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One-way hash functions play an important role in modern cryptography. Matu-

siewicz et al. proved that the message scheduling is essential for the security of SHA- 
256 by showing that it is possible to find collisions with complexity 264 hash operations 
for a variant without it. In this article, we first proposed the conjecture that message 
scheduling of SHA algorithm has higher security complexity (or fitness value in Genetic 
algorithm) if each message word (Wt) involves more message blocks (Mi) in each round. 
We found some evidence supports the conjecture. Consider the security of SHA-0 and 
SHA-1. Since Chabaud and Joux shown that SHA-1 is more secure than SHA-0. Further, 
Wang found collisions in full SHA-0 and SHA-1 hash operations with complexities less 
than 239 and 269, respectively. We found it is consistent from the viewpoint of message 
blocks (terms) involved in each message word. It clearly shown that the number of terms 
involved in SHA-1 is more than that in SHA-0, taking W27 as an example, 14 and 6, re-
spectively. Based on the conjecture we proposed a new view of complexity for SHA- 
256-XOR functions, a variant of SHA-256, by counting the terms involved in each equa-
tion, instead of analyzing the probability of finding collisions within SHA-256-XOR 
hash function. Our experiments shown that the parameter set in each equation of mes-
sage schedule is crucial to security fitness. We applied genetic algorithms to find the 
near-optimal message schedule parameter sets that enhance the complexity 4 times for 
SHA-1 and 1.5 times for SHA-256-XOR, respectively, when compared to original SHA- 
1 and SHA-256-XOR functions. The analysis would be interesting for designers on the 
security of modular-addition-free hash function which is good for hardware implementa-
tion with lower gate count. And the found message schedule parameter sets would be a 
good reference for further improvement of SHA functions.     
 
Keywords: genetic algorithms, cryptography, secure hash algorithm, message scheduling, 
optimisation 
 
 

1. INTRODUCTION 
 

Cryptographic hash functions play an important role in modern cryptography. They 
are widely used in a variety of applications such as password protection, secure protocols, 
and digital signatures. The hash function uses a string of arbitrary length as its input, and 
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creates a fixed-length string as its output. A hash value is often called a data fingerprint 
or message digest. 

 
Definition 1 [1] (Collision-free hash function)  A collision-free hash function H uses a 
message M of arbitrary length as its input, and produces a fixed-length message digest 
when it satisfies the following conditions: 
 
 The description of H(M) is publicly known and it is easy to implement 
 Pre-image resistant: Given message digest y, it is difficult to find a message M such 

that H(M) = y.    
 Second pre-image resistant: Given M and its image H(M), it is difficult to find another 

M such that H(M) = H(M).     
 (Strong) Collision Resistance: It is difficult to find two distinct messages M and M such 

that H(M) = H(M). 
 
The Secure Hash Algorithm (SHA) is a series of cryptographic hash functions pub-

lished by the US National Institute of Standards and Technology (NIST). NIST proposed 
the SHA-0 as a Federal Information Processing Standard Publication (FIPS PUB) 180 in 
1993 [2]. In 1995, NIST announced a revised version, the SHA-1, in FIPS PUB 180-1 [3] 
as a standard to replace the SHA-0. In 2001, the NIST published SHA-2 as FIPS PUB 
180-2 [4], which consisted of four algorithms: SHA-1, SHA-256, SHA-384, and SHA- 
512. Table 1 lists the characteristics of the five SHA-2 algorithms.   

Table 1. SHA algorithms. 

Algorithm 
Message 

Size (bits) 
Block Size 

(bits) 
Word Size 

(bits) 
Message Digest 

Size (bits) 
Security 

SHA-1 < 264 512 32 160 280 
SHA-224 < 264 512 32 224 2112 
SHA-256 < 264 512 32 256 2128 
SHA-384 < 2128 1024 64 384 2192 
SHA-512 < 2128 1024 64 512 2256 
The term security in this table means that a birthday attack [11] [Remark 1] on a message digest of size n pro- 
duces a collision with a factor of approximately 2n/2. 

 
Recent studies have proposed extensions based on SHA. For example, RARSHA- 

256 [7] [Remark 1] is composed of the SHA-256 compression function, and is faster than 
SHA-256 when implemented in parallel. SHACAL and SHACAL-2 [8, 9] are block ci-
phers that are based on SHA-1 and SHA-256, respectively, and which were submitted to 
the New European Schemes for Signatures, Integrity, and Encryption project in 2003. 
Yoshida and Biryukov replaced all arithmetic additions with XOR operations in SHA- 
256, naming it SHA-256-XOR, and found that SHA-2-XOR has a pseudo-collision re-
sistance weakness up to 34 rounds [10]. 

A birthday attack [11, 12] is a type of cryptographic attack based on the birthday 
problem in probability theory. Given a function f, the attack attempts to find two different 
inputs x1, x2 such that f(x1) = f(x2). Such a pair (x1, x2) is called a collision input. The birth- 
day attack on a message digest of size n produces a collision after trying 2/222.1 nn   
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input values. Under the birthday attack, the security of SHA-1, SHA-192, SHA-224, SHA- 
256, SHA-384, SHA-448, and SHA-512 are approximately 280, 296, 2112, 2128, 2192, 2224, 
and 2256, respectively, and are listed in Table 1. Many researchers have tried to develop a 
cryptanalytic method with a lower complexity than the birthday attack.  

In 1998, Chabaud and Joux announced a method for finding the SHA-0 collisions 
[19]. They reduced this complexity to 261 using a differential cryptanalysis technique, but 
they could not successfully apply it to SHA-1. This result implied that SHA-1 is more 
secure than SHA-0. In early 2005, Rijmen and Oswald applied the same method to find 
collisions in SHA-1 [13]. They examined message scheduling in SHA-0 and SHA-1, and 
proved that the complexity associated with finding collisions in a reduced version of 
SHA-1 (with 53 rounds instead of 80 rounds) was less than 280. Wang, Yin, and Yu 
found collisions with a complexity of 269 in the full 80-step SHA-1 [14]. In 2010, 
Grechnikov announced the practical collision attack on the 73-step SHA-1 based on an 
automated approach [26]. NIST announced that SHA-1 will be used until 2010, at which 
time it will be replaced by SHA-2. 

Since 2004, several authors have reported on collisions for SHA-256. Gilbert and 
Handschuh reported a 9-round local collision with a complexity of 266 using differential 
path analysis [15]. Mendel et al. later reduced this complexity to 239 [16]. Nikolić and 
Biryukov realized 21-step collisions for SHA-256 using a nonlinear differential path 
analysis with a complexity of 219 [17]. In 2008, Sanadhya and Sarkar found a local colli-
sion with 24-step SHA-256 and SHA-512 with 228.5 and 232.5 calls, respectively [18], and 
this was the first time that a colliding message pair for 24-step SHA-512 was provided. 
In 2009, Indesteege et al. found collisions on the 24-step SHA-256 and SHA-512 with 
228.5 calls and 253 calls, respectively, and a local collision on 31-step SHA-256 with 232 
[24]. Also in 2009, Aoki et al. presented full preimage attacks on up to 43-step SHA-256 
and SHA-512 with the time complexities of 2254.9 and 2511.5 compression function opera-
tions for full preimages, respectively [25]. Since 2011, Mendel et al. have presented a 
collision on 27-step SHA-256 and a semi-free-start collision on 32-step SHA-256 with 
practical complexity [27]. Biryukov1 et al. presented a second-order differential collision 
for the SHA-256 compression function on 47 out of 64 steps, which have practical com-
plexity based on a rectangle/boomerang approach [28]. 

Almost all of the currently known cryptanalyses of SHA have attempted to find col-
lisions on a differential path. However, the design of each component such as algorithms 
for message scheduling and hash loop body and the function parameters, affects the pos-
sibility that a path for collisions (using differential path cryptanalysis) will be found. A 
fairly large body of literature exists regarding methods of improving hash algorithms. 
However, there is a surprising lack of information regarding the design and selection of 
function parameters. This paper addresses this deficiency. 

The purpose of the research presented in this article is to examine the relationship 
between the security of a hash function and its function parameters. In this regard, two 
issues that need to be resolved are (a) how to assess the security fitness of a given set of 
function parameters, and (b) how to find the optimal function parameter set. Specifically, 
this paper proposes a novel view of complexity (hence security fitness) of SHA-2-XOR 
functions proposed in [10], by counting the terms involved in each equation, instead of 
analyzing the probability of finding collisions within an SHA-256-XOR hash function. 
Our experiments have shown that the parameter set in each equation of a message sched-
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ule plays an important role in security fitness, but it is very hard to find the optimum pa-
rameter values. We apply genetic algorithms to find the optimal message schedule pa-
rameter sets that enhance the complexity 4 times for SHA-1 and 1.5 times for SHA-256- 
XOR, when compared to original SHA-1 and SHA-256-XOR functions. The analysis 
results would be interesting for designers who are interested in the security of modular 
addition free hash functions, which are good for hardware implementation with lower 
gate counts. Moreover, the found message schedule parameter sets would be a good ref-
erence for further improvement of SHA functions. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
SHA-, SHA-256, and genetic algorithms. Section 3 proposes our security evaluation cri-
terion for SHA message scheduling, and finds the best parameter sets for SHA-1 using a 
brute force approach. Section 4 applies it to find the nearly optimal set for SHA-256- 
XOR and describes the experimental results. Section 5 discusses the results and con-
cludes the paper. Table 2 lists the nomenclature used throughout the paper. 

Table 2. Legends. 

Symbol Definition 
M Message with arbitrary length as the input of a hash function. 
Wt The tth message word. 
m The number of output words. 
n The length of one word. 
l The length of the input message, l = |M|. 
ROTL{i}() Left-rotation operation for i bits. 
r The value of m × n, r = m × n. 
H(M) The hash function H() with input M. 
{t, A, B, C, D} The parameter set of Wt equation in message scheduling. 
SHR{i}() Right-shift operation for i bits. 
M(i) Message block i with a size of 512 bits. 
Mj

(i) The jth word of the ith message block. 

Mj
n Mj

n indicates message word Mj doing n-bitwise rotation. 

2. RELATED WORKS 
 

2.1 Overview of SHA-1 and SHA-256 Algorithms 
 
SHA-1 [4] takes a message M with a length of l bits, where 0  l < 264, as the input, 

and outputs a 160-bit hash value. The hash function parses the padded message into 
512-bit blocks. Each block passes an 80-round compression function and outputs a 160- 
bit hash value. 

SHA-1 processing involves the following 3 steps: 
 
Step 1: Padding message: pad the input message making it a multiple of 512 bits. 
 
Step 2: Parsing the padded message: parse the padded message into N 512-bit blocks, 
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M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 32-bit words, M0
(i), M1

(i), …, 
M15

(i). 
 
Step 3: Message scheduling for each message block M(i). 

 The message words, {Wt}: 

 

1
3 8 14 16

,                                                 0 15

( ),     16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

   
    

   (1) 

where ROTL{i} indicates left rotation operation by i bits. 
 Message expansions are performed for 80 rounds. Algorithm 1 defines these steps 

in detail. Table 3 summarizes the Boolean function ft that appeared in the SHA-1 
step function. 

 
Algorithm 1: SHA-1 step function 
1: FOR t = 1 to 80 
2:   et = dt-1 
3:   dt = ct-1 
4:   ct = ROTL30(bt-1) 
5:   bt = at-1 
6:   at = ROTL5(at-1) + ft(bt-1, ct-1, dt-1) + et-1 + Kt + Wt-1 

7: End FOR 

Table 3. Boolean function used in SHA-1. 

Round t Boolean function ft(x, y, z) 

01  t  20 (x  y)  (x  z) 
21  t  40 x  y  z 
41  t  60 (x  y)  (x  z)  (y  z) 
61  t  80 x  y  z 

 
SHA-256 takes a message M with a length of l bits, where 0  l < 264, as the input, 

and outputs a 256-bit hash value. The hash function parses the padded message into 
512-bit blocks. Each block passes a 64-round compression function and outputs a 256-bit 
hash value. 

The SHA-256 contains steps that are similar to SHA-1, except that it sets different 
initial values and constants, and uses different functions. The following is a description 
of the message block processing step. 

 
Step 4: Message scheduling for each message block M(i). 

 The message words, {Wt}: 

 

   {256} {256}
0 2 7 1 15 16

,  0 15

,  16 63

i
t

t

t t t t

M t
W

W W W W t    

     
      

   (2) 



CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH  

 

894 

 

0
{256}(x) = ROTL7(x)  ROTL18(x)  SHR3(x) 

1
{256}(x) = ROTL17(x)  ROTL19(x)  SHR10(x) (3) 

where SHR{i} indicates right shift operation by i bits. 
 Message expansions are performed for 64 rounds. Algorithm 2 defines these steps 

in detail. Table 4 summarizes the Boolean function ft used in each round. 
 

Algorithm 2: SHA-256 step function 
1:  FOR t = 1 to 64 
2:    T1 = ht-1 + f1(et-1) + f3(et-1, ft-1, gt-1) + Kt + Wt-1 
3:    T2 = f2(at-1) + f4(at-1, bt-1, ct-1) 
4:    ht = gt-1 
5:    gt = ft-1 
6:    ft = et-1 
7:    et = dt + T1 
8:    dt = ct-1 
9:    dt = ct-1 
10:   ct = bt-1 
11:   bt = at-1 
12:   at = T1 + T2 
13: End FOR 

Table 4. Boolean function used in SHA-256. 

Boolean function ft 

f1(x) = ROTL(2)(x)  ROTL(13)(x)  ROTL(22)(x) 
f2(x) = ROTL(6)(x)  ROTL(11)(x)  ROTL(25)(x) 
f3(x) = (x  y)  (x  z) 
f4(x) = (x  y)  (x  z)  (y  z) 
 

2.2 Genetic Algorithm 
 

The genetic algorithm is the most popular type of evolutionary algorithm that use 
techniques inspired by evolutionary biology. As stated by John H. Holland in 1975, “The 
genetic algorithm has a wide scope of applications, including economics, engineering, 
machine learning, genome biology, game theory, neural networks, etcetera” [23]. A ge-
netic algorithm provides a highly efficient method for ensuring convergence to near-opti- 
mal or optimal solutions. 

Fig. 1 shows the steps of the genetic algorithm, which are described as follows: 
 

(1)  Initialization of population. 
(2)  Choice of a fitness function and evaluation of the fitness value of each individual in 

the population. 
(3)  Selection of better ranked part to be reproduced. 
(4)  Breeding new generation’s population by crossover and mutation. 
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Fig. 1. Flowchart of genetic algorithm. 

 
(5)  Replacement of the worst ranked part of the population with the new generation’s 

population. 
(6)  Repeating this generational process until the termination condition has been reached. 
 

The Genetic Algorithm Utility Library (GAUL) developed by AI Foundry [22] is a 
flexible programming library designed to aid in the development of applications that use 
genetic or evolutionary algorithms. It provides data structures and functions for handling 
and manipulating the data required for serial and parallel evolutionary algorithms. 

GAUL is an open-source programming library, which was released under the GNU 
General Public License. It is designed to assist in the development of code that requires 
evolutionary algorithms. 

3. SHA MESSAGE SCHEDULING EVALUATION CRITERION 
 

This section proposes an evaluation criterion of SHA message scheduling. The 
number of terms involved in the message schedule is treated as an evaluation criterion of 
SHA message scheduling. This study uses SHA-0 and SHA-1 as examples to show that 
SHA-1 is more secure than SHA-0 by comparing their message scheduling equations. 
 
3.1 Local Collision 

 
A local collision appearing on all the SHA families is a collision within intermediate 

steps of the hash function [14]. The starting point for hash function collision attacks is a 
local collision. Local collisions are found using linear approximations of Boolean func-
tions that are used in various rounds in message scheduling (and other conditions as de-
fined in [14]). The first observation is that SHA-0 has a 6-step local collision that can 
start at any step i. The differential path is a sequence of grouped local collisions with 
possible overlaps [20]. Wang [14] tried to find a set of starting steps for each local colli-
sion to construct such a path. The disturbance vector is applied to satisfy the recursion 
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defined by the message expansion. Once a local collision is found, an attempt is made to 
consider the message expansion and other non-linear designs to find a collision for the 
full hash function. For SHA-0, 3 vectors are found successfully for three conditions in 
[14]. However, it is more complicated to find a good disturbance vector due to the large 
search space on SHA-1, and the probability of n interleaved local collision complexities 
increases exponentially with n for SHA-256 [16]. 

Mendel provides an approach for collision searches as follows [16]: 
 

(1)  Identify local collisions in each round of transformation. 
(2)  Search for disturbance vectors that need to satisfy some additional properties. 
(3)  Build the difference vector by interleaving the local collisions. 
(4)  The complexity of the collision search is related to the characteristic within these 

interleaved local collisions. 
(5)  Adjusting message bits for the chosen characteristic reduces the computational cost 

for the collision search. 
 
The issue that arises is how to reduce the number of local collisions in an expansion 

process. Our study applies a genetic approach to find the optimal parameter set of the 
SHA family message expansion function based on the evaluation criterion with the low-
est number of local collisions.  

 
3.2 Local Collision in SHA-0 and SHA-1 

 
In [19], it is pointed out that SHA-1 is safer than SHA-0 because of a single bitwise 

rotation in SHA-1 that affects the local collisions existing in SHA-0. Table 5 shows the 
SHA-0 and SHA-1 equations. 

Table 5. SHA-0, SHA-1, and SHA-256-XOR equations. 

Algorithm Equation 

SHA-0 
 

3 8 14 16

,  0 15

,  16 79

i
t

t

t t t t

M t
W

W W W W t   

     
      

 

SHA-1 
 

 1
3 8 14 16

,  0 15

,  16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

     
      

 

SHA-256-XOR 
 

   {256} {256}
0 2 7 1 1 16

,  0 15

,  16 63

i
t

t

t t t t

M t
W

W W W W t    

     
      

 

 

The following are examples that compare the terms involved in W27 in both SHA-0 
and SHA-1, and that in W20 in SHA-256-XOR where Mj

n (or Wj
n) indicates that the mes-

sage block Mj (or intermediate message word Wj) undergoes an n-bitwise left rotation. 
Each message word Wt is obtained by recursively computing other words with lower in-
dices and being replaced by message blocks until t  15. 

Fig. 2 represents the number of terms involved in full SHA-0, SHA-1, and SHA- 
256-XOR. 
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Fig. 2. Comparison of the number of terms involved in each Wt in message scheduling for SHA-0, 

SHA-1 and SHA-256. 
 

[SHA-0] 
W27 = W24  W19  W13  W11 
 = (W21  W16  W10  W8)  W19  W13  W11 
 = … 
 = M15  M4  M2  M7  M8  M3 
  6 terms are involved. 

 
[SHA-1] 

W27 = W24
1  W19

1  W13
1  W11

1 
 = (W21

2  W16
2  W10

2  W8
2)  W19

1  W13
1  W11

1 
 = … 
 = M15

4  M10
4  M4

4  M2
4  M13

3  M7
3  M5

3  M10
2  M8

2  M11
2  

M5
2  M3

2  M13
1  M11

1 
  14 terms are involved. 

 
[SHA-256-XOR] 

W20 = 0(W18) W13 1(W15) W4 
 = W18

7  W17
18  W13  W5

17  W5
19  W4 

 = (W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18  W1
3  

W5
5  W0

18  W11  W3
17  W3

19  W2)
7  (W14

14  W14
25  W9

7  
W1

24  W1
26  W6

7  W14
4  W9

18  W1
3  W5

5  W0
18  W11  W3

17 

 W3
19  W2)

18  W5
17  W3

19  W4 
 = M14

21  M14
32  M9

14  M1
31  M1

1  M0
14  M11

7  M3
24  M3

26  
M2

7  M14
11  M14

22  M9
4  M1

21  M0
0  M11

18  M3
3  M3

5  M2
18 

 M5
17  M5

19  M4 
  22 terms are involved. 

3.3 Lee’s Conjecture 
 
Matusiewicz et al. proved that the functions ( and ) or the message expansion are 
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essential for the security of SHA-256 by showing that it is possible to find collisions with 
a complexity of 264 hash operations for a variant without them [29]. 

We proposed that message scheduling of the SHA algorithm has higher security 
complexity (or fitness) if each message word (Wt) involves more message blocks (Mi) in 
each round. 

Chabaud and Joux showed that SHA-1 is more secure than SHA-0 [19]. Further-
more, Wang found collisions in full SHA-0 and SHA-1 hash operations with complexi-
ties less than 239 [20] and 269 [14], respectively. 

Consider the analyses of the terms involved in each message block. Fig. 2 clearly 
shows that the number of terms involved in SHA-1 is more than that in SHA-0, taking 
W27 as an example (14 > 6). Therefore, SHA-1 has a higher security complexity (hence 
security fitness) than SHA-0. In this paper, we use the term “security fitness” to evaluate 
the security of each possible Wt in message scheduling. 
 
3.4 The Best Setting of Message Scheduling Equation in SHA-1 

 
The message scheduling equation in SHA-1 can be generalized as 
 

 

 1

,  0 15

,  16 79

i
t

t

t A t B t C t D

M t
W

ROTL W W W W t   

     
      

.   (4) 

 
The best four variables are produced by the brute force (or exhaustive) approach, 

and the values found are {A, B, C, D} = {1, 2, 11, 16}. The best complexity occurs in 
round 60 when 212 terms are involved. The modified equation is 

 
 

 1
1 2 11 16

,  0 15

,  16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

     
      

   (5) 

 
and called optSHA-1 [21]. Fig. 3 compares the number of terms involved in SHA-1 and 
optSHA-1. 

 
Fig. 3. Comparison of the number of terms involved in each Wt in message scheduling for SHA-1 

and SHA-1-OPT. 
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4. IMPROVING SHA-256-XOR VIA GENETIC ALGORITHMS 
 

4.1 Specialized GA for SHA-256-XOR 
 
To find optimum parameters, the message scheduling equation in SHA-256-XOR 

can be generalized as 
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150,
}256{

1
}256{

0 tWWWW

tM
W

DtCtBtAt

i
t

t 
,   (6) 

and 
 
0

{256}(x) = ROTL7(x)  ROTL18(x)  SHR3(x), 
1

{256}(x) = ROTL17(x)  ROTL19(x)  SHR10(x).   (3) 
 
Consider two operations, ROTL and SHR. A bitwise rotation operation, ROTL, is a 

circular shift operation that is a permutation of the entries in a tuple where the last ele-
ment becomes the first element and all of the other elements are shifted. The shift opera-
tion, SHRn(x), which sets 0 as the first element, does not influence the experimental re-
sults because SHRn(x) and ROTRn(x) produce different results. Based on this assumption, 
the generalized form is modified to 

 
0

{256}(x) = ROTL7(x)  ROTL18(x), 
1

{256}(x) = ROTL17(x)  ROTL19(x).  (7) 
 
In the previous section, the optimal values are calculated using the brute force ap-

proach in otpSHA-1. To find the optimum parameters using the brute force approach for 
SHA-256-XOR, we would need to test 264 possible combinations of {A, B, C, D} for 
each round t (16  t  63), and to perform up to 48  294 operations in the whole experi-
ment. We applied genetic algorithm operators of recombination and perturbation to re-
duce the number of infeasible solutions needed to find the near optimal variable set {A, B, 
C, D}. 

The design of the GA involves some main components: genetic representation, popu-
lation initialization, fitness function, selection scheme, crossover, and mutation. Each com- 
ponent is described as follows, and the parameters used with GAUL are listed in Table 6: 

Table 6. Genetic algorithm parameters. 
Parameter Value 

Library GAUL 
Population size 500 
Number of chromosomes 1 
Length of each chromosome 5 
Evolutionary mode GA_SCHEME_DARWIN 
Elitism mode GA_ELITISM_PARENTS_SURVIVE 
Crossover ratio 0.9 
Mutation ratio 0.1 
Fitness function # of terms involved in Wt equation 
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 Genetic Representation: The genes represent the input variables, A, B, C, D, t, of the 
generalized SHA-256-XOR, and each chromosome represents a possible solution. In 
the simulation, the length of each chromosome is 5.   

 Population Initialization: Each chromosome presents a potential solution for the prob-
lem in genetic algorithms. The initial population is randomly generated and the size is 
set to 500. 

 Fitness Function: The fitness function counts the number of terms in the equation for 
Wt. After the process of selection, crossover, and mutation, the optimal chromosome 
indicates the maximum number of terms involved in the equations. 

 
F(t) =  of different terms involved in Wt equation   (8) 

 
 Selection Scheme: Selection is a genetic operator that chooses a chromosome from the 

current generation’s population for inclusion in the next generation’s population. We 
adopt the binary tournament selection based on the fitness value in the simulation.  

 Crossover and Mutation: Crossover enables genetic algorithms to extract the best genes 
from different individuals, and to produce potentially superior children. The mutation 
operation randomly modifies the gene to prevent the falling of all solutions into a local 
optimum, and extends the search space. In the simulation, we adopt the one-point 
crossover with a ratio 0.9, and a single-point mutation with a ratio 0.1.   

 
4.2 Experiment Results 

 
Table 7 lists 10 generations of the simulation results for {A, B, C, D}. The simula-

tion requires heavy computational times for each t. Appendix A lists more of our ex-
perimental results. We have not generated optimum parameters for additional rounds 
because of the computational requirements. However, we believe that we have demon-
strated the basis of our contribution, which is a possible approach for the selection of 
optimal message scheduling parameters and the analysis of the security fitness. 

Table 7. The last 10 generations of the simulation. 
Generation A B C D Fitness 

41 8 1 1 16 238 
42 4 1 1 16 259 
43 4 1 1 16 265 
44 4 1 1 16 265 
45 4 1 1 16 265 
46 4 1 1 16 270 
47 4 1 1 16 270 
48 4 1 1 16 270 
49 4 1 1 16 270 
50 4 1 1 16 270 

 

The values for the 5 variables converge after 42 generations. It appears that the ap-
proximate optimal values are {A, B, C, D} = {4, 1, 1, 16}. Thus, the best equation for Wt 
of SHA-256-XOR, named optSHA-256-XOR, should be 
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.  (9) 

 
Fig. 4 compares SHA-256-XOR with optSHA-256-XOR by showing clearly that 

otpSHA-256-XOR is indeed more secure than SHA-256. 

 
Fig. 4. Comparison of the number of terms involved in each Wt in message scheduling for SHA-256- 

XOR and optSHA-256-XOR. 

 
Fig. 5. Comparison of the running time in Wt between genetic algorithm and brute force. 
 

With regards to the performance, Fig. 5 compares the running time for each Wt (16 
 t  30) in brute force and genetic algorithms. We have not yet been able to complete 
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the simulation for every Wt. The later items in the experiment will consume additional 
time because the equation is a recursive function. 

5. CONCLUSIONS 

Since its introduction in 1993, the secure hash function family has become an im-
portant standard in cryptography. This paper proposes a novel view of complexity (and 
hence security fitness) by counting the number of terms involved in each equation, in-
stead of analyzing the probability of finding collisions within hash functions. This study 
identified the near optimal versions, optSHA-1 and optSHA-256-XOR, using brute force 
and genetic approaches of SHA-1 and SHA-256-XOR, respectively, and the latter was 
found to be more computationally efficient. This analysis would be interesting for de-
signers interesting in the security of modular addition free hash functions, which are 
good for hardware implementation with lower gate counts. Furthermore, the obtained 
message schedule parameter sets will be a good reference for further improvement of 
SHA functions. 

Finally, we again review the equations of SHA-256-XOR (Table 8). In our future 
studies, we aim to combine these new variables {E, F, G, H} with {A, B, C, D} to en-
hance the algorithm using genetic algorithms. Furthermore, this approach can be applied 
to other SHA-2-XOR family members to determine the relationship between the terms 
involved and the complexity (or security fitness). 

Table 8. Generalized SHA-256-XOR with more variables. 
Algorithm Equation 

Generalized 
SHA-256-XOR 
with more vari-
ables 

 

   {256} {256}
0 1

,  0 15
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t A t B t C t D
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     
      

0
{256}

(x) = ROTLE(x)  ROTLF(x)  SHR3(x) 
1

{256}
(x) = ROTLG(x)  ROTLH(x)  SHR10(x) 
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