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Abstract—With the growing concern for driving safety, many
driving-assistance systems have been developed. In this paper,
we develop a reasoning-based framework for the monitoring of
driving safety. The main objective is to present drivers with an
intuitively understood green/yellow/red indicator of their danger
level. Because the danger level may change owing to the interaction
of the host vehicle and the environment, the proposed framework
involves two stages of danger-level alerts. The first stage collects
lane bias, the distance to the front car, longitudinal and lateral
accelerations, and speed data from sensors installed in a real
vehicle. All data were recorded in a normal driving environment
for the training of hidden Markov models of driving events,
including normal driving, acceleration, deceleration, changing to
the left or right lanes, zigzag driving, and approaching the car in
front. In addition to recognizing these driving events, the degree of
each event is estimated according to its character. In the second
stage, the danger-level indicator, which warns the driver of a
dangerous situation, is inferred by fuzzy logic rules that address
the recognized driving events and their degrees. A hierarchical
decision strategy is also designed to reduce the number of rules
that are triggered. The proposed framework was successfully
implemented on a TI DM3730-based embedded platform and was
fully evaluated in a real road environment. The experimental
results achieved a detection ratio of 99% for event recognition,
compared with that achieved by four conventional methods.

Index Terms—Driving events, driving safety, fuzzy logic, hidden
Markov models (HMMs).

I. INTRODUCTION

A STUDY by the National Highway Traffic Safety Admin-
istration reported that each year, approximately 56 000 car

accidents are caused by driver fatigue, in which approximately
1500 drivers die. In Taiwan, a traffic accident occurs every
2 min on average, whereas drunk driving and other human
errors were the prime causes of accidents in the decade studied
[1]. With advances in automotive electronics in recent years, a
wide range of automotive safety systems have been released,
such as driver blind-spot detection and a 360◦ panorama imag-
ing system [2], [3]. These driving assistance systems focus
on the detection of certain events, such as lane departure, or
the approach of vehicles in the front/back/blind spots. They
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provide drivers with warnings when such events are detected
[4], because a timely warning may prevent a possible accident.
The occurrence of an accident is related to many factors. We
believe that if dangerous events frequently occur, there is a
high probability that an accident will occur. For drivers who
are responsible for the transportation of people or goods, an
accident has a more serious impact than it does for individuals.
If we could choose drivers with better driving performance,
i.e., no frequent occurrence of dangerous events, this would
facilitate the safety and protection of both people and goods.
For this reason, there has been an increase in research into the
monitoring of a driver’s performance to prevent potential risks.

A driver’s performance can be evaluated using several in-
dexes. People intuitively understand poor driving behavior
when they feel that a driver is performing dangerous maneuvers
that make them uncomfortable. However, it is difficult to define
what kind of behavior is dangerous or the danger level that
it represents. Because exact danger patterns have not been
established, the danger level of a given behavior may change
when it takes place in different environments. Although the
time at which a detected event occurs can be recorded, it is
still difficult to provide a reasonable value of the danger level
to evaluate the driver’s performance in terms of any single
event or when it occurs. Recent years have seen a growing
body of research on driving safety, and the methods used to
determine the degrees of dangerous driving are broadly divided
into three categories, according to the subjects being studied:
1) the states of the driver, 2) the states of the vehicle, and 3) the
hybrid [5], [6].

A. Driver’s States

The first category considers the danger for which the driver
is responsible. Different danger levels are determined by the
driver’s state using various physiological signals and their
implications. In such cases, driver fatigue, distraction, and
drunkenness are often a cause of danger. If a system could
identify these states, system warnings might be able to awaken
a driver in time to correct his/her course, and possible accidents
might be avoided. This research approach thus focuses on how
to effectively detect the driver’s state.

Some reports in the literature employ physiological signals,
such as the heart rate [7], [8], electroencephalogram (EEG) [9]–
[12], electrocardiograph (ECG) [13], and the respiration rate
[14], to determine the driver’s state. In [7], a new calculation
method for respiratory sinus arrhythmia and Mayer wave-
related sinus arrhythmia is derived from an analysis of heart rate
variability, to evaluate the driver’s mental stress and drowsiness.

1524-9050 © 2013 IEEE
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Jap et al. [9] assessed four EEG activities, namely, delta, theta,
alpha, and beta, during a monotonous driving session. The
results have implications for the detection of fatigue, based on
an increase in the ratio of slow- to fast-wave EEG activities over
time. Chua et al. [13] combined ECG and photoplethysmogram
measurements to estimate psychomotor vigilance by establish-
ing multiple linear regression models. Yang et al. [15] proposed
a driver fatigue recognition model based on a dynamic Bayesian
network that uses physiological features (ECG and EEG), and
they applied the hidden Markov model (HMM) to compute the
dynamics of the network at different points in time. To acquire
the given signals, however, one or more intrusive sensors must
be attached to the driver’s body. This requirement makes most
drivers unwilling to use the system and is impractical in most
situations.

To avoid these shortcomings of intrusive sensors, the other
approach to research uses cameras to identify driver fatigue
and distraction via the recognition of characteristic facial ex-
pressions. Single or multiple facial features, such as the per-
centage of eye closure (PERCLOS), eye closure duration, blink
frequency, nodding frequency, face position, and fixed gaze, are
used to characterize a driver’s state [16]–[19]. Albu et al. [20]
proposed an approach that focuses on a single visual cue
and uses a custom-designed template-matching algorithm for
online eye-state detection of fatigued drivers. Qiang et al. [21]
described a driver fatigue monitor that recognizes eyelid move-
ment, gaze movement, head movement, and facial expression.
A probabilistic model was then developed to model human
fatigue based on visual cues. Ueno et al. [22] developed a
system for drowsiness detection that recognizes whether a
driver’s eyes are open or closed, using image processing tech-
nology. Their preliminary evaluations gave promising results,
which showed that the system’s performance is comparable to
that of techniques that use physiological signals. However, the
variations in light and shadow during the day affect the visual
appearance of the driver, which makes it a difficult challenge to
use computer vision techniques to reliably obtain accurate and
robust results.

Another approach involves finding the correlations be-
tween the car performance and the driver’s state [23]–[25].
Eskandarian and Mortazavi [26] used an artificial neural net-
work (ANN)-based algorithm to detect drowsiness using only
input from the steering wheel. However, it is not easy to acquire
such information from a vehicle without the use of a controller
area network (CAN) bus or additional supports.

B. Vehicle’s States

The second approach deals with the behavior of vehicles and
not of drivers. The features of interest in this approach include
the parameters of the host vehicle and of the environment, such
as lateral positions, accelerations/decelerations, the distance to
the vehicle in front, and the distance to the lane markings [27],
[28]. These features also indirectly indicate the driver’s state
and can be extracted by various sensors. Many researchers
have conducted studies along these lines to develop driving
safety systems. Liu et al. [29] proposed a method of hazardous-
event detection that employs object tracking and a finite-state

machine. The tracking results are mapped to a region called
a driving environment state map and are then used to predict
the behavior of the tracking vehicle. Inata et al. [30] proposed
the modeling of longitudinal driving behavior based on urban
driving data of human pedal operation for longitudinal vehicle
control. Huang [31] constructed a long- and short-term model
for filtering the variations of parameters, and the results are
classified to define different types of dangerous driving situ-
ations. However, there are several challenges in developing a
safety monitoring system based on the identification of vehicle
behaviors. For rule-based approaches, it is difficult to design a
comprehensive set of rules that cover all dangerous behaviors.

For this reason, some researchers have used statistical
methods to determine the dangerous behaviors using pattern
recognition techniques. Zhou et al. [32] proposed a discrimi-
native learning approach, i.e., conditional random field, which
combines multichannel sequential data to detect unsafe driving
patterns, using semisupervised learning algorithms. Ning et al.
[33] proposed an approach to learning the danger-level func-
tion. The danger level is treated as an expected future reward,
and temporal difference learning is used to learn the func-
tion to approximate the expected future reward. Wang et al.
[34] introduced a dangerous-driving warning system that uses
statistical modeling to predict driving risks. In this system,
a semisupervised learning method utilizes both labeled and
unlabeled data to build an appropriate danger-level function.
Aoude et al. [35] developed algorithms based on support vector
machines (SVMs) and HMMs for estimating driver behavior at
road intersections, which are combined with Bayesian filtering
to classify drivers as being compliant or in violation. Patterns
of dangerous behavior are difficult to define, and the boundaries
of the patterns may not be so clear. Another research group has
used regression techniques to identify levels of danger [36]. In
this case, however, it is also difficult to explain the influence of
each parameter in the regression model.

C. Hybrid

Hybrid means that states of both the driver and the vehicle
are simultaneously considered. Sathyanarayana et al. [37] tried
to detect distraction by using data from the CAN and motion
sensors (accelerometer and gyroscope). The collected data were
analyzed using principal component analysis and linear dis-
criminant analysis to reduce the number of features. Then, a
k-nearest neighbor classifier was trained and verified. The
results showed that this system could yield an accuracy of over
90% for distraction detection. However, not every related work
in this category showed the comparison detection results of
using the single state and the hybrid. It is difficult to conclude
that using the approach of the single state is definitely worse
than the approach of the hybrid.

In this paper, we propose a reasoning-based framework to
provide drivers with an intuitively understandable indicator that
alerts them to a definite level of danger, which is based on the
recognition of different driving events. There are two stages in
our framework. The first stage is the recognition of the follow-
ing seven driving events, using HMMs: normal driving (ND),
acceleration (ACC), deceleration (DEC), changing left (CL),
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changing right (CR), zigzag driving (ZD), and approaching the
car in front (AFC). In the second stage, a fuzzy inference system
(FIS) is introduced that produces a danger-level indicator that
alerts the driver to dangerous situations. The higher the value
indicated, the worse the status of the driver’s situation. The
data that are used come from a camera, an accelerometer,
and a global positioning system (GPS) receiver, which provide
information regarding lane bias, the distance to the car in front,
frontal and lateral accelerations, and the velocity of the host
vehicle. We sought to treat the process in a clearly analytical
manner. The first stage is a classification-based problem, which
requires a well-designed approach to obtain a good detection
ratio. The second stage relies on an expert system that we
expect can offer drivers a clear and reasonable explanation of
the meaning of the danger level that is indicated.

The main contribution of the proposed system is that it
provides drivers not only with a simple indicator of the danger
level but also with information that defines the present driving
event. This system is, thus, particularly useful for management
applications, as it can use easily installed sensors that have
interfaces that are nonintrusive for either people or vehicles,
fostering increased willingness to apply the system. Moreover,
all training and testing data were acquired from a real vehicle
in a real environment, and the framework was implemented on
an embedded platform to evaluate its performance.

The rest of this paper is organized as follows: Section II
introduces the design of the vehicle behavior model and the
usage of selected sensors. The details of driving event recog-
nition and the logic that governs the different danger levels are
addressed in Sections III and IV, respectively. The experimen-
tal results and comparisons of performance are presented in
Section V. Finally, our conclusions are presented in Section VI.

II. SETUP OF THE VEHICLE BEHAVIOR MODEL

The act of driving consists of many complicated behaviors
and factors. To easily and constructively describe and analyze
driving behavior, a vehicle behavior model must first be devel-
oped. In surveying past research, we found that most driving
situations can be described in terms of three aspects, namely,
longitudinal, lateral, and car-following behaviors. As shown
in Fig. 1, longitudinal behaviors characterize the longitudinal
variation of vehicles, such as acceleration and deceleration,
whereas lateral behaviors explain the lateral variation of vehi-
cles. In general, there is not just a single car on the road, and
most accidents are caused by collisions between vehicles. For
this reason, car-following behaviors are introduced to account
for the variable distance between one car and the car in front of
it. We believe that the combination of these three aspects can
be used to model most driving behaviors and provide sufficient
information to infer the level of danger. ACC, DEC, CL, CR,
ZD, and AFC were selected as representative behaviors that
cover the three aspects. The details of these behaviors are listed
in Table I. In addition, the given behaviors are also referred to
as “driving events” in this work, and the recognition of these
driving events is the most important task in the first stage of the
proposed framework.

Fig. 1. Vehicle behavior model.

TABLE I
DRIVING BEHAVIOR CATEGORIES

Unlike most research, which uses a simulator to obtain the
data needed for analysis and evaluation, the proposed frame-
work is designed to be a practical system. Accordingly, the
selected sensors needed to be easily acquired and installed.
For this reason, we chose a camera, an accelerometer, and
a GPS receiver to collect the needed data. Most people are
familiar with these different kinds of sensors, which are even
available on their mobile phones. The driving events in the
longitudinal and lateral behaviors are relative to the velocity and
the acceleration of the host vehicle, which can be obtained from
the accelerometer and the GPS receiver. The accelerometer is
set on the dashboard, and the x-axis and the y-axis of the
sensor coordinate system are aligned with the longitudinal and
lateral directions of the vehicle, respectively. The events of lane
changing and approaching the car in front, however, are related
not only to the host vehicle but to the environment as well,
i.e., the position relative to the lane markings and the vehicle
in front.

Detection of lane markings and vehicles has been a field
of interest in the development of advanced driver assistance
systems. Many vision-based solutions have reported robust
performance, and in many applications, they have been found to
outperform other techniques [4], [28]. Therefore, to efficiently
extract the needed parameters, this study has employed the
results of lane markings and vehicle detection that appeared in
our previous research [38], [39]. After correctly detecting the
lane markings and the vehicle in front using image processing
technology, the system can acquire values for the lane bias and
the distance to the car in front, which are the major features
related to lane changing and approaching the car in front, as
shown in Fig. 2. The lane bias is derived from the lane mark-
ings, whose meaning can be clarified, as shown in Fig. 2(a).
The solid line represents the center line in the complete image,
and the dashed line represents the center line within the lane.
Thus, the lane bias is the difference between the solid line and
the dashed line.

III. DRIVING EVENT RECOGNITION

The major task in the first stage is to facilitate driving
event recognition by HMMs, including the training and the
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Fig. 2. Detection results of lane markings and the vehicle in front.
(a) Significant lane bias. (b) Short distance to the car in front.

Fig. 3. Flowchart of the recognition procedure.

evaluation. A flowchart of the recognition procedure is shown
in Fig. 3. The data collected from sensors include lane bias,
the distance to the car in front, frontal/lateral accelerations, and
the velocity of the host vehicle. The lane bias and the distance
to the car in front are acquired by processing captured camera
images that are taken at 30 frames/s. The three-axis acceleration
value is provided by the accelerometer at a sampling rate of
50 Hz, while the velocity is transmitted by the GPS receiver
every second. Because the data sources have different in-
put rates, they have to be preprocessed before executing the
next step.

A. Data Preprocessing

Data preprocessing consists of four subprocesses, namely,
filtering, downsampling, normalization, and quantization.

1) Filtering: A second-order Butterworth low-pass filter
with a 2-Hz cutoff frequency is applied to reduce the
influence of noise. Because a vehicle is a relatively large
mass, the behaviors of concern in our system generally
appear in the range of the low-frequency part.

2) Downsampling: The input data with a high sampling rate
have to be downsampled to reduce computational load.
Both the data from the accelerometer and the camera are
downsampled to 5 Hz. If we take the accelerometer as an
example, we see that it provides three-axis acceleration at
a sampling rate of 50 Hz. The mean is calculated every
ten samples as a new value. This implies that the original
sampling rate of 50 Hz is downsampled to a rate of 5 Hz.
The downsampled data are gathered through a sliding
window. We assume that the normal behavior of a vehicle

is presented within 5 s, which means that there are 250
samples of raw data and 25 samples after downsampling.
Therefore, the length of the sliding window is set to 25 to
acquire sufficient data.

3) Normalization: Normalization, which is performed to
standardize the range of independent variables or features
of data, is applied. Since the range of values of raw
data widely varies in many machine learning algorithms,
objective functions will not properly work without nor-
malization. The selected HMM method is no exception.
The minimum and the maximum are selected from the
25 samples in the window, and these two values are
used to scale the data range into [0, 1]. In particular,
instead of such commonly used normalization methods
as min–max normalization and mean–variance normal-
ization, a modified version of min–max normalization,
which is called variance-based min–max normalization,
is used for the following reasons. Conventional min–max
normalization preserves the trend of the data but loses the
amplitude information, which is the key feature of driving
events. For example, the min–max normalization results
of normal driving and zigzag driving are quite similar,
as shown in Fig. 4. Therefore, variance-based min–max
normalization checks the variance to remap the range of
normalization to preserve the amplitude information. If
the data variance < Tvar, where Tvar is the maximum
value of the statistics from the data of normal driving, the
range is remapped to [0, 0.5] instead of [0, 1], as shown
in Fig. 5.

4) Quantization: Vector quantization is introduced to gener-
ate distinct observation symbols for HMM usage. Vector
quantization works by encoding values from a multidi-
mensional vector space into a finite set of values from a
discrete subspace of a lower dimension. The dimension
of quantized data represents the number of symbols used
in an HMM, and it affects HMM complexity. Quantized
data with a low dimension may eliminate the variation
of the data, whereas data with a high dimension increase
computational complexity. By observing the recorded
data, we chose a dimension of 10 to preserve the trend
of the data. This means that the normalized value in [0, 1]
is quantized with an integer in [1] and [10].

B. Behavior Recognition

After data preprocessing is accomplished, the HMM is ap-
plied to recognize the driving events. An HMM is a probabilis-
tic tool for time-series data recognition. Owing to its stochastic
nature, the HMM has been successfully used in a wide range
of applications in the area of pattern recognition, particularly
in speech recognition. Theories of HMMs were introduced by
Baum and Petrie in the late 1960s [40]. Here, only the basic
concepts are introduced. Detailed tutorials on HMMs can be
found in [41].

An HMM is characterized by the following elements:

• N , the number of states in the HMM model;
• M , the number of distinct observation symbols per state;
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Fig. 4. Results of min–max normalization. (a) Normal driving. (b) Zigzag driving.

Fig. 5. Results of variance-based min–max normalization. (a) Normal driving. (b) Zigzag driving.

• The state transition probability distribution A = {aij},
where aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N ;

• The observation symbol probability distribution in state j,
B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj ] , 1 ≤ j ≤ N, 1 ≤ k ≤ M

• The initial probability distribution π = {πi}, where

πi = P [q1 = Si], 1 ≤ i ≤ N.

Therefore, an HMM λ could be specified as λ =
(N,M,A,B, π). The observation probability of sequence O
is P (O|λ). Moreover, there are different types of HMMs
according to the limitation of state probability matrix A. The
architecture of HMMs adopted in the algorithm is the so-called
left-to-right model. The left-to-right model always starts from
the first state, and transitions are only allowed toward the right
state or the same state. The left-to-right model is better than
the general model at performing dynamic pattern recognition,
such as speech recognition, gesture recognition, and signature
verification, because it lays a greater emphasis on the contextual
relationship between states.

For each driving event, an HMM is constructed. As pre-
viously mentioned, a left-to-right HMM was adopted. The
training phase is carried out using the Baum–Welch reestima-
tion method. A larger number of symbols would reduce the
quantization error but would, at the same time, reduce the
recognition rate and increase computation complexity. On
the other hand, an HMM with a large number of states leads to
a larger error rate. Therefore, the number of states and symbols
in each model is tested to find the optimal result. In all cases,
except for ND, the number of states is five; for ND, the number
of states is two. The number of all symbols is ten.

The driving event recognition procedure is shown in Fig. 6.
Given an observation sequence, the observation probabilities
of each HMM model are calculated by the forward algorithm.
The model with the highest probability is then selected as
the recognized maneuver. In other words, for one observation
sequence set, one of the longitudinal behaviors is output as the
result, such as DEC. The same is true for the lateral and car-
following behaviors.

Fig. 6. HMM recognizers for three categories of driving behaviors.

IV. DANGER-LEVEL REASONING

The major task in the second stage is to combine the effect
of each driving event to infer the danger level using an FIS.
The degree of each driving event is estimated as a quantifiable
indicator that represents a more explicit description. In addition,
a hierarchical decision strategy is also presented to improve the
efficiency of the fuzzy rule selection by using the recognized
results obtained from the first stage as conditions. This is
discussed in more detail in the following sections.

A. Degree of Driving Events

In the first stage, we analyzed the longitudinal, lateral, and
car-following behaviors and recognized the occurrence of driv-
ing events in terms of these three aspects. In the second stage,
the intent is to further estimate the danger level using the in-
formation on driving events. Each driving event itself implies a
certain degree of risk; however, we have a rough criterion if we
infer the danger level using the simple occurrence of each event.
Take the case of acceleration, for example. One car accelerates
at 10 km/h in 5 s, whereas another car accelerates at 30 km/h
in 5 s. Evidently, the latter car is more dangerous. Therefore,
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TABLE II
REPRESENTATIVE PARAMETERS OF DRIVING EVENTS

TABLE III
LINGUISTIC VARIABLES OF FUZZY INPUT AND OUTPUT

considering only the occurrence of an event is not enough; the
degree of that event must be also taken into account.

Table II lists the representative parameters of different de-
grees of each driving event. For acceleration and deceleration,
variation in velocity, i.e., Δv, was chosen to reflect the intensity
of the event. For lane changing, it is more dangerous if the ve-
hicle changes lanes more rapidly. Thus, lateral velocity Vlateral

is calculated to indicate the degree of changing to the left and
right. For zigzag driving, the variance of the y-axis acceleration
was selected, because the greater the degree of zigzagging, the
larger the variance is. The degree of approaching the car in front
is easy to imagine; the shorter the distance to the car in front,
the greater the danger is.

B. Design of Fuzzy Danger-Level Model

After the driving events and their degrees have been rec-
ognized and estimated, an FIS is introduced to provide a
reasonable danger level. Fuzzy systems are based on fuzzy
logic, which was first developed by Zadeh in the mid-1960s
to represent uncertain and imprecise knowledge [42]. The be-
havior of systems that are too complex or that cannot be easily
analyzed mathematically can be described in an approximate
but effective manner. A typical fuzzy logic model consists
of four components, namely, fuzzification, a fuzzy inference
engine, defuzzification, and a fuzzy rule base. The FIS adopts
minimum operator as the connective AND, maximum as the
aggregation method, and center of area as the defuzzification
method.

The inputs of the FIS for the danger-level model include the
variation in velocity, the variance of the y-axis acceleration,
the lateral velocity, and the distance. The current speed of the
host vehicle is also included because it also involves a different
degree of risk. The output is the danger level. The linguistic
variables of all the inputs and output are listed in Table III, and
the membership functions are shown in Fig. 7.

Fig. 7. Membership functions. (a) Input membership functions for SP.
(b) Input membership functions for AD. (c) Input membership functions for
AFC. (d) Input membership functions for ZD. (e) Input membership functions
for LC. (f) Output membership functions for DL.

C. Hierarchical Decision Strategy of Fuzzy Rule Selection

After the fuzzy sets and membership functions are set, the
rule base for the model contains 72 fuzzy IF-THEN rules. If
there are too many rules, however, this increases the compu-
tational load and leads to an imprecise understanding of the
relationship between the behaviors and the danger level. To
overcome these shortcomings, a hierarchical decision strategy
was designed to decrease the number of fuzzy rules. Such
a strategy involves three concepts. First, we know that some
behaviors are mutually exclusive, i.e., they cannot simultane-
ously occur. For example, when a vehicle is zigzagging in a
lane, the behavior of lane changing cannot happen at the same
time. Therefore, if we know that the current behavior is zigzag
driving, the parameters corresponding to lane changing can be
ignored, thus reducing the number of combinations. Second,
if the behavior itself does not exist, its effect does not need
to be considered. For example, the behavior of a host vehicle
approaching the car in front of it can only be observed when
there actually is a car in front of it. Third, if the parameters
of the corresponding behaviors are the same, they can be
merged by using the same membership function. For example,
the representative parameters of acceleration and deceleration
are both variations of longitudinal acceleration. Therefore, we
can use the one linguistic variable AD to denote their effects
without using two separate inputs. In addition, the influence of
acceleration or deceleration can be identified according to the
sign of the parameter. In a similar sense, we also use another
linguistic variable, i.e., LC, to indicate the degrees of changing
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Fig. 8. Hierarchical decision flow.

TABLE IV
RULE BASE OF HIGH-RISK SET

TABLE V
RULE BASE OF MEDIUM-RISK SET

left and changing right. By applying these three conditions,
the fuzzy rules can be reduced by following the hierarchical
decision flow shown in Fig. 8.

If the host car is approaching the car in front of it, this is
undoubtedly a behavior belonging to the class of high risk. If
the host car keeps a safe distance and stays in its lane, the
risk level is low. Other cases are in the class of medium risk.
Tables IV–VI show the fuzzy rule bases of high-risk, medium-
risk, and low-risk sets, respectively. For purposes of clarity, we
use the following abbreviations: L = low; M = medium; H =
high; PB = positive big; ZO = zero; and NB = negative big.
According to the different conditions, one of the three rule
bases is chosen, and one of the rules is triggered. Because there
are different inputs in each rule base, this leads to a different
number of combinations of rules. Obviously, the high-risk set
generates 36 rules, whereas both the medium-risk and low-risk
sets generate 18 rules. Although there is a total of 72 rules in
the fuzzy rule base, the system has to first decide which risk set
to choose and then trigger the rules from the selected risk set.
Therefore, the maximum number of rules used is 36, and the
average number is (36 + 18 + 18)/3 = 24.

TABLE VI
RULE BASE OF LOW-RISK SET

Fig. 9. System prototype.

V. EXPERIMENTAL RESULTS

This section addresses the implementation details and the
experimental results. All functionalities were successfully im-
plemented and installed in our experimental car. The camera
was mounted on the front windshield, and the accelerometer
and the Bluetooth GPS receiver were attached on top of the
dashboard. A prototype was implemented on a platform based
on a TI DM3730 processor, which has a 1-GHz Advanced RISC
Machine core and an 800-MHz digital signal processor core,
as shown in Fig. 9. The captured image size was 320 × 240
(QVGA), and the processing performance achieved 30 frames/s
for lane marking and vehicle detection.

All data for training and testing were recorded with the
experimental car in the environment of the freeway, highway,
and various suburban routes in Taiwan. The freeway and high-
way were used to record the data at high speed, whereas the
suburban routes were used to record data at low speed. Three
test drivers were instructed to execute all driving events under
safe conditions. The recorded data were manually selected for
the training and testing of the HMMs of all driving events. The
x-axis acceleration was used for longitudinal behaviors, the
lane bias for lateral behaviors, and the distance to the car in
front for car-following behaviors. The selected data segmenta-
tions of each driving event are shown in Fig. 10.

The results for driving event recognition are shown in
Table VII. The first row lists the names and the number of
evaluated driving events. For example, (ND, 193) means that
193 sequences of normal driving were evaluated. Each column
in the table represents the number of occurrences of each
driving event that was recognized as being other driving events.
In an ideal case, all cells in the table should be zero, except
for the diagonal values, which should be equal to the number of
corresponding driving events. 30% of the data of each evaluated
sequence were used to train each HMM, whereas the remainder
were used to evaluate the detection ratio of recognition.
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Fig. 10. Data sequences for training and testing. (a) Acceleration. (b) Deceleration. (c) Changing left. (d) Changing right. (e) Zigzag driving. (f) Approaching
the car in front.

TABLE VII
CONFUSION MATRIX OF DRIVING EVENT RECOGNITION

It can be seen that ND, DEC, and AFC were perfectly
discriminated by the classifier. Although the behavior of ac-
celeration and deceleration is similar, ACC may have been
misrecognized as ND, owing to the variation of acceleration as
compared with DEC, which is not so obvious. This can be also
understood from the different delaying effects of the throttle
and brakes. CL was misrecognized as ZD because the vehicle
changed to the left lane too slowly and the driver made a slight
turn to the right. The reason for the misrecognized case of CR
is also similar. In the error case of ZD, it was misrecognized
as ND. Because ZD and ND primarily show a similar trend,

the data of ZD with a smaller variation are confused with that
of ND.

The HMM is the recognition approach chosen for the first
stage. There are four highly related approaches to recognition
in driving event detection. An SVM and logistic regression
are used to detect the driver’s state [19]. An ANN is used to
detect driver fatigue [26]. A Bayesian filter is used to detect
the driver’s behavior at crossroads [35]. All of these are well-
known machine learning methods that have been used to solve
many kinds of problems.

A comparison of the results obtained for the detection ratio is
shown in Fig. 11. These results prove that the proposed design
produces better performance, because it resulted in higher
detection ratios than the other four approaches.

In particular, for the cases of ZD and AFC, the HMM had a
higher detection ratio than the other methods. For SVM, ANN,
Bayesian filter, and logistic regression, the statistical charac-
teristics, e.g., mean, variance, minimum, and maximum, are
composed as a feature vector that is used to identify the driving
events. Therefore, if these statistical characteristics cannot
effectively distinguish the data of recognized driving events, the
results indicate poor performance. For the HMM, however, the
trend of the data is the main feature used for recognition, and
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Fig. 11. Comparison of the detection ratio for recognition results.

TABLE VIII
COMPARISON OF FALSE-ALARM RATES (BY PERCENTAGE)

the proposed variance-based min–max normalization also
increases the level of discrimination for different driving events.
These characteristics resulted in better performance for ZD
and AFC.

In addition to a high detection ratio, a low false-alarm rate
is also significant. Table VIII lists the comparative results of
the false-alarm rates for the proposed approach and for the
other four approaches. Except for ND and ZD, the other driving
events produced no false alarms. In Table VII, we can see that
the false alarms for ZD are due to the misrecognition of CL
and CR and that those for ND are due to the misrecognition of
ACC and ZD. The average false-alarm rate was only 0.57%,
which is much lower than that of the other approaches. We
would recall here that the recognition process involves com-
paring the probability of each model and choosing the model
with the highest probability as being the recognized driving
event. Therefore, the difference between the highest probability
and the second highest probability reflects the robustness of
recognition. The average ratio of the highest probability and the
second highest probability of recognized driving events in all
successful identifications was 2.17. This means that the highest
probability value is twice that of the second highest value,
which indicates that the recognition process is quite robust.

Fig. 12 shows a safe driving course, on which the driver
maintained a smooth pace and a steady path, and there were
no cars in the front. The longitudinal, lateral, and car-following
behaviors were all recognized as representing normal driving.
The details of the driving data were as follows: The speed
was 95 km/h, and the variation of speed was −8.43 km/h. The
variance of the y-axis acceleration was 0.107 (m/s2)2.

Owing to the hierarchical decision strategy of danger-level
reasoning, the rule base of low risk was invoked. Two rules were
therefore activated.

Fig. 12. Safe driving course.

Fig. 13. Dangerous driving situation.

1) If ZD is LOW and AD is ZO and SP is HIGH , then
DL is MEDIUM .

2) If ZD is LOW and AD is NB and SP is HIGH , then
DL is LOW .

The evaluated danger level was 40.2, which represents a safe
driving situation. Therefore, the safety indicator on the upper
right-hand corner in Fig. 12 shows a green sign. This way, a
driver can understand his/her situation at a glance.

Fig. 13 shows a relatively more dangerous situation. The
driver speeded up and came close to the car in front. This is
definitely dangerous driving. The details of the driving data
were as follows: The speed was 83 km/h, and the variation of
speed was 23.4 km/h. The variance of the y-axis acceleration
was 0.109 (m/s2)2. The distance to the car in front was 10.5 m.
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Because of the existing AFC, the rule base of high risk was
invoked. These two rules were therefore activated.

1) If AFC is NEAR and ZD is LOW and AD is PB and
SP is HIGH , then DL is HIGH .

2) If AFC is FAR and ZD is LOW and AD is PB and
SP is HIGH , then DL is MEDIUM .

The evaluated danger level was 81.3, and the safety indicator
showed a red sign. The driver would immediately know that
he/she is in danger and must slow down to avoid an accident.

The degree of danger level is determined by the fuzzy rules.
However, for the inferred danger level, e.g., the system shows
a yellow indicator, some drivers might think that the situation
is much dangerous, whereas some might feel just appropri-
ate. We believe that this circumstance exists due to different
characteristics in different persons. Therefore, our evaluation
strategy focuses on examining the accuracy of the occurrence
of medium- and high-danger degrees. Three test drivers were
instructed to drive on the freeway for about 30 min. Two kinds
of tests were performed. The first kind of test is to watch out
for circumstances and drive in a normal and safe way. The
inferred danger levels were recorded, and we expected that all
of them revealed the low danger level. The results with medium
or high danger levels were represented as false alarms. The
second kind of test is to behave dangerous actions consciously
and carefully, e.g., changing lane rapidly. The inferred danger
levels were manually marked every time the driver started doing
the dangerous action. We expected that none of the marked
danger levels revealed the low danger level. The results with
low danger levels were represented as false alarms. The first
and second types of tests were performed by three drivers for 10
times in each case, whereas 20 dangerous actions were behaved
during the second test. The results showed that there are no false
alarms in both tests, which means that the performance of the
second stage in the proposed framework is applicable.

VI. CONCLUSION

This study has proposed a two-stage reasoning-based frame-
work that uses driving event recognition to provide drivers with
an intuitive danger-level indicator for driving safety. Except for
the information on driving events, a single index to evaluate
a driver’s performance is very useful, because it is convenient
to know drivers’ status on their routes. People could more
easily clarify the cause of an accident or know the stability of
a driver by examining the occurring driving events according
to danger levels. To overcome the issue of labeling that arises
from the uncertain definition of a dangerous pattern, the danger
level is inferred by an FIS, using information based on recog-
nized driving events. Our system not only informs drivers of
their current safety status but offers information regarding the
possible behaviors that led to this status as well. To reduce
the complexity of the FIS, a hierarchical decision strategy
was proposed, which can significantly decrease the number of
rules. The developed functions were fully implemented on an
embedded platform and were then tested in a real environment.
All HMM training models for seven driving events achieved
an average detection ratio of approximately 99%. Two types
of tests were designed to evaluate the inferred results, and the

results signified that the danger-level indicator could provide
suitable notifications for driving safety monitoring. However,
the design of danger-level inference is insufficient because the
ground truth of a danger level is not available in this study.
Although the evaluation shows that the results are functional
for notification, we cannot conclude that the inferred danger
level is accurate. In the future, a valid approach to directly
or indirectly estimate the value of danger will be investigated.
Then, the methods for automatic rule generation and structure
optimization are possible to apply in the inference stage in our
framework to acquire more comprehensive inferred results.
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