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Abstract—A nonogram puzzle is played on a rectangular grid
of pixels with clues given in the form of row and column con-
straints. The aim of solving a nonogram puzzle, an NP-complete
problem, is to paint all the pixels of the grid in black and white
while satisfying these constraints. This paper proposes an efficient
approach to solving nonogram puzzles. We propose a fast dynamic
programming (DP) method for line solving, whose time complexity
in the worst case is only, where the grid size is and is
the average number of integers in one constraint, always smaller
than . In contrast, the time complexity for the best line-solving
method in the past is . We also propose some fully probing
(FP) methods to solve more pixels before running backtracking.
Our FP methods can solve more pixels than the method proposed
by Batenburg and Kosters (before backtracking), while having a
time complexity that is smaller than theirs by a factor of .
Most importantly, these FP methods provide useful guidance in
choosing the next promising pixel to guess during backtracking.
The proposed methods are incorporated into a fast nonogram
solver, named LalaFrogKK. The program outperformed all the
programs collected in webpbn.com, and also won both nonogram
tournaments that were held at the 2011 Conference on Tech-
nologies and Applications of Artificial Intelligence (TAAI 2011,
Taiwan). We expect that the proposed FP methods can also be
applied to solving other puzzles efficiently.

Index Terms—Backtracking, fully probing (FP), nonogram,
NP-completeness, painted by number, puzzles.

I. INTRODUCTION

N ONOGRAM [19], also known as Hanjie, Paint by Num-
bers, or Griddlers, is one of the popular logic puzzles in-

vented by a Japanese graphics editor named Non Ishida in 1988.
In 1990, the U.K. newspaper The Sunday Telegraph started pub-
lishing nonogram puzzles on a weekly basis [14].
A nonogram puzzle is played on a given rectangular grid

of cells, alternatively referred to as pixels, with clues given in
the form of row and column constraints. The aim of solving a
nonogram puzzle is to paint all the pixels of the grid in black
and white while satisfying these given constraints. A nonogram
puzzle is illustrated in Fig. 1(a), where in an 8 8 grid row
constraints are given in the rightmost column and column con-
straints are given in the bottom row. In this paper, symbol “ ”
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Fig. 1. (a) A nonogram puzzle given in [21] and (b) its solution.

stands for a pixel that is to be painted, and “ ” and “ ” stand
for a pixel painted in black and white, respectively. The integers
in these constraints are used to indicate the lengths of black seg-
ments in the solution shown in Fig. 1(b). A black segment is a set
of maximally consecutive black pixels in a row (or a column).
For example, the constraints of the third row, 1 3, indicate that
the row in the solution has two, and only two, black segments
where the length of the first segment (leftmost) is 1 and that of
the second segment is 3. It is not required to have unique so-
lutions for nonogram puzzles, but most puzzles published for
human players normally have unique solutions.
Solving a nonogram puzzle efficiently is challenging, espe-

cially those that are large. Ueda and Nagao showed [17] that the
general problem of determining whether a nonogram puzzle has
a solution is NP-complete.
In the past, several researchers studied how to solve nono-

gram puzzles by translating them into other problems. Bosch
[5] translated a nonogram problem into an integer linear pro-
gramming (IPL) problem and solved it accordingly. Faase [8]
translated it into an exact cover problem and we can then use
Knuth’s dancing-links method [9] to solve it. Unfortunately, the
sizes of the translated problems are usually too large to solve
efficiently. Batenburg [1] modified an evolutionary algorithm
for discrete tomography (DT) to solve nonogram puzzles, while
Wiggers [18] used a genetic algorithm. However, both methods
do not guarantee exact solutions.
Many researchers have been engaged in the study of solving

nonogram puzzles efficiently. In [24], Yu et al. proposed an
algorithm to solve nonogram puzzles based on specific log-
ical rules, using backtracking to solve undetermined cells and
logical rules to improve the search efficiently. These logical
rules are mainly used to help line painting (either for rows or
columns), with the goal of painting as many pixels in each line
as possible. Some simpler line painting methods were also men-
tioned in [13] and [15]. However, these methods are not guar-
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anteed to solve lines. In this paper, line solving means painting
the maximum number of pixels for given lines.
For line solving, Batenburg and Kosters [2] proposed a dy-

namic programming (DP) method instead of specific logical
rules. In general, this method paints more pixels than those in
[13], [15], and [24], and runs much faster. Assume that the grid
size of a given puzzle is and the average number of in-
tegers in one constraint is , which is smaller than . In the
worst case, the time complexity for solving each line using the
DP method is estimated to be . Furthermore, Batenburg
and Kosters [2] also used a 2-Satisfiability (2-SAT) method to
help paint more pixels in whole grids (before backtracking),
and the time complexity for the method was , estimated
in Section III-D. In addition to the above research, many nono-
gram solvers have been designed, collected, and published in
[21], and nonogram-generating algorithms have been discussed
in [2] and [3].
In this paper, based on the research in [2], we propose a faster

DP method for line solving, whose time complexity in the worst
case is only, which improves that in [2] by . In addi-
tion, we propose three fully probing (FP) methods, named FP1,
FP2, and FP3, to paint more pixels before backtracking. The
time complexities for both FP1 and FP2 (before backtracking)
are , while that for FP3 is . In the case that the FP
methods alone cannot paint the entire grid, backtracking will
be used to finish the process. Most importantly, the FP methods
also provide backtracking with useful information as guidance
in choosing the next pixel to guess.
The proposed methods were also incorporated into a nono-

gram solver, named LALAFROGKK, which won both nonogram
tournaments that were held at the 2011 Conference on Tech-
nologies andApplications of Artificial Intelligence (TAAI 2011,
Taiwan) [10]. The program also outperformed all the programs
collected in [21].
In the rest of this paper, Section II describes our methods

for line solving and propagation. Section III proposes three FP
methods to solve more pixels before backtracking. Section IV
describes backtracking. Experiments are presented in Section V,
and concluding remarks are given in Section VI.

II. LINE SOLVING AND PROPAGATION

In this section, first, we specify the definitions and notations
in Section II-A. Then, we describe our methods for line solving
in Section II-B. Propagation of line solving in the whole grid is
given in Section II-C.

A. Definitions and Notation

As described in Section I, a nonogram puzzle is given
initially with a rectangular grid, a sequence of row
descriptions for row constraints, and
a sequence of column descriptions for
column constraints. Each is again a sequence of integers

, where is the number of integers in
the sequence. Similarly, each is a sequence of integers

, where is the number of integers in the
sequence. The goal of solving the puzzle is to paint all the

pixels of the grid in black or white such that the following
conditions hold.
1) Each row (column ) in the grid includes black
segments (defined in Section I).

2) Each integer indicates the length of the th black
segment from the left in row (from the top in column ).

For simplicity of discussion, consider a line, instead of
a row or a column. Let a line be represented by a string

, where denotes the length of the line (or
the number of pixels in the line), and each indicates the
color of the th pixel in the line. The substring
is a segment of the line, where . Let be a
symbol 0 (or 1), if the th pixel in the line is painted in white
(or black). Segment , where , is a
black segment, if all are 1’s, and both and ,
if they exist, are 0’s. Following the notation in [2] for the string
representation, let be the finite alphabet , and be the
set of all the strings over of length . For simplicity, let
be the set of all the strings over of all lengths. For simplicity
of discussion, a pattern for strings is expressed in a regular
expression notation. For example, both 0100111 and 001100
match pattern .
As defined above, each line (either row or column) is given by

a description, say . Line
is said to be consistent with , if is the number of black seg-

ments in the line, and each is the length of the th black seg-
ment (starting from ). More specifically, given description ,
line is consistent with if matches the following pattern:

Let denote segment of length . Let denote
the concatenation of 0 and . The above can be rewritten as
follows for line consistency. Given is consistent with if
matches the following pattern:

Among all the strings that match the pattern, the minimal string
length is .
When a line is partially painted, some pixels in the line may

not be painted yet, since the colors of these pixels are still un-
known. In line , let be the symbol if the th
pixel has not yet been painted. Following the notation in [2] for
the string representation, let be the finite alphabet,
and be the set of all the strings over of length . For line

, if some , the th pixel will need to be changed
to either 0 or 1, but not vice versa. For line , no further
changes are required.
String is said to be an assignment

of another string , if the following three
conditions hold: 1) if is 0, then is 0; 2) if is 1, then is 1;
and 3) if is , then is one of 0, 1, or . Let denote
the assignment relation between and . For example, 0100,
0110, and are assignments of , that is,

, and . Following [2], an
assignment of is also called a fix of , if . For
simplicity, let denote and .
String is said to be fixable with respect to description
, if there exists some fix with such that is
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consistent with . For example, is fixable with respect to
since fix (for ) is consistent with

. In addition, string is said to match pattern , if there
exists fix of such that matches . For example,
matches .
String is said to be partially fixable to string

with respect to description , if is an assignment of and
is fixable with respect to . For simplicity, the relation is

denoted by . For example, we have

, and .

B. Line Solving

This section studies methods to paint a partially painted line
with respect to a description.We investigate two problems, fixa-
bility and line solving, as described in Sections II-B1 and II-B2,
and then give a discussion in Section II-B3.
1) Fixability: The fixability problem is as follows:

Given string and description
, verify whether is fixable with

respect to . As mentioned in Section II-A, is con-
sistent with if matches the following pattern:

. For simplicity, let us as-
sume that is already 0 in the rest of this section. If is not
0, we simply add one 0 at the beginning of .
For this fixability problem, we propose a DP method, which

is more efficient than the one in [2]. Our method is to build
a recurrence for all and as follows.
Let denote string , and denote description

. Given and verifies whether
is fixable with respect to , as shown in Proposition 1.

In addition, let indicate whether string is fixable
with respect to in the case that matches 0, and, similarly,
let indicate fixability for the case where matches 1.
An example is illustrated in Fig. 2. The recurrences for
are formulated in detail as follows:

true if and
false if and

otherwise

if
false otherwise

if and
matches

false otherwise.

Proposition 1: For the above recurrences, is true if
is fixable with respect to , and false, otherwise.

The solution to the fixability problem, therefore, is the value
of . To derive this value, we use the typical DP method
[7] by calculating a table with size , where the table is a
2-D array of data returned from for all . Since it
takes only constant time to calculate each , the time
complexity for evaluating is clearly . In con-
trast, the time complexity given in [2] is . In practice,
the above method can be further improved by checking whether

Fig. 2. Fix0(7, 2) for a string with respect to .

in all . If not, return false immedi-
ately. This is because the minimal length of strings fixable with
respect to is , as mentioned in Section II-A.
2) Line Solving: This section describes our line-solving

method. Before discussing it, we define the equivalence of two
strings with respect to a description in Definition 1.
Definition 1: Let string . Let be the set of all

fixes , where . For another string
and are called to be equivalent with respect to , denoted by

, if .
Furthermore, a painting and the maximal painting of a string

are defined in Definition 2.
Definition 2: String is called a painting of with respect to

, denoted by , if and . Painting is
called the maximal painting of with respect to , denoted by

, if the following condition holds: for all , where

, we have .
The above definitions are illustrated by an example with

string and description . Clearly,
the fix set is . All the strings,

, and , are paintings from with
respect to , since their fix sets with respect to are the same
as . Among these paintings, is the maximal

painting of , that is, .
The line-solving problem is as follows: Given string

and description , find the maximal painting of , that

is, . The maximal painting can be derived from
, the intersection of all possible fixes, as follows.

Given a set of fixes is defined to be string
satisfying the following properties for

each :
1) , if the th pixel is 0 for all strings ;
2) , if the th pixel is 1 for all strings ;
3) , if the th pixel is 0 for some string and 1
for some other string .

Proposition 2: From the above definitions, given string
and , the following properties are satisfied:
1) is the maximal painting of with respect to

;
2) if , then ;
3) if , then ;
4) if , then (from the
previous two).
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Proposition 2 shows some properties. The first property is
that is the maximal painting of with respect to
. From the previous example, and .

We have , and
, which is the maximal painting of . The next three

properties are illustrated by an example with an additional
, where . The fix sets and

are and , respectively, satisfying
. Bothmaximal paintings are, respectively,

and , satisfying .
For the line-solving problem, we also use a DP method, mod-

ified from the one used for the computation of to find
the maximal painting of a given with re-
spect to a given . Similarly, let denote
string , and denote description .
Given and , where is true (that is, is
fixable with respect to ), the recurrence for all

and finds the maximal painting of with respect
to , as shown in Lemma 1. The recurrences are described
in the equation at the bottom of the page.
Lemma 1: For the above recurrences, if is true,

returns .
Proof: In the case that , it is trivial that

simply returns null string . Note that if and , then
is false, and, thus, is not called.

In the case that returns ,
which then derives from and

, respectively, for cases and . Re-
currence returns if
is true, and returns

, if is true.
Since is true from the assumption of this lemma and

from Section II-A, one of
the three conditions holds: 1) is true and
is false; 2) is false and is true; and 3) both

and are true.
Assume that the first condition holds. Then, all fixes

in are also in , that is,
. Hence, simply

returns , which returns . Sim-
ilarly, assuming that the second condition holds,
simply returns .

Assume that the third condition holds. Let and de-
note and , respectively. Ob-
viously, . Hence, de-
rives by merging and , which
are returned by and , respectively. Let
and denote and , respectively. and

are merged using the above function . Let and be
and , respectively. Function merges

each pair of pixels pairwise by . First, the th pixel of
the returning string is 0 if both and are 0, for the following
reason. Since , the th pixels for all strings in must
be 0. Similarly, since , the th pixels for all strings in
must be 0. Thus, th pixels in all strings must be 0 as
well. Therefore, the th pixel of the returning string is 0. For the
same reason, in function , the th pixel of the returning
string is 1 if both and are 1.
For all the other cases for both and , function

returns for the th pixel for the following reason. The rest of
the cases can be classified into the following two subcases: 1)
one of and is 0 and the other is 1; and 2) at least one of
and is . In the first subcase, since one is for 0 and the other
for 1, the pixel must be for property 3 of maximal painting. In
the second subcase, since one is already , indicating that some
is for 0 and some other for 1, the pixel must be as well.
Let us illustrate this by using the above example: Given

and , use to derive
, that is, . In this example, both

and are true, and both
and return
and , respectively. Thus,

merges both, and returns .
Thus, returns .
For deriving the maximal painting , we also use

DP to calculate a table with size , where the table is a 2-D
array of data returned from for all . Since it takes

or time to merge two strings, the time complexity for
evaluating is . In fact, the time complexity
can be further reduced to theoretically, as explained in
the Appendix. For this reason, the time complexity will
be used in the analysis in the rest of this paper.
3) Discussion: In this section, two issues are discussed. The

first issue to consider is the case of general multicolor nono-

if
otherwise

if and not
if not and
otherwise

where
if
if
otherwise.
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grams, where has more than two elements. In these kinds of
puzzles, the descriptions should also include the colors of each
segment. A general method for is to use ,
instead of , where is the color of the last segment.

indicates whether string is fixable with respect
to in the case where the last character matches in the
description. In this way, the time complexity is still the same.
Another issue is of practical design. Since the line lengths

(widths or heights) of most nonogram puzzles are normally
below or around 30, we can use bit vectors to implement lines.
For example, we use two bits to indicate a pixel, bits 01 for
0, 10 for 1, and 11 for , and use a 64-bit word to represent a
line with no more than 32 pixels. Thus, the merging operation
simply performs one bitwise-or operation on two 64-bit words.
In this sense, the time complexity can also be viewed as .

C. Propagation

This section applies the algorithm of line solving, described
in Section II-B, to solving nonogram puzzle . Let the given
nonogram puzzle have a rectangular grid of pixels,
and denote the pixel at row and column . Let
the puzzle have rows, denoted by , where
each represents , and columns, denoted
by , where each represents .
The propagation problem involves repeatedly painting pixels
with values of into 0 or 1 by applying line solving to all rows
and all columns, until none of the pixels in the grid can be
painted. In this section, we design an efficient routine, named
PROPAGATE, to solve the propagation problem as follows.

procedure PROPAGATE
1. ; // is a set of updated pixels
2. Put all rows and columns of into
3. while do
4. Retrieve one line from
5. Let the line be , that is, row ; // for simplicity of

discussion
6. if then CONFLICT;

return
7.
8. Let be the newly painted pixels of
9. For each pixel in , put its column into the list , if

not in yet
10. ; // collect all painted cells in this

propagate
11. end while
12. if (all colors of pixels in are in ) then

SOLVED
13. else INCOMPLETE
end procedure

In PROPAGATE, denotes a list of lines (columns or rows)
in that are to be solved. For simplicity of analysis, let

. Initially, the queue contains all lines ( rows and
columns). During each iteration (between lines 4 and 10 in the
pseudocode above), retrieve from only one line, say row ,

without loss of generality. Then, and are the string and
the description of the row, respectively. Then, use to check
(in line 6) whether a conflict is detected in the row. Assume that

is false. Then, the row is not fixable for the puzzle,
which implies a conflict with the hints of the puzzle in the cur-
rent . In this case, set the status of to CONFLICT, then re-
turn. Alternatively, assume that is true. We con-
tinue to derive the maximal painting of by
(in line 7), and collect all the newly painted pixels of into
the set , that is, the pixels which were but became 0 or 1.
For each , if is in column , column needs to be fur-
ther updated by line solving. Therefore, the column is put into
the list (in line 9), unless it is already in the list. Set
is merged into , a set of newly updated pixels associated
with (in line 10). The propagation method is complete when
no more lines can be retrieved from the list. Then, the status of
is set to SOLVED (in line 12) if all the pixels are painted, or

INCOMPLETE (in line 13) otherwise.
The time complexity for PROPAGATE is for the fol-

lowing reason. From our method above, a line is put into the list
in the following two cases: when list is initialized

and when some pixels in the line are painted. For the former, at
most lines are put in the list (in line 2), while for the latter at
most lines are put in the list. Thus, at most lines are
put into the list . Since it takes time to solve each
line, the total time complexity is .
The routine PROPAGATE can be modified to support incre-

mental propagation efficiently with the same time complexity
. By incremental propagation, we mean that the routine

is performed iteratively whenever some of the pixels, denoted
by , are newly painted between two consecutive iterations.

III. FULLY PROBING

In Section II, a propagation method is used to paint as many
pixels as possible by using the line-solving algorithm. When
no more pixels are to be painted after PROPAGATE, a common
method is to employ backtracking to search all possible solu-
tions. Yet another problem is which pixel to guess at in order
to solve the puzzle more efficiently. This paper proposes an im-
portant technique, called fully probing (FP), to be used before
running backtracking. In FP, we attempt to guess a color on each
pixel to see whether more pixels can be painted. The FP method
is different from backtracking in that the FP method is not recur-
sive. That is, each pixel is only tested once, just enough to pro-
vide backtracking with more accurate guidance when choosing
pixels to guess. The tradeoff is an increase in time complexity
from to or . This paper proposes three FP
methods, as described in Sections III-A–III-C, respectively. A
discussion is given in Section III-D. The backtracking method
is described in Section IV.

A. The First FP Method

The idea of FP is to make guesses for all unpainted pixels
(with a value of ) in advance, and then perform propaga-

tion for each guess. The first proposed FP method, named FP1,
maintains pairs of grids for all pixels , where both

and represent the painted grids after guessing to be 0
and 1, respectively. The routine for FP1 is described as follows.
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procedure FP1(
1. Initialize for all unpainted pixel
2. repeat
3. PROPAGATE
4. if is CONFLICT or SOLVED) then return
5. UPDATEONALLG
6. for (each unpainted pixel in do
7. PROBE
8. if ( is CONFLICT or SOLVED) then return
9. if ( is PAINTED) then break
10. end for
11. until
end procedure

Procedure PROBE
1. PROBEG ; // guess and probe
2. PROBEG ; // guess and probe
3. if (both and are CONFLICT)
then CONFLICT; return

4. if is CONFLICT) then
5. Let be the set of newly painted pixels in with

respect to
6. else if is CONFLICT) then
7. Let be the set of newly painted pixels in with

respect to
8. else
9. Let be the set of pixels with the same value 0 or 1 in

both and with respect to
10. end if
11. if then UPDATEONALLG

PAINTED
12. else INCOMPLETE
end procedure

In the method, FP1 initializes and by letting them
be , then painting the pixel with 0 and 1, respectively. Then,
we repeatedly perform the instructions between lines 3 and 10,
until no more pixels can be painted in . Between lines 2 and 11,
perform PROPAGATE on initially, then return when is done,
where it will either have a status of CONFLICT or SOLVED.
In the case where is not yet complete, update all and

from using the procedure UPDATEONALLG in line
5, where is the set of newly painted pixels in by
PROPAGATE. UPDATEONALLG updates the pixels in from
to all and . Next, for all pixels not painted in

yet, the procedure PROBE is performed.
The procedure PROBE probes, respectively, and

initially by the procedure PROBEG. In the FP1 method,
PROBEG simply calls PROPAGATE . That is, both
PROPAGATE and PROPAGATE are invoked initially.
Then, we have the following four cases.
1) Both statuses of and are CONFLICT. In this
case, must be CONFLICT as well.

2) Only is CONFLICT. In this case, must not be 0, that
is, is 1. Thus, can be updated to . In the routine,
simply let be the set of newly painted pixels in with
respect to in line 5. The pixels in will be painted to
as described below.

3) Only is CONFLICT. In this case, can be updated
to in a similar way to the previous case.

4) Neither nor is CONFLICT. In this case, we try
to find the pixels with the same painted colors in both
and , and put them into .

For the last three cases, indicates the set of pixels to
be painted in . If is not empty, the status of is set to
PAINTED, so that will be updated from set . If is empty,
cannot be updated yet and the status of is set to INCOM-

PLETE, which normally happens in the fourth case when no
pixels with the same colors are found.
The time complexity of this method is only , as ex-

plained in the following four aspects.
1) The routine PROBE is invoked times. The loop be-
tween lines 2 and 11 in FP1 will be performed at most
times, since at least one pixel is painted each time when
is PAINTED in line 9. The loop between lines 6 and 10 is
performed clearly at most times.

2) The total time spent in PROPAGATE is . For all the
grids, including and all and , we use

incremental propagation to perform PROPAGATE more effi-
ciently, in line 3 of FP1, and lines 1 and 2 of PROBE. Since
the time for incremental propagation on each grid is
from Section II-C, the total time for PROPAGATE is .

3) It takes to derive the newly painted pixels of all
and in lines 5, 7, and 9 of PROBE, since the total

number of these pixels is at most for each or .
4) It takes to perform UPDATEONALLG entirely. Since
the set contains the newly painted pixels of and the
number of pixels that UPDATEONALLG uses to update all

and is at most , the number of pixel updates
via UPDATEONALLG is .

B. The Second FP Method

In this section, first, we investigate some cases where the FP1
method cannot paint, then propose a second method FP2 to help
paint more. The major problem of FP1 is that it does not make
use of the contrapositive, that is, an implication implies
the contrapositive . In FP1, if we obtain
by performing PROBE on (assuming ), then this
implies , which implies its contrapositive
Then, the contrapositive implies on (assuming

). Unfortunately, the FP1 method does not request to set
(or paint) on in this case. These implications and
contrapositives, such as and , are also
called pixel relations in this paper.
Consider the example shown in Fig. 3. In this example, we

obtain , and , by performing PROPAGATE
(in PROBE) on the grids , and , respectively. In
terms of logic, we have , and .
From these, we can derive their corresponding contrapositives

, and , respectively. These
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Fig. 3. Case where FP1 cannot find .

Fig. 4. Simplified presentation of Fig. 3.

pixel relations are depicted in Fig. 4. Note that the solid lines
indicate the derivations via PROPAGATE, also called PROPAGATE
implications, and the dashed lines indicate the contrapositives
in the rest of this paper.
From Fig. 3 (or Fig. 4), it is easy to derive , since it

is true in both cases (due to from above)
and (due to ). The result can also be derived in
another way by showing a conflict with the assumption ,
which leads to a contradiction . Unfor-
tunately, the FP1 method cannot obtain this result . The
FP1 method can only derive those solid lines, and, therefore, is
unable to derive .
In order to solve this problem, we propose the second FP

method, named FP2, to add the contrapositives into grids as fol-
lows. In the new method, all grids, say , are associated with
a list of pairs of pixels and their values, denoted by ,
used to record the derived values for given pixels, mainly for
the contrapositive. For example, in Fig. 3, for , its con-
trapositive is stored by putting the pair
into . When probing a grid, update the cells of
the grid from the list before using PROPAGATE. For example, if

contains , the routine PROBE probing
first sets the pixel to 0 from , and then performs
PROPAGATE.
The next issue is when to probe a grid. For this issue, we

maintain a list of pixels , denoted by , to indicate both grids
to be probed. Whenever a new contrapositive is

added into or , pixel is put into ,
unless is already in . The routine for FP2 is described as
follows.

procedure FP2
1. Initialize for all unpainted pixel
2. Initialize the list to contain all unpainted pixels in
3. PROPAGATE
4. if is CONFLICT or SOLVED) then return
5. while do
6. Retrieve one pixel from
7. PROBE
8. if ( is CONFLICT or SOLVED) then return
9. end while
end procedure

procedure PROBEG
1. Update pixels of from the pixel list
2. PROPAGATE
3. if is CONFLICT then return
4.
5. for each pixel with value in do
6. Put the contrapositive, , into ,

where is complement of
7. Add into , if is not in P yet
8. end for
end procedure

procedure UPDATEONALLG
1. for each with value in do
2. Put the pair into all the lists of , all and,

3. Add into , if is not in yet
4. end for
end procedure

The FP2 method is changed as shown above. The routine
PROBE is the same as the one in the FP1 method, except that
the two routines PROBEG and UPDATEONALLG are modified as
shown above. Now, examine how FP2 can obtain in the
example in Fig. 3. Here, we consider two situations. The first sit-
uation is to retrieve from earlier than . In this situation,
probe is retrieved earlier than . When probing , store the
contrapositive into . Next, when probing , set
initially to be 0 in from the contrapositive ,

then perform PROPAGATE, which results in a conflict due to both
and . Thus, we establish that in

line 7 of PROBE, and UPDATEONALLG is subsequently called in
line 11 to set it to all grids including . The second situation is
to retrieve first from , then and . After probing and
, two contrapositives and are stored in

and , respectively. Next, when probing , we ob-
tain from in . Since in both
and , we establish that in line 9 of PROBE.
Consider another puzzle given in [2], as shown in Fig. 5(a),

which actually has more than one solution. Batenburg and
Kosters [2] mentioned that their method was unable to paint the
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Fig. 5. (a) Puzzle given in [2]. (b) Initial where is in the upper left
corner. (c) , where is in the middle of the rightmost column.

Fig. 6. An example modified from Fig. 5.

pixel in white in the middle row of the rightmost column,
though six white pixels can be painted as shown in Fig. 5(a).
For this puzzle, FP1 cannot paint it either. However, FP2 can
paint in white in the following way. First, when probing
pixel in the upper left corner, we can obtain , as
shown in Fig. 5(b). This implies that . In FP2, we
can obtain its contrapositive , and, similarly obtain

. Then, when probing for the grid , as
shown in Fig. 5(c), performing PROPAGATE in the leftmost
column will paint (the middle of the leftmost column) in
black, and then detect a conflict in the third row. Hence, we
establish that should be painted in white.
For this example, one might argue that the FP method would

be sufficient if it simply returned a solution immediately, when
probing on yields a valid solution, then continuing from

. Assume that the aforementioned method is used
instead. We can demonstrate that a solution is not guaranteed
simply by probing. The example illustrated in Fig. 6 is similar
to Fig. 5, except there are now extra rows in the bottom of the
puzzle that cause no solutions to be found like that in Fig. 5.
Again, in this example, FP2 can paint pixel , while FP1 and
the method in [2] cannot.
The time complexity of FP2 remains only, as ex-

plained in the following two aspects.
1) For each of the grids and all and , we
still use incremental propagation to perform PROPAGATE,
so the total time complexity for these is , as de-
scribed in Section III-A.

2) The routine PROBE is also invoked times, since
there are at most pairs of in total, and each
pair of is put into the list at most

Fig. 7. Case where FP2 cannot find .

times for the following reason. Each for the pair of grids
is put into the list only when it is being

initialized, or when at least one pixel is newly painted
(in PROBEG or UPDATEONALLG) in both and ,
where there are at most pixels. In addition, at most
contrapositives for each of the grids can be stored

into pclist in line 6 in PROBEG, so the time for the loop
between lines 5 and 8 is . Moreover, the time for
UPDATEONALLG is , as described in Section III-A.
Hence, the time for updating pixels in line 1 of PROBEG
is as well.

From the above, FP2 can paint more pixels over FP1 without
a higher tradeoff in terms of time complexity, while FP1 has the
advantage of being easier to implement.

C. The Third FP Method

In this section, we further discuss some cases where the FP2
method cannot paint, and then propose a third method, named
FP3. However, the tradeoff is an increase in the time complexity
to , slightly higher than , where the value is nor-
mally smaller than .
The FP2 method is able to deduce PROPAGATE implications

from contrapositives. For example, the contrapositive
in Fig. 7 helps deduce as follows. After the contra-
positive is set from , the probing on
results in in by deducing from to in
PROPAGATE. Unfortunately, FP2 cannot perform deductions that
are the other way around. That is, the contrapositive
does not help deduce , since it involves going from
a PROPAGATE implication to a contrapositive. Similarly, for the
same reason, we cannot derive .
In fact, from PROPAGATE implications and their corre-

sponding contrapositives in Fig. 7, condition obviously
holds from the following two deductions:

or . Unfortu-
nately, using FP2, we can only derive two more, and

, which do not contribute to the result of .
In order to solve this problem, we use a technique such as

graph traversal for solving 2-SAT [6] in the FP3 method as fol-
lows. For a newly painted pixel in , say (implying

), all newly painted pixels in (with respect to )
are also updated and painted in . The update operation is
done recursively for any newly painted pixels. For example, in
Fig. 7, when updating in , also update and

if both are already set in . The routine PROBEG in
the method is modified as follows.
1) In line 1, when painting pixel with the value for
each pair in list , update all the newly
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Fig. 8. General deduction.

painted pixels from to , as described above,
where are the painted pixels in , including those
in list , but not in . Note that a conflict
occurs in when a pixel is set with different values.

2) In line 2, for each pixel that is newly painted with
in PROPAGATE, update all the newly painted pixels from

to as above.
3) In line 4, add all the newly painted pixels in lines 1 and 2
into .

The above modification ensures that all deductions via
PROPAGATE implications and contrapositives can be found.
Namely, in the case shown in Fig. 8, we can deduce the fol-
lowing: 1) ; and 2) , for all .
Now, let us compare our method with the method proposed in

[2] by Batenberg and Kosters without considering tomographic
constraints.1 Using the above modifications for FP3, all the
pixels that are painted by their method as above can also be
painted by FP3 for the following reason. Their method checks
all relations between all pairs of pixels in the same lines (rows
or columns) and then uses a 2-SAT method to derive more pixel
relations, if any. In FP3, we probe a pixel with a color to derive
all PROPAGATE implications to other pixels, not limited to the
same line, and then use the above update operation (a kind of
2-SAT operation) to derive more pixel relations, if any. Since
probing a pixel with a color derives more pixel relations (not
limited to the same lines), all the pixel relations obtained in
their method [2] are also obtained in FP3.
The time complexity of this method becomes as ex-

plained in the following. For the first two modification items in
the routine PROBEG, as specified above, the update operation for
each newly painted pixel takes time to check whether
grids and have more painted pixels to paint. Since the
total number of newly painted pixels is , the total time for
checking grids is .

D. Discussion

This section compares our methods (before backtracking)
with those in [2]. From our analysis, the time complexity for
each line solving, such as in [2] (using DP) is estimated to
be , as mentioned above. In their 2-SAT method, they
first calculated all the 2-SAT relations between any two pixels
in the same line (rows or columns), and then used a 2-SAT
algorithm to paint more pixels.
For the former, the method from [2] initially collects all the

2-SAT relations between any two pixels in the same line. It is
easy to derive the number of pairs to be . Then, when-
ever a pixel is painted, it is required to recalculate all 2-SAT
relations on any pair of pixels in the column or row containing

1Although the method may possibly paint more pixels, our experiments show
little improvement, as discussed in Section V.

it. Thus, the number of recalculated 2-SAT relations due to this
painted pixel is . Since at most pixels are painted, the
total number of recalculated relations is . Thus, the total
time for calculating 2-SAT relations is , which is higher
than ours. Even if they use our line-solving method, the total
time will still be , the same as those of FP1’s and FP2’s.
For the latter, they used a 2-SAT algorithm to detect conflicts

and, therefore, paint more pixels. Starting from each among
all pixels, the method is to explore a path to by traversing
the graphwith relations, as described above. Thus, it takes

time to detect conflicts for one round.Whenever one pixel
is updated, the whole process needs to be performed for a new
round. Thus, since there are at most pixels to be updated, the
total time required is .
In regards to the number of pixels that are painted, our

methods such as FP2 and FP3 are able to paint more pixels than
the 2-SAT method. Examples are shown in Figs. 5 and 6. On
the other hand, Section III-C also shows that all the pixels that
the 2-SAT method can paint can also be painted by FP3. Our
experiments in Section V also confirm this.

IV. BACKTRACKING

In many puzzles, all pixels in the grids can be completely
painted following an FP method: FP1, FP2, or FP3. However,
if the grids are not completely painted, we still need to use
the backtracking method to paint the whole grid. In our back-
tracking method, first, we use an FP method to paint as many
pixels as possible. If a conflict is not detected or a solution is not
yet found in the grid, we use choose-pixel heuristics2 in a rou-
tine named CHOOSEPIXEL to choose the next pixel to extend.
After choosing , we paint the value 0 to , then recursively
call the backtracking method. The process is repeated similarly
for painting 1 on . The routine BACKTRACKING is written as
follows.

procedure BACKTRACKING
1. INITIALIZE all and for all
2. FP3 ; // or FP1 , FP2
3. if is CONFLICT) then return
4. if is SOLVED) then
5. Continue to solve more or stop depending on the

requirement.
6. endif
7. CHOOSEPIXEL()
8.
9. BACKTRACKING
10.
11. BACKTRACKING
end procedure

The time complexity for backtracking is inherently exponen-
tial in the worst case. Thus, careful consideration must be given
when choosing the next pixel to extend in CHOOSEPIXEL,
in order to achieve good performance. Fortunately, our FP

2The heuristics are similar to dynamic variable ordering heuristics in con-
straint satisfactory problem (CSP) [4].
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methods have an important feature: all the grids and
are probed in advance; that is, all ’s are extended tentatively
in advance. This feature offers more accurate information for
choose-pixel heuristics. With this advantage, it is much easier
to design choose-pixel heuristics when deciding which pixel to
extend to. For example, we can choose pixel that maximizes

, where value denotes the number of extra
pixels painted in , not in . In general, the larger is,
the better it is to extend on . This is because extending on
with generally results in more pixels painted. We tried many
choose-pixel heuristics in our experiments in Section V.

V. EXPERIMENTS

We performed experiments to analyze our methods for nono-
gram solvers, the results of which are described in this sec-
tion. Most of our experiments were run using an Intel® Core™
i5-2400 CPU 3.10 GHz. In our experiments, two main sets of
test puzzles were used for performance analysis. The first set
contained 1000 25 25 puzzles generated at the TAAI 2011
Nonogram Solver Tournament [10], [16]. In this tournament,
a nonogram random generator [23] was used to produce these
puzzles at random, where the density of black cells in these 1000
puzzles ranged from 50% to 35%, in linearly decreasing order.
It is worth noting that these puzzles do not guarantee unique
solutions. According to [2], the most difficult puzzles contain
about 20%–35% black cells; the higher the density of black cells
(more than 35%), the easier the puzzles are. This implies that
the generated puzzles (from 50% to 35%) were ordered roughly
from easy to hard.
The second set contained 100 puzzles produced byWu [23] in

another nonogram tournament at TAAI 2011, where each partic-
ipant generated 100 puzzles for opponents to solve. These puz-
zles were required to have unique solutions and were usually
much harder. For simplicity of analysis, nonogram programs
were required to find second solutions for all the puzzles. Since
these puzzles all had unique solutions, the programs were forced
to search completely.
In our experiments, the various choose-pixel heuristics that

were tried are listed as follows.
1) Sum: Choose

2) Min: Choose

where .
3) Max: Choose

where .
4) Mul: Choose

5) Sqrt: Choose

6) Min-logm: Choose

where .
7) Min-logd: Choose

In our experiments, we also supported caching for all lines, as
suggested in [20], since the solving of identical lines is highly
likely. For example, a row to be solved may be the same as one
already solved earlier. Since caching is not the core of this paper,
we simply use a sufficiently large cache.
The experimental results are shown in Section V-A.

Section V-B compares our nonogram solver with other solvers.

A. Performances of Test Cases

In this section, the two sets of puzzles were run with the seven
choose-pixel heuristics and with the three FPmethods, FP1, FP2
and FP3, respectively. The results are shown in Tables I and II,
and the average times in Tables I and II are depicted in Fig. 9.
The columns for “#Calls” indicate the average number of back-
tracking calls (calls to BACKTRACKING), and those for “Time”
indicate the average time in seconds taken for each puzzle. In
Tables I and II, the heuristics are sorted according to the corre-
sponding times of FP3.
From Tables I and II, we discuss the results in the following

three aspects. First, the number of calls for FP1 is generally
higher than that for FP2 by a factor of 30%, while that for FP2
is very close to, specifically only 1% higher than, that for FP3.
The results show that the improvement from FP1 to both FP2
and FP3 is significant and that from FP2 to FP3 is less signifi-
cant. This implies that a significant improvement is achieved by
adding contrapositives in FP2, as described in Section III-B. In
contrast, propagating all the PROPAGATE implications and con-
trapositives in FP3 does not yield much improvement.
Second, in terms of computation time, both FP2 and FP3 run,

in general, faster than FP1 by a factor of 19%. In fact, the FP2
method incurs some overhead over FP1 in maintaining a list of
pixel values. The average time taken for each call in FP1 is about
0.55 ms, while those in both FP2 and FP3 are about 0.60 ms.
The overhead for FP2 and FP3 is incurred by the maintenance
of the data structure for . FP3 runs only 1% faster than
FP2. Although the overhead incurred by FP3 (over FP2) is high
in theory, as shown in Section III-C, in practice the overhead
is actually low if bitwise operations are used. The results show
that the additional overhead for FP3 is less significant.
Third, the results in Tables I and II indicate that the Min-logd

heuristic clearly performs the fastest in all cases. For this reason,
we use Min-logd for the rest of the experiments.
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Fig. 9. The average times for all heuristics using FP1, FP2, or FP3 for (a) the
first set and (b) the second set.

TABLE I
PERFORMANCE RESULTS FOR THE FIRST SET OF TEST CASES

Next, we wanted to investigate the performance of FP
methods from the perspective of the average numbers of
painted pixels before backtracking. Table III shows the average
numbers of painted pixels, after the initial PROPAGATE on the
grid and the first call to FP1, FP2, and FP3, respectively.
The experimental results for the first set show that the initial
PROPAGATE can solve only 32 pixels on average, but the three

TABLE II
PERFORMANCE RESULTS FOR THE SECOND SET OF TEST CASES

TABLE III
THE AVERAGE NUMBERS OF PAINTED PIXELS AFTER INITIAL PROPAGATE,

THE 2-SAT METHOD IN [2], FP1, FP2, AND FP3

methods FP1, FP2, and FP3 improve by painting 201–211
pixels, about 170 more pixels. The results also show that both
FP2 and FP3 are clearly better than FP1 by solving 9.4 and 10.1
more pixels on average, respectively. However, the improve-
ment from FP2 to FP3 is very small, with only 0.7 more pixels
on average. For the second set, the experimental results show
a similar relation. However, since the set of puzzles is more
difficult, the numbers of painted pixels are generally smaller
than those in the first set.
Next, wewanted to compare ourmethodwith themethod pro-

posed in [2] without DT (as mentioned in Section III-C). In the
column “2-SAT” of Table III, the values indicate the average
numbers of painted pixels after finishing the 2-SAT method.
From the table, FP3 can solve 116.4 more pixels on average for
the first set and 23.7 more pixels for the second set. This shows
that our FP methods can paint many more pixels than theirs,
while our methods also perform more efficiently (as described
in Section III-D). In addition to 2-SAT, Batenburg [1] and Baten-
burg and Kosters [2] also proposed a DT method to help paint
more pixels. However, our experiments also show that a 2-SAT
method together with DT solves almost the same number of
pixels as that for the 2-SAT method alone, but it takes much
more time. More specifically, for all the puzzles in the above
two sets (1100 puzzles), the 2-SATmethod with DT can paint in
total only five more pixels than the 2-SAT method. This shows
that DT is not critical when attempting to paint more pixels.

B. Comparison to Other Solvers

In this section, we compare our nonogram solver with other
solvers in other sets of puzzles. First, consider the first set of
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TABLE IV
5000 PUZZLES GIVEN IN [21]

1000 puzzles from the TAAI 2011 Nonogram Solver Tourna-
ment, as mentioned in Section V-A. In this tournament, our pro-
gram named LALAFROGKK solved all 1000 puzzles in 645 s
[10] on a machine equipped with Intel® Core™ i7-970 CPU
3.60 GHz, and outperformed the other two teams, YAYAGRAM
and NAUGHTY. YAYAGRAM solved 766 puzzles in 120 min (the
time limitation of this tournament), while NAUGHTY solved 509
puzzles.
Second, consider the set of 5000 puzzles generated by a

nonogram random generator in [21] where the density of black
cells is about 50%. The site also collected many public nono-
gram solvers, including NAUGHTY, but not yet LALAFROGKK.
NAUGHTY was ranked the fastest among all the programs on
this site, and PBNSOLVE was ranked the second fastest. Table IV
shows the computation times of the two programs as well as
ours, after we reran all 5000 puzzles for all three solvers on an
Intel® Core™ i5-2400 CPU 3.10 GHz. The result shows that
the average computation time for LALAFROGKK is the fastest
one, and that the number of puzzles that required over 1 min
to solve is only one for LALAFROGKK, but five for NAUGHTY
and 21 for PBNSOLVE.

VI. CONCLUSION

This paper proposes some methods to design an efficient
nonogram solver. The contributions are listed as follows.
1) We propose a fast DP method for line solving, whose time
complexity in the worst case is only, where the grid
size is , and is the average number of integers in
one constraint, always smaller than . In contrast, the DP
method in [2] is .

2) We propose three FP methods, named FP1, FP2, and FP3,
respectively, to solve more pixels before backtracking.
This contribution has significant value in the following
two senses. First, both FP2 and FP3 can solve more pixels
than the method in [2] (before backtracking), while the
time complexities for FP2 and FP3 are faster than theirs
by a factor of .
Second, these FP methods can provide backtracking with
useful guidance when choosing the next pixel to guess.
Our experiments also showed that FP3 performed the
fastest, improving performance over FP1 significantly, but
improving performance over FP2 only slightly.

3) We incorporate the proposed methods into a fast nono-
gram solver, named LALAFROGKK, which won a nono-
gram tournament at TAAI 2011. In addition, in the 5000
test cases given in [21], our program clearly outperformed
other programs collected in [21].

The FP method proposed in this paper is actually a generic
method for many puzzle problems. In practice, we are applying
this method to some other puzzle problems such as Nurikabe
[22], Slitherlink [12], and Sudoku [11]. We believe this method
is an important generic method for solving puzzles like dancing
links [9].

APPENDIX

In this Appendix, we design a line-solving algorithm whose
time complexity is . We follow the definitions and no-
tation in Section II-B2. The algorithm maintains three arrays:

, and . Each , initialized to be false,
indicates whether there exists some fix with the
th pixel 0. Similarly, each indicates for the th pixel 1.
Each is the lowest index such that are
all 1’s.
The algorithm starts calculating from , and uses

memorization to prevent repeatedly calculating recurrences for
both and , as described in [7].
is calculated only when is true. Similarly,
is calculated only when is true, and is
calculated only when is true.
Assume that is true. Then, set must be

nonempty. This implies that there exists some with
the th pixel 0, and this also implies that there exists some

with the th pixel 0. Thus, in , also
set to true.
Similarly, assume that is true. Then, set must

be nonempty. This implies that there exists some such
that . Since , we
have and . A straightforward
method for is to set to true, and set all

to true. However, the computation
time increases the order, using this method. So, we set
to true, and to . If
is lower than the original becomes
to indicate implicitly that all are set
to true. On the other hand, if the original is lower than

, all of these are implicitly set to true already, so
no more operations are needed.
When is completed, first, we scan all from
back to and set the corresponding according to .

It is not hard to perform the above operation in linear time.
Then, determine the final by merging all and

, in the following way. For all , if is true and
is false, set ; if is false and is true, set ;
and if both and are true, set . Note that it is
impossible to have both and to be false, since set

is nonempty if is true.
The time complexity of the above algorithm is only

for the following reason. The time for merging all and
is . The time for calculation on each and
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is . Thus, the total time for calculating all
and is .
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