
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 889-905 (2013)

889

Finding Near-Optimum Message Scheduling Settings
for SHA-256 Variants Using Genetic Algorithms

CHU-HSING LIN1, CHEN-YU LEE2, KRISHNA M. KAVI3, DENG-JYI CHEN2

AND YI-SHIUNG YEH2
1Department of Computer Science

Tunghai University
Taichung, 407 Taiwan

2Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
3Department of Computer Science and Engineering

University of North Texas
Denton, TX 76203, USA

One-way hash functions play an important role in modern cryptography. Matu-

siewicz et al. proved that the message scheduling is essential for the security of SHA-
256 by showing that it is possible to find collisions with complexity 264 hash operations
for a variant without it. In this article, we first proposed the conjecture that message
scheduling of SHA algorithm has higher security complexity (or fitness value in Genetic
algorithm) if each message word (Wt) involves more message blocks (Mi) in each round.
We found some evidence supports the conjecture. Consider the security of SHA-0 and
SHA-1. Since Chabaud and Joux shown that SHA-1 is more secure than SHA-0. Further,
Wang found collisions in full SHA-0 and SHA-1 hash operations with complexities less
than 239 and 269, respectively. We found it is consistent from the viewpoint of message
blocks (terms) involved in each message word. It clearly shown that the number of terms
involved in SHA-1 is more than that in SHA-0, taking W27 as an example, 14 and 6, re-
spectively. Based on the conjecture we proposed a new view of complexity for SHA-
256-XOR functions, a variant of SHA-256, by counting the terms involved in each equa-
tion, instead of analyzing the probability of finding collisions within SHA-256-XOR
hash function. Our experiments shown that the parameter set in each equation of mes-
sage schedule is crucial to security fitness. We applied genetic algorithms to find the
near-optimal message schedule parameter sets that enhance the complexity 4 times for
SHA-1 and 1.5 times for SHA-256-XOR, respectively, when compared to original SHA-
1 and SHA-256-XOR functions. The analysis would be interesting for designers on the
security of modular-addition-free hash function which is good for hardware implementa-
tion with lower gate count. And the found message schedule parameter sets would be a
good reference for further improvement of SHA functions.

Keywords: genetic algorithms, cryptography, secure hash algorithm, message scheduling,
optimisation

1. INTRODUCTION

Cryptographic hash functions play an important role in modern cryptography. They
are widely used in a variety of applications such as password protection, secure protocols,
and digital signatures. The hash function uses a string of arbitrary length as its input, and

Received July 8, 2011; revised July 23, 2012; accepted September 11, 2012.
Communicated by Vincent Rijmen.

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

890

creates a fixed-length string as its output. A hash value is often called a data fingerprint
or message digest.

Definition 1 [1] (Collision-free hash function) A collision-free hash function H uses a
message M of arbitrary length as its input, and produces a fixed-length message digest
when it satisfies the following conditions:

 The description of H(M) is publicly known and it is easy to implement
 Pre-image resistant: Given message digest y, it is difficult to find a message M such

that H(M) = y.
 Second pre-image resistant: Given M and its image H(M), it is difficult to find another

M such that H(M) = H(M).
 (Strong) Collision Resistance: It is difficult to find two distinct messages M and M such

that H(M) = H(M).

The Secure Hash Algorithm (SHA) is a series of cryptographic hash functions pub-

lished by the US National Institute of Standards and Technology (NIST). NIST proposed
the SHA-0 as a Federal Information Processing Standard Publication (FIPS PUB) 180 in
1993 [2]. In 1995, NIST announced a revised version, the SHA-1, in FIPS PUB 180-1 [3]
as a standard to replace the SHA-0. In 2001, the NIST published SHA-2 as FIPS PUB
180-2 [4], which consisted of four algorithms: SHA-1, SHA-256, SHA-384, and SHA-
512. Table 1 lists the characteristics of the five SHA-2 algorithms.

Table 1. SHA algorithms.

Algorithm
Message

Size (bits)
Block Size

(bits)
Word Size

(bits)
Message Digest

Size (bits)
Security

SHA-1 < 264 512 32 160 280
SHA-224 < 264 512 32 224 2112
SHA-256 < 264 512 32 256 2128
SHA-384 < 2128 1024 64 384 2192
SHA-512 < 2128 1024 64 512 2256
The term security in this table means that a birthday attack [11] [Remark 1] on a message digest of size n pro-
duces a collision with a factor of approximately 2n/2.

Recent studies have proposed extensions based on SHA. For example, RARSHA-

256 [7] [Remark 1] is composed of the SHA-256 compression function, and is faster than
SHA-256 when implemented in parallel. SHACAL and SHACAL-2 [8, 9] are block ci-
phers that are based on SHA-1 and SHA-256, respectively, and which were submitted to
the New European Schemes for Signatures, Integrity, and Encryption project in 2003.
Yoshida and Biryukov replaced all arithmetic additions with XOR operations in SHA-
256, naming it SHA-256-XOR, and found that SHA-2-XOR has a pseudo-collision re-
sistance weakness up to 34 rounds [10].

A birthday attack [11, 12] is a type of cryptographic attack based on the birthday
problem in probability theory. Given a function f, the attack attempts to find two different
inputs x1, x2 such that f(x1) = f(x2). Such a pair (x1, x2) is called a collision input. The birth-
day attack on a message digest of size n produces a collision after trying 2/222.1 nn 

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

891

input values. Under the birthday attack, the security of SHA-1, SHA-192, SHA-224, SHA-
256, SHA-384, SHA-448, and SHA-512 are approximately 280, 296, 2112, 2128, 2192, 2224,
and 2256, respectively, and are listed in Table 1. Many researchers have tried to develop a
cryptanalytic method with a lower complexity than the birthday attack.

In 1998, Chabaud and Joux announced a method for finding the SHA-0 collisions
[19]. They reduced this complexity to 261 using a differential cryptanalysis technique, but
they could not successfully apply it to SHA-1. This result implied that SHA-1 is more
secure than SHA-0. In early 2005, Rijmen and Oswald applied the same method to find
collisions in SHA-1 [13]. They examined message scheduling in SHA-0 and SHA-1, and
proved that the complexity associated with finding collisions in a reduced version of
SHA-1 (with 53 rounds instead of 80 rounds) was less than 280. Wang, Yin, and Yu
found collisions with a complexity of 269 in the full 80-step SHA-1 [14]. In 2010,
Grechnikov announced the practical collision attack on the 73-step SHA-1 based on an
automated approach [26]. NIST announced that SHA-1 will be used until 2010, at which
time it will be replaced by SHA-2.

Since 2004, several authors have reported on collisions for SHA-256. Gilbert and
Handschuh reported a 9-round local collision with a complexity of 266 using differential
path analysis [15]. Mendel et al. later reduced this complexity to 239 [16]. Nikolić and
Biryukov realized 21-step collisions for SHA-256 using a nonlinear differential path
analysis with a complexity of 219 [17]. In 2008, Sanadhya and Sarkar found a local colli-
sion with 24-step SHA-256 and SHA-512 with 228.5 and 232.5 calls, respectively [18], and
this was the first time that a colliding message pair for 24-step SHA-512 was provided.
In 2009, Indesteege et al. found collisions on the 24-step SHA-256 and SHA-512 with
228.5 calls and 253 calls, respectively, and a local collision on 31-step SHA-256 with 232
[24]. Also in 2009, Aoki et al. presented full preimage attacks on up to 43-step SHA-256
and SHA-512 with the time complexities of 2254.9 and 2511.5 compression function opera-
tions for full preimages, respectively [25]. Since 2011, Mendel et al. have presented a
collision on 27-step SHA-256 and a semi-free-start collision on 32-step SHA-256 with
practical complexity [27]. Biryukov1 et al. presented a second-order differential collision
for the SHA-256 compression function on 47 out of 64 steps, which have practical com-
plexity based on a rectangle/boomerang approach [28].

Almost all of the currently known cryptanalyses of SHA have attempted to find col-
lisions on a differential path. However, the design of each component such as algorithms
for message scheduling and hash loop body and the function parameters, affects the pos-
sibility that a path for collisions (using differential path cryptanalysis) will be found. A
fairly large body of literature exists regarding methods of improving hash algorithms.
However, there is a surprising lack of information regarding the design and selection of
function parameters. This paper addresses this deficiency.

The purpose of the research presented in this article is to examine the relationship
between the security of a hash function and its function parameters. In this regard, two
issues that need to be resolved are (a) how to assess the security fitness of a given set of
function parameters, and (b) how to find the optimal function parameter set. Specifically,
this paper proposes a novel view of complexity (hence security fitness) of SHA-2-XOR
functions proposed in [10], by counting the terms involved in each equation, instead of
analyzing the probability of finding collisions within an SHA-256-XOR hash function.
Our experiments have shown that the parameter set in each equation of a message sched-

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

892

ule plays an important role in security fitness, but it is very hard to find the optimum pa-
rameter values. We apply genetic algorithms to find the optimal message schedule pa-
rameter sets that enhance the complexity 4 times for SHA-1 and 1.5 times for SHA-256-
XOR, when compared to original SHA-1 and SHA-256-XOR functions. The analysis
results would be interesting for designers who are interested in the security of modular
addition free hash functions, which are good for hardware implementation with lower
gate counts. Moreover, the found message schedule parameter sets would be a good ref-
erence for further improvement of SHA functions.

The remainder of this paper is organized as follows. Section 2 briefly introduces
SHA-, SHA-256, and genetic algorithms. Section 3 proposes our security evaluation cri-
terion for SHA message scheduling, and finds the best parameter sets for SHA-1 using a
brute force approach. Section 4 applies it to find the nearly optimal set for SHA-256-
XOR and describes the experimental results. Section 5 discusses the results and con-
cludes the paper. Table 2 lists the nomenclature used throughout the paper.

Table 2. Legends.

Symbol Definition
M Message with arbitrary length as the input of a hash function.
Wt The tth message word.
m The number of output words.
n The length of one word.
l The length of the input message, l = |M|.
ROTL{i}() Left-rotation operation for i bits.
r The value of m × n, r = m × n.
H(M) The hash function H() with input M.
{t, A, B, C, D} The parameter set of Wt equation in message scheduling.
SHR{i}() Right-shift operation for i bits.
M(i) Message block i with a size of 512 bits.
Mj

(i) The jth word of the ith message block.

Mj
n Mj

n indicates message word Mj doing n-bitwise rotation.

2. RELATED WORKS

2.1 Overview of SHA-1 and SHA-256 Algorithms

SHA-1 [4] takes a message M with a length of l bits, where 0  l < 264, as the input,

and outputs a 160-bit hash value. The hash function parses the padded message into
512-bit blocks. Each block passes an 80-round compression function and outputs a 160-
bit hash value.

SHA-1 processing involves the following 3 steps:

Step 1: Padding message: pad the input message making it a multiple of 512 bits.

Step 2: Parsing the padded message: parse the padded message into N 512-bit blocks,

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

893

M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 32-bit words, M0
(i), M1

(i), …,
M15

(i).

Step 3: Message scheduling for each message block M(i).

 The message words, {Wt}:

 

1
3 8 14 16

, 0 15

(), 16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

   
    

 (1)

where ROTL{i} indicates left rotation operation by i bits.
 Message expansions are performed for 80 rounds. Algorithm 1 defines these steps

in detail. Table 3 summarizes the Boolean function ft that appeared in the SHA-1
step function.

Algorithm 1: SHA-1 step function
1: FOR t = 1 to 80
2: et = dt-1
3: dt = ct-1
4: ct = ROTL30(bt-1)
5: bt = at-1
6: at = ROTL5(at-1) + ft(bt-1, ct-1, dt-1) + et-1 + Kt + Wt-1

7: End FOR

Table 3. Boolean function used in SHA-1.

Round t Boolean function ft(x, y, z)

01  t  20 (x  y)  (x  z)
21  t  40 x  y  z
41  t  60 (x  y)  (x  z)  (y  z)
61  t  80 x  y  z

SHA-256 takes a message M with a length of l bits, where 0  l < 264, as the input,

and outputs a 256-bit hash value. The hash function parses the padded message into
512-bit blocks. Each block passes a 64-round compression function and outputs a 256-bit
hash value.

The SHA-256 contains steps that are similar to SHA-1, except that it sets different
initial values and constants, and uses different functions. The following is a description
of the message block processing step.

Step 4: Message scheduling for each message block M(i).

 The message words, {Wt}:

 

   {256} {256}
0 2 7 1 15 16

, 0 15

, 16 63

i
t

t

t t t t

M t
W

W W W W t    

     
      

 (2)

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

894

0
{256}(x) = ROTL7(x)  ROTL18(x)  SHR3(x)

1
{256}(x) = ROTL17(x)  ROTL19(x)  SHR10(x) (3)

where SHR{i} indicates right shift operation by i bits.
 Message expansions are performed for 64 rounds. Algorithm 2 defines these steps

in detail. Table 4 summarizes the Boolean function ft used in each round.

Algorithm 2: SHA-256 step function
1: FOR t = 1 to 64
2: T1 = ht-1 + f1(et-1) + f3(et-1, ft-1, gt-1) + Kt + Wt-1
3: T2 = f2(at-1) + f4(at-1, bt-1, ct-1)
4: ht = gt-1
5: gt = ft-1
6: ft = et-1
7: et = dt + T1
8: dt = ct-1
9: dt = ct-1
10: ct = bt-1
11: bt = at-1
12: at = T1 + T2
13: End FOR

Table 4. Boolean function used in SHA-256.

Boolean function ft

f1(x) = ROTL(2)(x)  ROTL(13)(x)  ROTL(22)(x)
f2(x) = ROTL(6)(x)  ROTL(11)(x)  ROTL(25)(x)
f3(x) = (x  y)  (x  z)
f4(x) = (x  y)  (x  z)  (y  z)

2.2 Genetic Algorithm

The genetic algorithm is the most popular type of evolutionary algorithm that use
techniques inspired by evolutionary biology. As stated by John H. Holland in 1975, “The
genetic algorithm has a wide scope of applications, including economics, engineering,
machine learning, genome biology, game theory, neural networks, etcetera” [23]. A ge-
netic algorithm provides a highly efficient method for ensuring convergence to near-opti-
mal or optimal solutions.

Fig. 1 shows the steps of the genetic algorithm, which are described as follows:

(1) Initialization of population.
(2) Choice of a fitness function and evaluation of the fitness value of each individual in

the population.
(3) Selection of better ranked part to be reproduced.
(4) Breeding new generation’s population by crossover and mutation.

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

895

Fig. 1. Flowchart of genetic algorithm.

(5) Replacement of the worst ranked part of the population with the new generation’s

population.
(6) Repeating this generational process until the termination condition has been reached.

The Genetic Algorithm Utility Library (GAUL) developed by AI Foundry [22] is a
flexible programming library designed to aid in the development of applications that use
genetic or evolutionary algorithms. It provides data structures and functions for handling
and manipulating the data required for serial and parallel evolutionary algorithms.

GAUL is an open-source programming library, which was released under the GNU
General Public License. It is designed to assist in the development of code that requires
evolutionary algorithms.

3. SHA MESSAGE SCHEDULING EVALUATION CRITERION

This section proposes an evaluation criterion of SHA message scheduling. The
number of terms involved in the message schedule is treated as an evaluation criterion of
SHA message scheduling. This study uses SHA-0 and SHA-1 as examples to show that
SHA-1 is more secure than SHA-0 by comparing their message scheduling equations.

3.1 Local Collision

A local collision appearing on all the SHA families is a collision within intermediate

steps of the hash function [14]. The starting point for hash function collision attacks is a
local collision. Local collisions are found using linear approximations of Boolean func-
tions that are used in various rounds in message scheduling (and other conditions as de-
fined in [14]). The first observation is that SHA-0 has a 6-step local collision that can
start at any step i. The differential path is a sequence of grouped local collisions with
possible overlaps [20]. Wang [14] tried to find a set of starting steps for each local colli-
sion to construct such a path. The disturbance vector is applied to satisfy the recursion

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

896

defined by the message expansion. Once a local collision is found, an attempt is made to
consider the message expansion and other non-linear designs to find a collision for the
full hash function. For SHA-0, 3 vectors are found successfully for three conditions in
[14]. However, it is more complicated to find a good disturbance vector due to the large
search space on SHA-1, and the probability of n interleaved local collision complexities
increases exponentially with n for SHA-256 [16].

Mendel provides an approach for collision searches as follows [16]:

(1) Identify local collisions in each round of transformation.
(2) Search for disturbance vectors that need to satisfy some additional properties.
(3) Build the difference vector by interleaving the local collisions.
(4) The complexity of the collision search is related to the characteristic within these

interleaved local collisions.
(5) Adjusting message bits for the chosen characteristic reduces the computational cost

for the collision search.

The issue that arises is how to reduce the number of local collisions in an expansion

process. Our study applies a genetic approach to find the optimal parameter set of the
SHA family message expansion function based on the evaluation criterion with the low-
est number of local collisions.

3.2 Local Collision in SHA-0 and SHA-1

In [19], it is pointed out that SHA-1 is safer than SHA-0 because of a single bitwise

rotation in SHA-1 that affects the local collisions existing in SHA-0. Table 5 shows the
SHA-0 and SHA-1 equations.

Table 5. SHA-0, SHA-1, and SHA-256-XOR equations.

Algorithm Equation

SHA-0
 

3 8 14 16

, 0 15

, 16 79

i
t

t

t t t t

M t
W

W W W W t   

     
      

SHA-1
 

 1
3 8 14 16

, 0 15

, 16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

     
      

SHA-256-XOR
 

   {256} {256}
0 2 7 1 1 16

, 0 15

, 16 63

i
t

t

t t t t

M t
W

W W W W t    

     
      

The following are examples that compare the terms involved in W27 in both SHA-0
and SHA-1, and that in W20 in SHA-256-XOR where Mj

n (or Wj
n) indicates that the mes-

sage block Mj (or intermediate message word Wj) undergoes an n-bitwise left rotation.
Each message word Wt is obtained by recursively computing other words with lower in-
dices and being replaced by message blocks until t  15.

Fig. 2 represents the number of terms involved in full SHA-0, SHA-1, and SHA-
256-XOR.

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

897

Fig. 2. Comparison of the number of terms involved in each Wt in message scheduling for SHA-0,

SHA-1 and SHA-256.

[SHA-0]
W27 = W24  W19  W13  W11
 = (W21  W16  W10  W8)  W19  W13  W11
 = …
 = M15  M4  M2  M7  M8  M3
  6 terms are involved.

[SHA-1]

W27 = W24
1  W19

1  W13
1  W11

1
 = (W21

2  W16
2  W10

2  W8
2)  W19

1  W13
1  W11

1
 = …
 = M15

4  M10
4  M4

4  M2
4  M13

3  M7
3  M5

3  M10
2  M8

2  M11
2 

M5
2  M3

2  M13
1  M11

1
  14 terms are involved.

[SHA-256-XOR]

W20 = 0(W18) W13 1(W15) W4
 = W18

7  W17
18  W13  W5

17  W5
19  W4

 = (W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18  W1
3 

W5
5  W0

18  W11  W3
17  W3

19  W2)
7  (W14

14  W14
25  W9

7 
W1

24  W1
26  W6

7  W14
4  W9

18  W1
3  W5

5  W0
18  W11  W3

17

 W3
19  W2)

18  W5
17  W3

19  W4
 = M14

21  M14
32  M9

14  M1
31  M1

1  M0
14  M11

7  M3
24  M3

26 
M2

7  M14
11  M14

22  M9
4  M1

21  M0
0  M11

18  M3
3  M3

5  M2
18

 M5
17  M5

19  M4
  22 terms are involved.

3.3 Lee’s Conjecture

Matusiewicz et al. proved that the functions ( and ) or the message expansion are

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

898

essential for the security of SHA-256 by showing that it is possible to find collisions with
a complexity of 264 hash operations for a variant without them [29].

We proposed that message scheduling of the SHA algorithm has higher security
complexity (or fitness) if each message word (Wt) involves more message blocks (Mi) in
each round.

Chabaud and Joux showed that SHA-1 is more secure than SHA-0 [19]. Further-
more, Wang found collisions in full SHA-0 and SHA-1 hash operations with complexi-
ties less than 239 [20] and 269 [14], respectively.

Consider the analyses of the terms involved in each message block. Fig. 2 clearly
shows that the number of terms involved in SHA-1 is more than that in SHA-0, taking
W27 as an example (14 > 6). Therefore, SHA-1 has a higher security complexity (hence
security fitness) than SHA-0. In this paper, we use the term “security fitness” to evaluate
the security of each possible Wt in message scheduling.

3.4 The Best Setting of Message Scheduling Equation in SHA-1

The message scheduling equation in SHA-1 can be generalized as

 

 1

, 0 15

, 16 79

i
t

t

t A t B t C t D

M t
W

ROTL W W W W t   

     
      

. (4)

The best four variables are produced by the brute force (or exhaustive) approach,

and the values found are {A, B, C, D} = {1, 2, 11, 16}. The best complexity occurs in
round 60 when 212 terms are involved. The modified equation is

 

 1
1 2 11 16

, 0 15

, 16 79

i
t

t

t t t t

M t
W

ROTL W W W W t   

     
      

 (5)

and called optSHA-1 [21]. Fig. 3 compares the number of terms involved in SHA-1 and
optSHA-1.

Fig. 3. Comparison of the number of terms involved in each Wt in message scheduling for SHA-1

and SHA-1-OPT.

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

899

4. IMPROVING SHA-256-XOR VIA GENETIC ALGORITHMS

4.1 Specialized GA for SHA-256-XOR

To find optimum parameters, the message scheduling equation in SHA-256-XOR

can be generalized as

 

    











 6316,

150,
}256{

1
}256{

0 tWWWW

tM
W

DtCtBtAt

i
t

t 
, (6)

and

0

{256}(x) = ROTL7(x)  ROTL18(x)  SHR3(x),
1

{256}(x) = ROTL17(x)  ROTL19(x)  SHR10(x). (3)

Consider two operations, ROTL and SHR. A bitwise rotation operation, ROTL, is a

circular shift operation that is a permutation of the entries in a tuple where the last ele-
ment becomes the first element and all of the other elements are shifted. The shift opera-
tion, SHRn(x), which sets 0 as the first element, does not influence the experimental re-
sults because SHRn(x) and ROTRn(x) produce different results. Based on this assumption,
the generalized form is modified to

0

{256}(x) = ROTL7(x)  ROTL18(x),
1

{256}(x) = ROTL17(x)  ROTL19(x). (7)

In the previous section, the optimal values are calculated using the brute force ap-

proach in otpSHA-1. To find the optimum parameters using the brute force approach for
SHA-256-XOR, we would need to test 264 possible combinations of {A, B, C, D} for
each round t (16  t  63), and to perform up to 48  294 operations in the whole experi-
ment. We applied genetic algorithm operators of recombination and perturbation to re-
duce the number of infeasible solutions needed to find the near optimal variable set {A, B,
C, D}.

The design of the GA involves some main components: genetic representation, popu-
lation initialization, fitness function, selection scheme, crossover, and mutation. Each com-
ponent is described as follows, and the parameters used with GAUL are listed in Table 6:

Table 6. Genetic algorithm parameters.
Parameter Value

Library GAUL
Population size 500
Number of chromosomes 1
Length of each chromosome 5
Evolutionary mode GA_SCHEME_DARWIN
Elitism mode GA_ELITISM_PARENTS_SURVIVE
Crossover ratio 0.9
Mutation ratio 0.1
Fitness function # of terms involved in Wt equation

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

900

 Genetic Representation: The genes represent the input variables, A, B, C, D, t, of the
generalized SHA-256-XOR, and each chromosome represents a possible solution. In
the simulation, the length of each chromosome is 5.

 Population Initialization: Each chromosome presents a potential solution for the prob-
lem in genetic algorithms. The initial population is randomly generated and the size is
set to 500.

 Fitness Function: The fitness function counts the number of terms in the equation for
Wt. After the process of selection, crossover, and mutation, the optimal chromosome
indicates the maximum number of terms involved in the equations.

F(t) =  of different terms involved in Wt equation (8)

 Selection Scheme: Selection is a genetic operator that chooses a chromosome from the

current generation’s population for inclusion in the next generation’s population. We
adopt the binary tournament selection based on the fitness value in the simulation.

 Crossover and Mutation: Crossover enables genetic algorithms to extract the best genes
from different individuals, and to produce potentially superior children. The mutation
operation randomly modifies the gene to prevent the falling of all solutions into a local
optimum, and extends the search space. In the simulation, we adopt the one-point
crossover with a ratio 0.9, and a single-point mutation with a ratio 0.1.

4.2 Experiment Results

Table 7 lists 10 generations of the simulation results for {A, B, C, D}. The simula-

tion requires heavy computational times for each t. Appendix A lists more of our ex-
perimental results. We have not generated optimum parameters for additional rounds
because of the computational requirements. However, we believe that we have demon-
strated the basis of our contribution, which is a possible approach for the selection of
optimal message scheduling parameters and the analysis of the security fitness.

Table 7. The last 10 generations of the simulation.
Generation A B C D Fitness

41 8 1 1 16 238
42 4 1 1 16 259
43 4 1 1 16 265
44 4 1 1 16 265
45 4 1 1 16 265
46 4 1 1 16 270
47 4 1 1 16 270
48 4 1 1 16 270
49 4 1 1 16 270
50 4 1 1 16 270

The values for the 5 variables converge after 42 generations. It appears that the ap-
proximate optimal values are {A, B, C, D} = {4, 1, 1, 16}. Thus, the best equation for Wt
of SHA-256-XOR, named optSHA-256-XOR, should be

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

901

 

   {256} {256}
0 4 1 1 1 16

, 0 15

, 16 63

i
t

t

t t t t

M t
W

W W W W t    

     
      

. (9)

Fig. 4 compares SHA-256-XOR with optSHA-256-XOR by showing clearly that

otpSHA-256-XOR is indeed more secure than SHA-256.

Fig. 4. Comparison of the number of terms involved in each Wt in message scheduling for SHA-256-

XOR and optSHA-256-XOR.

Fig. 5. Comparison of the running time in Wt between genetic algorithm and brute force.

With regards to the performance, Fig. 5 compares the running time for each Wt (16
 t  30) in brute force and genetic algorithms. We have not yet been able to complete

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

902

the simulation for every Wt. The later items in the experiment will consume additional
time because the equation is a recursive function.

5. CONCLUSIONS

Since its introduction in 1993, the secure hash function family has become an im-
portant standard in cryptography. This paper proposes a novel view of complexity (and
hence security fitness) by counting the number of terms involved in each equation, in-
stead of analyzing the probability of finding collisions within hash functions. This study
identified the near optimal versions, optSHA-1 and optSHA-256-XOR, using brute force
and genetic approaches of SHA-1 and SHA-256-XOR, respectively, and the latter was
found to be more computationally efficient. This analysis would be interesting for de-
signers interesting in the security of modular addition free hash functions, which are
good for hardware implementation with lower gate counts. Furthermore, the obtained
message schedule parameter sets will be a good reference for further improvement of
SHA functions.

Finally, we again review the equations of SHA-256-XOR (Table 8). In our future
studies, we aim to combine these new variables {E, F, G, H} with {A, B, C, D} to en-
hance the algorithm using genetic algorithms. Furthermore, this approach can be applied
to other SHA-2-XOR family members to determine the relationship between the terms
involved and the complexity (or security fitness).

Table 8. Generalized SHA-256-XOR with more variables.
Algorithm Equation

Generalized
SHA-256-XOR
with more vari-
ables

 

   {256} {256}
0 1

, 0 15

, 16 63

i
t

t

t A t B t C t D

M t
W

W W W W t    

     
      

0
{256}

(x) = ROTLE(x)  ROTLF(x)  SHR3(x)
1

{256}
(x) = ROTLG(x)  ROTLH(x)  SHR10(x)

REFERENCES

1. S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Cryptographic hash functions: A
survey,” Technical Report 95-09, Department of Computer Science, University of
Wollongong, 1995.

2. Secure Hash Standard, FIPS PUB 180, 1993.
3. Secure Hash Standard, FIPS PUB 180-1, 1995.
4. Secure Hash Standard, FIPS PUB 180-2, 2001.
5. Secure Hash Standard, FIPS PUB 180-2, 2002.
6. Data Encryption Standard (DES), FIPS PUB 46-3, 1999.
7. P. Pal and P. Sarkar, “PARSHA-256 – A new parallelizable hash function and a mul-

tithreaded implementation,” in Proceedings of the 10th International Workshop on
Fast Software Encryption, LNCS 2887, 2003, pp. 347-361.

8. H. Handschuh and D. Naccache, “SHACAL,” NESSIE, 2001.

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

903

9. J. Lu, J. Kim, N. Keller, and O. Dunkelman, “Related-key rectangle attack on 42-
round SHACAL-2,” in Proceedings of the 9th Information Security Conference,
LNCS 4176, 2006, pp. 85-100.

10. H. Yoshida and A. Biryukov, “Analysis of a SHA-256 variant,” in Proceedings of
the 12th Annual Workshop on Selected Areas in Cryptography, LNCS 3897, 2005,
pp. 245-26.

11. D. R. Stinson, Cryptography Theory and Practice, 3rd ed., CRC Press, US, 2005.
12. B. Schneier, Applied Cryptography, 4th ed., John Wiley & Sons, Inc., US, 1996.
13. V. Rijmen and E. Oswald, “Update on SHA-1,” in Proceedings of RSA, LNCS 3376,

2005, pp. 58-71.
14. X. Wang, H. Yu, and Y. L. Yin, “Finding collision in the full SHA-1,” in Proceed-

ings of Crypto, LNCS 3621, 2005, pp. 17-36.
15. H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and sisters,” in Proceed-

ings of the 6th Information Security Conference, LNCS 3006, 2003, pp. 175-193.
16. F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of step-reduced

SHA-256,” in Proceedings of the 13th Annual Fast Software Encryption Workshop,
LNCS 4047, 2006, pp. 126-143.

17. I. Nikolić and A. Biryukov, “Collisions for step-reduced SHA-256,” in Proceedings
of the 15th Annual Fast Software Encryption Workshop, LNCS 5086, 2008, pp. 1-15.

18. S. K. Sanadhya and P. Sarkar, “New collision attacks against up to 24-step SHA-2,”
in Proceedings of the 9th International Conference on Cryptology in India, LNCS
5365, 2008, pp. 91-103.

19. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” in Proceedings of the
18th Annual International Cryptology Conference on Advances in Cryptology, 1998,
pp. 56-71.

20. X. Wang, H. Yu, and Y. L. Yin, “Efficient collision search attacks on SHA-0,” in
Proceedings of the 25th Annual International Cryptology Conference, LNCS 3621,
2005, pp. 1-16.

21. Y. S. Yeh, T. Y. Huang, I. T. Chen, and S. C. Chou, “Analyze SHA-1 in message
schedule,” Journal of Discrete Mathematical Sciences and Cryptography, Vol. 10,
2007, pp. 1-7.

22. S. Adcock, “Genetic algorithm utility library,” http://gaul.sourceforge.net.
23. J. H. Holland, Adaptation in Natural and Artificial System, The University of Michi-

gan Press, US, 1975.
24. S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger, “Collisions and other non-

random properties for step-reduced SHA-256,” in Proceedings of Selected Areas in
Cryptography, LNCS 5381, Springer-Verlag, 2009, pp. 276-293.

25. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for Step-
Reduced SHA-2,” in Proceedings of ASIACRYPT, 2009, pp. 578-597.

26. E. A. Grechnikov, “Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics,” Cryptology ePrint Archive, Report 2010/413, 2010.

27. F. Mendel, T. Nad, and M. Schläffer, “Finding SHA-2 characteristics: Searching
through a minefield of contradictions,” in Proceedings of the 17th International
Conference on the Theory and Application of Cryptology and Information Security,
LNCS 7073, 2011, pp. 288-307.

28. A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-order differential

CHU-HSING LIN, CHEN-YU LEE, KRISHNA M. KAVI, DENG-JYI CHEN AND YI-SHIUNG YEH

904

collisions for reduced SHA-256,” in Proceedings of the 17th International Confer-
ence on the Theory and Application of Cryptology and Information Security, LNCS
7073, 2011, pp. 270-287.

29. K. Matusiewicz, J. Pieprzyk, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analy-
sis of simplified variants of SHA-256,” in Proceedings of Western European Work-
shop on Research in Cryptology, LNI, P-74, 2005, pp. 123-134.

Chu-Hsing Lin (林祝興) received his Ph.D. degree in com-
puter sciences from National Tsing Hua University, Taiwan. Now
he is a faculty at the Computer Science Department, Tunghai Uni-
versity. Dr. Lin has ever been the Director of the Computer Center
from 1995 to 1999, and the Chair of the CS Department from 2004
to 2007. He has also been one of the Board Directors of the Chi-
nese Information Security Association (CCISA) from 2001 till now.
Dr. Lin has published over 150 papers in academic journals and
international conferences. He was granted over twenty research

projects by government departments and private companies in recent years. In 2006 and
2008, he was awarded the Outstanding Instructor Award of Master & Ph.D. Thesis, respec-
tively, by the IICM (Institute of Information & Computing Machinery). His current re-
search interests include multimedia information security, wireless ad hoc networks, em-
bedded systems applications.

Chen-Yu Lee (李鎮宇) received his MS degree in computer
science and information engineering from Tunghai University,
Taiwan in 2000. He is currently pursuing his Ph.D. degree in
Computer Science from National Chiao Tung University, Taiwan.
His research interests include cryptography, information security,
and DRM system.

Krishna M. Kavi is currently a Professor of Computer Sci-

ence and Engineering at the University of North Texas and the
Director of NSF Industry/University Cooperative Research Center
on Net-Centric Software and Systems. Between 2001-2009 he
served as the Chair of CSE Department at UNT. Previously he was
on the faculty of the University of Texas at Arlington and the Uni-
versity of Alabama in Huntsville. He was a Distinguished Visiting
Professor at National Chiao Tung University in 2009-2010. He is
currently serving as an Associate Editor of the Journal of Informa-
tion Science and Engineering. Kavi’s research is primarily in

FINDING NEAR-OPTIMUM MESSAGE SCHEDULING SETTINGS FOR SHA-256

905

computer systems architecture including dataflow architectures, cache memories and 3D
DRAMs. He also works in QoS based service composition and security vulnerability on-
tologies. His record includes more than 150 technical publications.

Deng-Jyi Chen (陳登吉) is now a Professor at Computer
Science and Information Engineering Department of National
Chiao Tung University, Hsinchu, Taiwan. Prior to joining the
faculty of National Chiao Tung University, he was with National
Cheng Kung University, Tainan, Taiwan. So far, he has been
publishing more than 130 related papers in the area of software
engineering (software reuse, object-oriented systems, visual re-
quirement representation), multimedia application systems (visual
authoring tools), e-learning and e-testing system, performance
and reliability modeling and evaluation of distributed systems,

computer networks. Some of his research results have been technology transferred to
industrial sectors and used in product design. So far, he has been a chief project leader of
more than 10 commercial products. Some of these products are widely used around the
world. He has been received both research awards and teaching awards from various or-
ganizations in Taiwan and serves as a committee member in several academic and indus-
trial organizations.

Yi-Shiung Yeh (葉義雄) did his Ph.D. in Computer Science,
(September 1981  December 1985) MS in Computer Science,
(September 1978  June 1980) from the Department of EE and
CS, University of Wisconsin-Milwaukee. Since August 1988 he
is working as a Professor in the Institute of CS and IE, National
Chiao Tung University. From July 1986 to August 1988 he
worked as an Assistant Professor in the Department of Computer
and Information Science, Fardham University. From July to De-
cember 1984 he was a doctorate intern at Johson Controls, Inc.
From August 1980 to October 1981 he worked as a System Pro-

grammer in System Support Division, Milwaukee Country Government. His research
interests were cryptography and information security, reliability and performance, DNA
computation.

