metric is assumed. We will then
need to compute the explicit value of the effective cosmo-
logical constant �M ¼ �m2

g=ð2LMÞ from the constraint

equation s�� ¼ 0.

B. Alternative proof

For heuristic reasons, we will introduce another way of
parametrizing the matrix algebra involved in this section.
This will provide another view on the proof that the mas-
sive terms will serve as an effective cosmological constant.

Indeed, we can define the hatted tensor K̂�� ¼ g��K
�
�

via the matrix formulation K̂ ¼ gK. In short, we are trying
to bring the matrix from a mapping of the type T(1,1)
tensor to the type T(0,2) tensor. This will make the matrix
multiplication and transport operation more transparent.
The multiplication of two hatted matrices will then be

defined as Âg�1B̂. Therefore, we have

gM2 ¼ ðgMÞg�1ðgMÞ ¼ M̂g�1M̂; (2.36)
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K̂ ¼ g� M̂; (2.37)

ðK̂Þ2 ¼ K̂g�1K̂: (2.38)

If M̂ is chosen to be symmetric, K̂ will also be symmetric.
Hence there exists a similar transformation that diagonal-

izes the matrix K0 ¼ SK̂S�1.
Upon doing this, we can write

t̂ ¼ 1

2
B̂; (2.39)

ŝ ¼ 1

2
B̂ � Ẑ�1 ¼ 1

2
B̂g�1Ẑ�1 (2.40)

such that t̂ and ŝ are both symmetric. This follows directly

from the fact that fðM̂Þg�1fðM̂Þ is symmetric if M̂ is
symmetric. As a result, in this hatted coordinate, the field
equations read

D�½LMg
�� þ t̂��� ¼ 0; (2.41)

ŝ ¼ 0: (2.42)

Therefore, the vanishing of ŝ ¼ 0 implies immediately

that B̂ ¼ 0, and hence t̂ ¼ 0. As a result, the massive
LagrangianLM acts as an effective cosmological constant.

III. SOME ADDITIONAL PROPERTIES
OF THE FIDUCIAL FIELD EQUATIONS

A. The recurrence relation of the massive Lagrangian

It is known that the quartic massive terms do not con-
tribute to the field equations. We will briefly review the
algebra hidden in the determinant of M ¼ I� K. The
determinant of an n� n matrix Mab can be shown as

jMj � detM

¼ 1

n!
ea1;a2;...;aneb1;b2;...;bnMa1b1Ma2b2 � � �Manbn (3.1)

with the help of the flat Levi-Civita tensor ea1;a2;...;an that is
totally symmetric in n dimensions. The inverse of the
matrix can thus be shown as

Mab ¼ ~Mba

jMj (3.2)

with ~Mba the cofactor of Mab defined as

~Mab¼ sðabÞ
ðn�1Þ!e

a;a2;...;aneb;b2;...;bnhMabiMa2b2Ma3b3 ���Manbn :

(3.3)

sðabÞ in the above definition represents the sign derived
from the permutation of a and b with respect to the
indices ai and bi from their original position in order
to bring the ordered series from ða2; a3; . . . ; a; . . . ; an;
b2; b3; . . . ; b; . . . ; bnÞ to ða;a2; a3; . . . ; an;b;b2; b3; . . . ; bnÞ.

In addition, the notation hMabi denotes the omission of the
matrix elementMab from the definition of the cofactor ~Mab

in Eq. (3.3). It can therefore be shown that MabMbc ¼ �a
c

by direct calculation.
Now let us assume that n ¼ 4 in four-dimensional space.

We can show that

jMj ¼ 1

2

X4
i¼0

ð�1ÞiLi (3.4)

with L0 ¼ 2, L1 ¼ 2½K� and
L2 ¼ ½K�2 � ½K2�;
L3 ¼ 1

3
½K�3 � ½K�½K2� þ 2

3
½K3�;

L4 ¼ 1

12
½K�4 � 1

2
½K�2½K2� þ 1

4
½K2�2 þ 2

3
½K�½K3�

� 1

2
½K4�;

defined earlier in Eqs. (2.9), (2.10), and (2.11). Therefore,
the massive Lagrangian is nothing more than the polyno-
mial components of 2jMj. In addition, the variation of jMj,
or the variation equation ofLn, with respect to K

a
b, can be

shown to obey the following equations:

�jMj
�Ka

b

Ka
c ¼ jMj�b

c � ~Mc
b ¼ jMj�b

c � �jMj
�Kc

b

: (3.5)

Note that we have written the upper and lower indices
correctly in order to respect the original tensor properties.
These equations can be written as a set of recurrence
relations order by order according to their power in
OðKÞ. The result is

�Ln

�Ka
b

Ka
c ¼ Ln�1�

b
c � �Ln�1

�Ka
b

Ka
c; (3.6)

by collecting all OðKnÞ components in the equation. In
writing the above equation, we have resummed the matrix
component Ka

b as a type Tð1; 1Þ tensor. It is easy to show

that the equations derived above also hold for Ka
b. Note

that this recurrence relation can also be checked directly
from the fiducial metric equations. In particular, the n ¼ 5
recurrence relation implies immediately that

L4�
b
c � �L4

�Ka
b

Ka
c ¼ 0 (3.7)

since the expansion of jMj in Eq. (3.4) terminates when
n � 5, namely, L5 ¼ 0. Equation (3.7) shows exactly that
the OðK4Þ contribution to the energy momentum tensor
vanishes identically. It also shows that the field equations
given earlier obey a unique recurrence relation that also
keeps the physics free of the FP ghost.
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B. The traceless quartic terms

Note that we can also show that the trace of Y�� vanishes

in an alternative approach. This is in fact a general feature
of the massive terms. For heuristic reasons, we will present
the proof as follows. The tensor Z�� is defined as

Z�� � Mab@��
a@��

b (3.8)

and M2 ¼ g�1Z. If we perform a global scale transforma-
tion with a scale factor �,

�a ! �0a ¼ ��1�a; (3.9)

g�� ! g0�� ¼ �2g��; (3.10)

we will have the result thatffiffiffi
g

p
LMðM4Þ (3.11)

is invariant under the scale transformation. Here the quartic
term LMðM4Þ denotes all components of the massive term
LM that are quartic inM. As a result, we can show that the
energy momentum tensor associated with the M-quartic
part LMðM4Þ is traceless. To be more specific, we have

�ð ffiffiffi
g

p
LMðM4ÞÞ ¼ �ð ffiffiffi

g
p

LMðM4ÞÞ
�g��

�g��

¼ 2
�ð ffiffiffi

g
p

LMðM4ÞÞ
�g��

g�����¼ 0: (3.12)

Therefore, the trace of the energy momentum tensor asso-
ciated with the M-quartic part,

�ð ffiffiffi
g

p
LMðM4ÞÞ
�g��

g�� ¼ 0; (3.13)

does vanish. And the reason that the whole quartic term
Y�� is traceless is because Y�� always appears in a combi-

nation as a functional of K. The traceless Y�� means that
~Y�� can be written as

~Y�� ¼ 1

4
~Yg�� (3.14)

with ~Y the trace of ~Y��, i.e., ~Y � ~Y��g
��.

IV. BIANCHI TYPE I PHYSICAL METRIC AND
FIDUCIAL METRIC

In order to study the nontrivial contribution from a more
general reference metric fab, we will assume that the
reference metric belongs to the Bianchi type metric similar
to the physical metric. We will also try to find analytic
solutions with the Stückelberg scalar fields chosen in the
unitary gauge �a ¼ xa. As shown earlier, we will treat the
reference metric and the Stückelberg scalar fields as aux-
iliary fields. A variation method will then be performed to
obtain the field equations along with the physical metric.

It was shown earlier that the fiducial equation s ¼ 0 will
naturally lead to the result t ¼ 0. This set of consistent
solutions will hence lead to the result LM ¼ constant.
Thus, the contribution from the massive terms will simply
act as an effective cosmological constant to the physical
metric equation. In conclusion, we are left with the modi-
fied Einstein equation (2.12) in the following form:�

R�� � 1

2
Rg��

�
þ ð�þ�MÞg�� ¼ 0: (4.1)

Therefore, we need to compute the exact value of the
effective cosmological constant �M ¼ �m2

gLM=2.

We will try to study the effect of the massive gravity
theory with the Bianchi type I physical metric g�� and

similarly the Bianchi type I fiducial metric fab represented
by Z��:

g��dx
�dx� ¼�N2

1ðtÞdt2 þ exp ½2�1ðtÞ � 4	1ðtÞ�dx2
þ exp ½2�1ðtÞ þ 2	1ðtÞ�ðdy2 þ dz2Þ; (4.2)

Z�� ¼ �N2
2ð�0Þ@��0@��

0

þ exp ½2�2ð�0Þ � 4	2ð�0Þ�@��1@��
1

þ exp ½2�2ð�0Þ þ 2	2ð�0Þ�
� ð@��2@��

2 þ @��
3@��

3Þ; (4.3)

with N1 and N2 the lapse functions. Note that N1 is
introduced here to obtain the Friedmann equation from
its variational equation (or the Euler-Lagrange equation)
[4,9,28]. It can be set as N1 ¼ 1 by reparametrizing the
time coordinate. Note that we cannot do the same thing on
N2 once the time coordinate has been chosen as N1 ¼ 1.
Therefore, N2 will be left as a free parameter to be solved
from the field equation.
The variational equation of the physical metric will lead

to the following equations:

3ð _�2
1 � _	2

1Þ �� ¼ �M; (4.4)

2 €�1 þ 3 _�2
1 þ 3 _	2

1 �� ¼ �M; (4.5)

€	1 þ 3 _�1 _	1 ¼ 0: (4.6)

Here the result LM will serve as an effective cosmological
constant LM ¼ �2�M=m

2
g under the constraint fiducial

metric equation derived from s�� ¼ 0.

In order to derive the constraint equations, wewill define
the following parameters as in Ref. [21]:

½K�n ¼ ð4� 
� A� 2BÞn; (4.7)

½Kn� ¼ ð1� 
Þn þ ð1� AÞn þ 2ð1� BÞn; (4.8)


 ¼ N2

N1

; A ¼ ���2; B ¼ ��; (4.9)
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� ¼ exp ½�2 � �1�; � ¼ exp ½	2 � 	1�; (4.10)

R ¼ 6

N3
1

½� _N1 _�1 þ N1ð €�1 þ 2 _�2
1 þ _	2

1Þ�: (4.11)

Note that due to the structure of the massive terms (i.e.,
they are functionals of ½Kn�) the fiducial metric is coherent
with the physical metric in combinations as � and �. We
will come back to this point later to show that the choice of
fiducial metric fab has to work coherently with the chosen
physical metric g�� in order to accommodate the effect

LM ¼ constant.
With these notations, the massive terms in Eqs. (2.9),

(2.10), and (2.11) can be shown as

L2 ¼ 2½Bð2Aþ BÞ þ ð
� 3ÞðAþ 2BÞ þ 3ð2� 
Þ�;
(4.12)

L3 ¼ �2½AB2 þ 3
� 4þ ð3� 2
ÞðAþ 2BÞ
þ ð
� 2ÞBð2Aþ BÞ�; (4.13)

L4 ¼ 2ð
� 1ÞðA� 1ÞðB� 1Þ2: (4.14)

Hence we can show that

LM � L2 þ �3L3 þ �4L4

¼ 2½ð

2 � 
1ÞðAþ 2BÞ þ ð
2 � 

3ÞBð2Aþ BÞ
þ ð
�4 � 
3ÞAB2 � 

1 þ ð3
1 � 3
2 þ 
3Þ�;

(4.15)

with the parameters 
i defined as [12,13]


1 ¼ 3þ 3�3 þ �4; 
2 ¼ 1þ 2�3 þ �4;


3 ¼ �3 þ �4:
(4.16)

Note that the unitary gauge condition has been used in
deriving the above equations.

V. THE CONSTRAINT EQUATIONS

We will try to evaluate the effective cosmological con-
stant �M in this section. Note that the fiducial metric only
shows up in the massive Lagrangian LM. Hence we only
need to obtain the variational equation by varyingLM with
respect to the fiducial metric fab. This can be done effec-
tively by varying with respect to N2, �2 and 	2. The
constancy of the massive Lagrangian is also apparent as
a unique property that there is no time derivative in the
fiducial metric. As a result, the variational equations

@LM

@N2

¼ 0;
@LM

@�2

¼ 0;
@LM

@	2

¼ 0 (5.1)

simply become a statement that LM is independent of N2,
�2 and 	2.

In addition, the variational equations can also be
obtained effectively by the variation with respect to an
equivalent set of new variables A, B and 
. To be more
specific, we can show that the variational equations are
related by

@L
@N2

¼ @L
@


¼ 0;
@L
@�2

¼ A
@L
@A

þ B
@L
@B

¼ 0;

@L
@	2

¼ �2A
@L
@A

þ B
@L
@B

¼ 0: (5.2)

Because A ¼ ���2 > 0, B ¼ �� > 0 as shown in
Eq. (4.9), it is straightforward to show that the variational
equations with respect to N2, �2 and 	2 [(5.1)] are equiva-
lent to the variational equations with respect to A, B and 
:

@L
@


¼ 0;
@L
@A

¼ 0;
@L
@B

¼ 0: (5.3)

As a result, the fiducial equations can be shown as

@L
@


¼ �2m̂½
1 � 
2ðAþ 2BÞ
þ 
3Bð2Aþ BÞ � �4AB

2� ¼ 0; (5.4)

@L
@A

¼ 2m̂½ð
�4 � 
3ÞB2

þ 2ð
2 � 

3ÞB� 
1 þ 

2� ¼ 0; (5.5)

@L
@B

¼ 4m̂½ð
�4 � 
3ÞAB
þ ð
2 � 

3ÞðAþ BÞ � 
1 þ 

2� ¼ 0 (5.6)

with m̂ ¼ M2
pe

3�1N1m
2
g=2. We can thus combine Eqs. (5.5)

and (5.6) to derive

ðB� AÞ½
2 � 

3 � ð
3 � 
�4ÞB� ¼ 0: (5.7)

A. A ¼ B solutions

Note that A ¼ B is a trivial solution to the above equa-
tion. Indeed, A ¼ B implies that � ¼ 1 and hence 	1 ¼
	2. This means that the anisotropy factors of the physical
metric and fiducial metric agree with each other. In addi-
tion, the constraint equations (5.4) and (5.5) reduce to

ð1� AÞ½3þ 3ð1� AÞ�3 þ ð1� AÞ2�4� ¼ 0; (5.8)

2Aþ N2 � 3þ ð1� AÞðA� 3þ 2N2Þ�3

þ ðN2 � 1Þð1� AÞ2�4 ¼ 0: (5.9)

It is easy to show that the solution N2 ¼ A will turn
Eq. (5.9) into Eq. (5.8). Therefore, N2 ¼ A is a solution
to the above equations. As a result, Eq. (5.8) implies that
A ¼ 1 or

3þ 3ð1� AÞ�3 þ ð1� AÞ2�4 ¼ 0: (5.10)
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The set of solutions with A ¼ N2 ¼ 1 is a trivial solution
with a vanishing effective cosmological constant �M ¼ 0.
This corresponds to the case in which the fiducial metric is
identical to the physical metric.

In addition to the trivial solutions A ¼ N2 ¼ 1,
Eq. (5.10) also admits two more solutions:

A ¼ N2 ¼ 1þ 2�3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�2

3 � 12�4

q
2�4

; (5.11)

requiring the constraint on the field parameters 3�2
3 > 4�4.

In addition, the effective cosmological constant �M ¼
�m2

gLM=2 with

LM ¼ 2ðA� 1Þ2½�4A
2 � 2ð2�3 þ �4ÞA

þ 4�3 þ �4 þ 6�: (5.12)

With the solution A ¼ B ¼ N2 given by Eq. (5.10) we can
show that the effective cosmological constant is

�M ¼ 3m2
g

2�3
4

h
9�4

3 þ 6�2
4 � 18�2

3�4

� �3ð3�2
3 � 4�4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3�2

3 � 4�4Þ
q i

: (5.13)

B. A � B solutions

For the case where A � B (or � � 1), we can show that
Eq. (5.7) implies

B ¼ 
2 � N2
3


3 � N2�4

: (5.14)

At this point, we note that the solution s�� ¼ 0 will imply

that the massive Lagrangian is a constant independent of
time. This will imply, for the Bianchi type I fiducial metric
space, that A, B and N2 are all constants in time. This then
implies that �2 / �1 and 	2 / 	1.

In fact, we can show that Z�� ¼ f�� ¼ fab�
a
��

b
� under

the unitary gauge�a ¼ xa. Therefore, the definitionM2 ¼
g�1Z implies that ðM2Þ�� ¼ g��f��. Therefore, LMðMÞ,
a functional of ½Mn�, for some integer n, is then a func-

tional of ½ðg�1ZÞn=2�. Hence, the result LM is a constant

implies that ½ðg�1ZÞn=2� or its appropriate combinations
must be constants too.

In the model studied in this section, the physical metric
space is chosen as the Bianchi type I space; the constancy
of the massive terms implies that the consistent metric
choice will have to be of a compatible type metric. As a
result, A, B and N2 can remain constants once �2 / �1 and
	2 / 	1 are set as the fixed point solutions.

Therefore, the choice of unitary gauge and the fiducial
metric equation s�� ¼ 0will only be a consistent choice of

solutions if g��f�� turns out to be compatible with the

requirement that ½ðg�1ZÞn=2� or its appropriate combina-
tions are all constants too. This indicates that the fiducial
metric and physical metric must be chosen in a consistent

manner. For example, when we have set the physical
metric space as the Bianchi type I space, the consistent
choice of fiducial metric will have to be a similar Bianchi
type I metric in order to accommodate a consistent solution
under the unitary gauge.
Note also that s�� ¼ 0 is a solution to the fiducial metric

equation; even the Stückelberg field is chosen in the uni-
tary gauge. The only requirement is the existence of non-
singularity of the matrix @��

a. Therefore, the s�� ¼ 0

solution remains an appropriate solution to the whole
system. As a result, this set of solutions will cause the
massive terms to act as an effective cosmological constant.
We will show in the next section that the s�� ¼ 0 solution

tends to be a stable solution against the perturbations to the
whole system.
In summary, a simple set of solutions under the unitary

gauge chosen for the Stückelberg field will set the massive
terms as an effective constant. This choice of gauge cannot
however be made independent of the choice of a coherent
set of physical and fiducial metrics. In short, the fiducial
metric has to be in the same class as the physical metric in
order to turn the massive terms into an effective cosmo-
logical constant, as in the example demonstrated in this
section.
Substituting this solution into Eq. (5.5) or Eq. (5.6), we

can derive an equation for N2:

ð
2
3 � �4
2ÞN2

2 þ ð�4
1 � 
2
3ÞN2 þ 
2
2 � 
1
3 ¼ 0:

(5.15)

With the definitions of the 
i’s in Eq. (4.16), we can write
Eq. (5.15) as

ð�2
3 � �4ÞN2

2 � ð2�2
3 þ �3 � 2�4ÞN2 þ �2

3

þ �3 � �4 þ 1 ¼ 0: (5.16)

Therefore, the solutions to this equation are

N�
2 ¼ 1þ �3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3�2

3 þ 4�4

q
2ð�2

3 � �4Þ
: (5.17)

Therefore, the constraint for the coupling constants �3 and
�4 is �4 > 3�2

3=4. Note that N2 will be taken as a positive

constant for convenience. This is the constraint for the
existence of the Bianchi type I solutions we study in this
paper. Therefore, Eq. (5.4) implies that

A ¼ N2; (5.18)

and hence

�¼ exp ½�2��1� ¼ ðAB2Þ13; �¼ exp ½	2�	1� ¼
�
B

A

�1
3
:

(5.19)

As a result, we can evaluate the effective cosmological
constant as
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�M ¼ �m2
g

2
ðL2 þ �3L3 þ �4L4Þ ¼

m2
g

�4 � �2
3

: (5.20)

It is apparent that �4 � �2
3 > 0 is the requirement that the

effective cosmological constant is positive. On the other
hand, it will contribute as a negative cosmological con-
stant. In particular, it will cancel the effect of the genuine
cosmological constant if � ¼ ��M. Or equivalently,

�2
3 � �4 ¼

m2
g

�
: (5.21)

In summary, we have two different sets of solutions
corresponding to the cases (i) A ¼ B ¼ N2 and
(ii) A ¼ N2 � B, with the associated effective cosmologi-
cal constant given, respectively, by

�M ¼ 3m2
g

2�3
4

h
9�4

3 þ 6�2
4 � 18�2

3�4

� �3ð3�2
3 � 4�4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3�2

3 � 4�4Þ
q i

(5.22)

and

�M ¼ �m2
g

2
ðL2 þ �3L3 þ �4L4Þ ¼

m2
g

�4 � �2
3

: (5.23)

Note that the first set of solutions A ¼ B ¼ N2 exists only
when 3�2

3 � 4�4 > 0, while the second set of solutions

A ¼ N2 � B exists only when 3�2
3 � 4�4 < 0. Hence

solutions exist for all physical parameters �3 and �4.
Different combinations will just correspond to different
choices of the fiducial metric that can couple to the massive
gravity theories.

VI. ANISOTROPIC COSMOLOGICAL SOLUTION
AND ITS STABILITY

Note that we are left with the field equations (4.6), (4.7),
and (4.8), which could be written as

3ð _�2
1 � _	2

1Þ ¼ �1 ¼ �þ�M; (6.1)

2 €�1 þ 3 _�2
1 þ 3 _	2

1 ¼ �1; (6.2)

€	1 þ 3 _�1 _	1 ¼ 0: (6.3)

Eliminating the _	2
1 terms from Eqs. (6.1) and (6.2), we will

have the following ordinary differential equation for �1:

€�1 þ 3 _�2
1 ¼ �1: (6.4)

This equation can be solved by defining the volume
factor V ¼ a1a2a3 ¼ exp ½3�1�. Indeed, we can write
Eq. (6.4) as

€V ¼ 3�1V � 9H2
1V; (6.5)

which is a linear equation in V. Here we have writtenH2
1 ¼

�1=3 as the Hubble parameter. This can be solved to give a
linear combination of the exponential solutions:

V ¼ a exp ½3H1t� þ b exp ½�3H1t�: (6.6)

We can therefore show that exp ½3�1� becomes

V ¼ exp ½3�1� ¼ exp ½3�0�
�
cosh 3H1tþ _�0

H1

sinh 3H1t

�
(6.7)

with �0 ¼ �1ðt ¼ 0Þ and _�0 ¼ _�1ðt ¼ 0Þ the appropriate
initial values. In addition, the field equation (6.3) can be
shown to give the following solution:

_	1 ¼ k exp ½�3�1� (6.8)

with k an integration constant. Moreover, the Friedmann
equation implies that the following boundary condition has
to be observed:

_�2
0 �H2

1 ¼ k2 exp ½�6�0�: (6.9)

Equation (6.8) can be integrated directly to give

	1ðtÞ ¼ 	0 þ
�
1

3

��
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 þH1

p
exp ½3H1t� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 �H1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 þH1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 �H1

p
�

þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 þH1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 �H1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 þH1

p
exp ½3H1t� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�0 �H1

p
��

(6.10)

with	0 ¼ 	1ð0Þ. With the solution of 	1 shown above, we
can readily show that the Friedmann equation (6.1) gives
nothing more than the boundary condition (6.9). All time-
dependent terms just cancel each other. As a result, we
show that the exact solutions (6.8) and (6.10) are a set of
complete solutions to the field equations.

A. Stability analysis

Now we are ready to perturb the field equations in order
to verify whether the solutions we found are stable or not.
The Einstein equations take the following form: G�� ¼
�g�� þ T��. The perturbation of the Einstein tensor �G��

will be related to the perturbation of T�� ¼ Lmg�� þ t��.

But we have already shown that the fiducial equation
s�� ¼ 0 implies the vanishing of t��. Once the perturba-

tion �s�� ¼ 0 is included in the full set of the perturbation

equations, we only need to include the effect of the
perturbation derived from LM.
In addition, we have also shown that the fiducial metric

equation s�� ¼ 0 reduces to a set of equations:

�LM=�N2 ¼ �LM=�A ¼ �LM=�B ¼ 0. This set of
equations also agrees with the condition that LM ¼
constant. Therefore, the perturbation of the massive term
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LM will be the same as the perturbation of the fiducial
metric. Therefore, the complete set of perturbations will
hence be equivalent to the set of perturbation equations
derived from the Einstein equations by assuming �1 is a
constant irrelevant to the massive contents of the fiducial
metric.

We introduce the exponential perturbations of the
following form:

��1 ¼ C� exp ½�t�; �	1 ¼ C	 exp ½�t�;
�A ¼ CA exp ½�t�; �B ¼ CB exp ½�t�;

�N2 ¼ CN2
exp ½�t�:

(6.11)

The perturbation of Eqs. (6.1), (6.8), (5.4), (5.5), and (5.6)
around the cosmological solution defined by Eqs. (6.7),
(6.10), (5.14), (5.17), and (5.18) will lead to the following
perturbation equations written in matrix form:

D

C�

C	

CA

CB

CN2

0
BBBBBBBB@

1
CCCCCCCCA
�

A11 A12 0 0 0

A21 A22 0 0 0

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

2
666666664

3
777777775

C�

C	

CA

CB

CN2

0
BBBBBBBB@

1
CCCCCCCCA
¼ 0;

(6.12)

with Aijð�Þ the perturbation function of �. Note that we

have eliminated the perturbation of the energy momentum
tensor derived from the massive terms from the perturba-
tion of �1 and 	1. These effects have already been
included in the perturbations of A, B and N2.

In order to admit a nontrivial solution to the perturbation
equation, D has to be singular, i.e., detD ¼ 0. It is there-
fore easy to see that the perturbation effect of the massive
term decouples from the perturbation of the physical
metric.

In addition, the perturbation derived from the s�� ¼ 0

part does not have any time derivative in it. Therefore, the
perturbation of this part can only contribute to the Oð�0Þ
coefficient. Therefore, the perturbation of the massive
terms will not have any impact on the stability of the fixed
point solutions, Eqs. (6.7) and (6.10). In short, the massive
terms have nothing to do with the stability of the solution
we found. This is true for all solutions of the form s�� ¼ 0

as long as it also implies the existence of the constraint
LM ¼ constant.

Ignoring the effect of the massive term, the stability
analysis reduces to the perturbation of �1 and 	1:

D1

C�

C	

 !
� A11 A12

A21 A22

" #
C�

C	

 !
¼ 0: (6.13)

As a result, we can show that

D1 ¼
� _�1; �� _	1

3 _	1; �

" #
: (6.14)

In order to admit a nontrivial solution to the perturbation
equation, D1 has to be singular, i.e., detD1 ¼ 0.
Therefore, this requirement leads to the equation

�ð _�1�þ 3 _	2
1Þ ¼ 0: (6.15)

Thus, the perturbation equations admit two solutions,
� ¼ 0 and

� ¼ �1 ¼ � 3k2

_�1 exp ½6�1� : (6.16)

Since all solutions are nonpositive, the perturbation
indicates that the solutions we found are in fact stable
solutions. One also notes that _�1 ! H1 and exp ½�1� !
1 at future infinity for expanding solutions. Therefore, the
solution �1 tends to vanish at time infinity. In addition,
we have also shown that, for this class of solutions in
which the massive terms act as an effective cosmological
constant, the massive terms will not affect the stability of
the system.
Note that we can also perform the perturbation on the

Stükelberg field along with the perturbations of the other
fields. We will show that the result will not affect the
stability analysis shown above. In fact, the perturbation
of the Stükelberg field is equivalent to a different gauge
choice. The gauge choice will not affect the stability
analysis.
For heuristic reasons, we can also show this result from

an observation that the perturbation on the Stükelberg field
is equivalent to the perturbation on the s00 component
of the fiducial metric equation. Indeed, it can be shown
that the consistent time-dependent perturbation of the
Stükelberg field against the unitary gauge, �a !
xa þ ’aðtÞ is then ��a ¼ ’aðtÞ. In addition, the perturba-
tion on Z�� ¼ fab@��

a@��
b gives �Z�� ¼ fa�@�’

a þ
fa�@�’

a þ fab@�’
a@�’

b. Hence we can show that the

perturbation �Z�� contributes only to the following

components:

�Z00 ¼ f00½2 _’0 þ ð _’0Þ2� þX3
i¼1

fiið _’iÞ2; (6.17)

�Z0i ¼ �Zi0 ¼ fii _’
i: (6.18)

All massive terms are functionals of ½Mn�, for some
integer n. Since g is diagonal in the Bianchi type I space,
we can show that the off-diagonal terms in M2ð¼ g�1ZÞ
vanish with respect to the perturbation of the Stükelberg
field. To be more specific, we can show that
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M2¼

N2
2½1þ2 _’0þð _’0Þ2��P

3
i¼1fiið _’iÞ2; 0; 0; 0

0; A2; 0; 0

0; 0; B2; 0

0; 0; 0; B2

2
666664

3
777775;

(6.19)

when the Stükelberg field is perturbed away from the
unitary gauge condition. Therefore, the perturbation of
the matrix M can only affect the M00 component. The
result is the linear perturbation given by

�M00

M00

¼ _’0 ¼ � _�0: (6.20)

Note that the massive terms only depend on the _�a. Hence,
the time-dependent perturbation of the Stükelberg field �a

will effectively go through the perturbation of _�a. The
result shown above simply establishes the claim that
the perturbation of the Stükelberg field is equivalent to
the perturbation of the M00 component of the matrix M.
Therefore, the perturbation of the Stükelberg field equation

is equivalent to the perturbation equation s00 �
�LM=�M00 � �LM=� _�0 ¼ 0. Hence, the effect of the
perturbation of the Stükelberg field has the same contribu-
tion as the perturbation of f00, with the only difference

being that � _�0 replaces �f00. This result indeed supports
the proof shown earlier that the perturbation of the
Stükelberg field will not affect the stability of the massive
gravity theory.

On the other hand, the Stükelberg field equation is,
from (2.24),

D�ðs��fab@��
aÞ ¼ 1

2
s��@��

a@��
cð@�0facÞ�b0: (6.21)

Therefore, the perturbation equation against the back-
ground solution s�� ¼ 0 and �a ¼ xa is

D�ðð�s��Þf�bÞ ¼ 1

2
�s��ð@�0f��Þ�b0: (6.22)

Hence, the solution to the �s�� ¼ 0 perturbation equation

is also a solution to the perturbation of the Stükelberg field
equation.

Both approaches show that the perturbation of the
Stükelberg field equation is equivalent to the perturbation
of the s00 ¼ 0 equation. Hence, the perturbation of the
Stükelberg field has the same contribution as the perturba-

tion of f00, with the only difference being that � _�0 repla-
ces �f00 ¼ �N2. Therefore, the perturbation of the
Stükelberg field equation will effectively be decoupled
from the matrix determinant of D1 defined above.

B. Effect of scalar fields

Motivated by the work in Ref. [26], we would like to
discuss the effect of an additional scalar field � coupled to

the system (2.8). We would like to understand how the
inclusion of a scalar field will affect the stability of the
expanding solutions. To be more specific, the new action
proposed will be

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½R� 2��!@��@��� 2Vð�Þ

þm2
gðL2 þ �3L3 þ �4L4Þ�: (6.23)

Note that we have set the units with the Planck mass
Mp ¼ 1 and mg ¼ 1 for convenience. In addition,

! ¼ �1 will represent the action with a phantom field
[29]. Note that there have been discussions on the non-
linear massive gravity theory with a functional of the scalar
field representing the massive gravity [9,18]. Nonetheless,
the effect of an additional scalar field could be an interest-
ing research subject all by itself.
The field equations of the model (6.23) can be shown as

3ð _�2
1 � _	2

1Þ ¼ �1 þ V þ!
_�2

2
; (6.24)

2 €�1 þ 3 _�2
1 þ 3 _	2

1 ¼ �1 þ V �!
_�2

2
; (6.25)

_	1 ¼ k exp ½�3�1�; (6.26)

€� ¼ �3 _�1
_�� @�V

!
: (6.27)

Note that we have also integrated the 	1 equation to obtain
the final expression for the 	1 equation as shown in
Eq. (6.26).
It is easy to show that � ¼ �0 ¼ constant is a trivial

solution to �. In this case, the inclusion of the scalar field
potential will only contribute another cosmological con-
stant V to the metric equation. Note also that the massive
terms will be decoupled from the metric perturbation
equations.
We will present a general discussion without obtaining a

specific set of solutions to the field equations at this
moment. Our interest here is to discuss the effect due to
the presence of the scalar field in the evolutionary universe.
Therefore, we will simply assume that there exists a set of
nontrivial solutions with the inclusion of �. As a result,
we can write the metric perturbation equations and �
perturbation equation as a matrix equation, with �� ¼
C� exp ½�t�. We can also perturb Eqs. (6.24), (6.26), and

(6.27) and write the result as a matrix equation:

D̂2

C�

C	

C�

0
BB@

1
CCA �

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
664

3
775

C�

C	

C�

0
BB@

1
CCA ¼ 0; (6.28)

with D2 given by
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D2 ¼
6 _�1�; �6 _	1�; �! _���V 0

3 _	1; �; 0

3 _��; 0; �2 þ 3 _�1�þ!V 00

2
664

3
775: (6.29)

In order to admit a nontrivial solution to the perturbation
equation, D2 has to be singular, i.e., detD2 ¼ 0. As a
result, detD2 ¼ 0 can be shown as

detD2 ¼ 3�A; (6.30)

A¼ 2 _�1�
3 þ ð! _�2 þ 6 _�2

1 þ 6 _	2
1Þ�2 þ ð _�V 0 þ 2! _�1V

00

þ 18 _�1 _	2
1Þ�þ 6!V 00 _	2

1: (6.31)

Note that _�1 > 0 for the expanding solution. It is then easy
to show that if the constant coefficient 6!V 00 _	2

1 of the
polynomial function A is negative, there is at least a
positive root to the equation D2 ¼ 0. Therefore, once
!V 00 < 0, the solution we found will be an unstable solu-
tion. If we assume Vð�Þ ¼ exp ½1�� with coupling con-
stant 1, then an unstable mode will definitely exist when a
phantom field is present. This conclusion is also consistent
with the investigations shown in Ref. [26]. We also note
that, in particular, there will be no unstable mode when
V ¼ 0. Therefore, the stability of the systemwith a phantom
field is critical for the presence of a scalar potential term.

C. Isotropic fiducial metric and global stability analysis

In the literature, earlier works in finding expanding
solutions associated with the massive gravity are all based
on the model with an isotropic fiducial metric. Anisotropic
physical metrics are the only way to generalize the massive
theories in earlier work. Since the massive theories remain
ghost-free for an arbitrary fiducial metric, we start to
wonder what will happen if the anisotropic fiducial metric
is introduced.

Once a general analysis is performed in the presence of
an arbitrary fiducial metric, we soon realize, as indicated
by Eq. (2.25), that the fiducial metric equation s�� ¼ 0 is
also a solution to the Stückelberg equation (2.26). As a
result, the existence of the anisotropic expanding solutions
to s�� ¼ 0 will require that physical metric fields
ðg00; g11; g22; g33Þ and the corresponding fiducial metric
fields ðf00; f11; f22; f33Þ have to evolve harmonically such
that 
, A and B remain constant all the time. This is also the
key point to make the massive terms act as an effective
cosmological constant.

For a comparison with earlier solutions, we can take the
isotropic fiducial limit of our solutions to obtain the solu-
tions found, for example, in Ref. [12]. Indeed, we can show
that the Stückelberg equation (2.26) turns out to be




�
d

dt
þ 3H

��
1

1þ _f

@LM

@


�

¼ ½�0
2 � 2	0

2�A
@LM

@A
þ ½�0

2 þ 	0
2�B

@LM

@B
: (6.32)

Here 0 in F0ð�0Þ ¼ @�0Fð�0Þ denotes the differentiation of
any function Fð�0Þ with respect to its argument �0. Note
that this equation can also be derived as the variational
equation of fðtÞ:

ffiffiffi
g

p @LM

@f
� d

dt

� ffiffiffi
g

p @LM

@ _f

�
¼ 0: (6.33)

Indeed, by replacing �0 ¼ x0, the leading order of this
equation reduces to




�
d

dt
þ 3H

��
@LM

@


�
¼ ½ _�2 � 2 _	2�A@LM

@A

þ ½ _�2 þ _	2�B@LM

@B
: (6.34)

With the variational equations of 
, A and B given by
Eqs. (5.4), (5.5), and (5.6), the �0 equation becomes

_�1½3
1 � 2
2ðAþ 2BÞ þ 
3Bð2Aþ BÞ�
� 2ðA� BÞ

�
_	1ð
2 � 
3BÞ � _	2

N2

ð
1 � 
2BÞ
�

� _�2

N2

½
1ðAþ 2BÞ � 2
2Bð2Aþ BÞ þ 3
3AB
2� ¼ 0:

(6.35)

In particular, in the isotropic fiducial limit 	2 ¼ 0, the
above equation reduces to

ð
1� 2
2Bþ
3B
2ÞðHþ 2��HfAÞþ 2½
1�
2ðAþBÞ

þ
3AB�ðH���HfBÞ ¼ 0; (6.36)

which is exactly Eq. (7) in Ref. [12]. In addition, the fixed
point solutions found in Ref. [12] are also under the
condition 	1 ¼ constant. Therefore, the fixed point solu-
tions they found in fact agree with our solutions in the
isotropic limit.
Indeed, the condition that 	1 and 	2 are both constants

enforces that the B field acts as an A field dynamically in
this limit. Hence, our approach shown in this paper also
reveals clearly the reason why the expanding solutions can
only be found under the condition _	1 ¼ 0. This is in fact
the only solution that can be found when we also adopt the
isotropic fiducial metric that is incompatible with the
Bianchi type I physical metric. Note also that the situation
is similar for the model studied in the second paper in
Ref. [13]. The fixed point solutions are found in the limit
that the physical metric becomes compatible with the
fiducial metric. In addition, the Friedmann-Robertson-
Walker physical metric was introduced with a flat
Minkowski fiducial metric in Ref. [9]. The solution was
then shown to be �1 ¼ constant. This also agrees with our
result if we take the limit �2 ¼ 	2 ¼ 0.
Note that our solution is derived from the constraint

equations @LM=@
 ¼ @LM=@A ¼ @LM=@B ¼ 0. If we
replace the 
 equation @LM=@
 ¼ 0 by the �0 variational
equation (6.34) as was done in Ref. [12], the constraint

TUAN Q. DO AND W.F. KAO PHYSICAL REVIEW D 88, 063006 (2013)

063006-12



equations involved will then be @LM=@A ¼ @LM=@B ¼ 0
and the �0 equation given by Eq. (6.35) or Eq. (6.34).
Hence, the �0 equation will reduce to�

d

dt
þ 3H

��
@LM

@


�
¼ 0: (6.37)

As a result, the �0 equation can be integrated to give�
@LM

@


�
¼ k1 exp ½�3�1� ! 0; (6.38)

with an integration constant k1. Hence, the solution to the
new �0 equation will approach the 
 equation in time
infinity for any expanding solutions with _�1 > 0.
Therefore, we prove that the fixed point solution we found
is in fact a set of global attractor solutions for all expanding
solutions. This is exactly the reason why the phase flow
diagram indicates that the fixed point solutions found in
Ref. [12] are attractor solutions.

VII. CONCLUSIONS

In summary, we have studied the cosmological implica-
tions of a ghost-free nonlinear massive gravity theory with a

cosmological constant. In particular, we showed that the
massive terms will serve as an effective cosmological con-
stant for a large class of metric spaces with a similar and
compatiblefiducialmetric associatedwith themassive terms.
A specific solution is also solved as an example for thismodel
under the Bianchi type I space and a compatible Bianchi type
I fiducial metric. We have also shown that the stability
analysis indicates that this set of solutions tend to be stable.
Nonetheless, we have also shown that the presence of a
phantom field will, in general, make the anisotropically
expanding solution unstable. In addition, a heuristic deriva-
tion of the field equations has also been shown in Sec. II. The
analysis of the universal properties associated with a general
referencemetric shown inSec. III could also bevery useful in
the study of the physics related to the massive gravity. We
hope the material presented here will shed light on a deeper
understanding of massive gravity.
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