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Abstract—In this paper, we propose a vacant parking space
detection system that operates day and night. In the daytime,
the major challenges of the system include dramatic lighting
variations, shadow effect, inter-object occlusion, and perspective
distortion. In the nighttime, the major challenges include in-
sufficient illumination and complicated lighting conditions. To
overcome these problems, we propose a plane-based method
which adopts a structural 3-D parking lot model consisting of
plentiful planar surfaces. The plane-based 3-D scene model plays
a key part in handling inter-object occlusion and perspective
distortion. On the other hand, to alleviate the interference of
unpredictable lighting changes and shadows, we propose a plane-
based classification process. Moreover, by introducing a Bayesian
hierarchical framework to integrate the 3-D model with the
plane-based classification process, we systematically infer the
parking status. Last, to overcome the insufficient illumination in
the nighttime, we also introduce a preprocessing step to enhance
image quality. The experimental results show that the proposed
framework can achieve robust detection of vacant parking spaces
in both daytime and nighttime.

Index Terms—Bayesian inference, histogram of oriented gra-
dients, image classification, parking space detection.

I. Introduction

R ECENTLY, video surveillance systems have become
increasingly important in our daily life. With the no-

ticeable progress of computer vision techniques, many video
surveillance systems have been proposed to provide new kinds
of intelligent functions, like object detection and tracking.
Following the trend, vision-based systems for smart parking
lot management have also attracted great attention in recent
years. In general, these vision-based parking lot management
systems can provide valuable information, like the location of
vacant parking spaces, as well as some value-added services,
like parking space guidance and vehicle finding. In this paper,
we focus on a basic, yet crucial, function of vision-based
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Fig. 1. Challenges for robust vacant parking space detection, including
perspective distortion, inter-object occlusion, shadow effect, variations of
lighting condition, and insufficient illumination at night.

parking lot management systems automatic detection of vacant
parking spaces.

In Fig. 1, we show several parking lot images in our dataset.
To robustly detect vacant parking spaces, we have to deal
with a few challenges, including dramatic lighting variations,
shadows cast on the scene, varying perspective distortion in
the image, and inter-object occlusion among parked cars and
the ground plane. Besides, insufficient illumination during the
nighttime is another challenge. To overcome these problems,
many novel methods have been proposed in the past. These
methods can be roughly categorized into four major types: car-
oriented methods, space-oriented methods, hybrid methods,
and parking-lot-oriented methods.

Car-oriented methods [1]–[5] target car detection, and they
determine the status of parking spaces based on the detection
result. Space-oriented methods [6]–[13] model the appearance
of the ground plane in advance. If the current appearance of
a parking space is dissimilar to that model, they identify the
parking space as occupied. Some hybrid methods [14]–[16], on
the other hand, combine both space detection and car detection
to find vacant parking spaces. These hybrid methods focus
on the design of the fusion mechanism to achieve improved
performance. Recently, unlike car-oriented or space-oriented
methods which focus only on certain aspects of parking lots,
parking-lot-oriented methods [17], [18] have been proposed
to model the whole parking lot in unity and to integrate the
3-D scene model with the image observation for parking status
inference.

For car-oriented methods, Tsai et al. [1] propose a global
color-based model to efficiently detect vehicle candidates. In
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their approach, a Bayesian classifier is trained to verify the
detection of vehicles based on corners, edges, and wavelet
features. In [2], Meji et al. propose a color-based texture
segmentation process for vehicle detection based on color
and texture features. Masaki [3] keeps tracking and recording
the movement of vehicles in order to identify vacant parking
spaces. On the other hand, many algorithms [4]–[5] adopt cer-
tain consistent texture features, such as histogram of oriented
gradients (HOG) [19], to overcome lighting variations and
geometric distortion. In general, these methods can achieve
robust detection even under dramatic variations of lighting
condition. However, for vacant space detection, these car-
oriented methods do not take into account the inter-vehicle
occlusion problem.

For space-oriented methods, the modeling of parking spaces
is the key. Eigen-space representation [6] and many back-
ground modeling algorithms [7]–[9] provide pixel-based meth-
ods to provide ground models that can adapt to lighting vari-
ations. However, these pixel-based space modeling methods
are usually sensitive to the shadows cast over the ground. To
relieve the shadow effect, some texture-based methods assume
that a vacant parking space possesses homogeneous appear-
ance. Hence, they design certain measure of homogeneity to
detect vacant parking spaces. For example, Yamada et al.
[10] design a homogeneity measure by calculating the area of
fragmental segments; Lee et al. [11] suggest an entropy-based
homogeneity metric; and Fabian [12] uses a segment-based
homogeneity measure similar to that in [10]. However, due
to perspective distortion, a distant parking space may only
occupy a small region in the captured image. This usually
leads to unstable homogeneity measurement. To overcome
the perspective distortion problem, López-Sastre et al. [13]
suggest a method to rectify the perspective distortion and they
use a Gabor filter bank to derive the homogeneity feature
for vacant parking space detection. Basically, these space-
oriented methods still suffer from the inter-object occlusion
problem, which occurs when a parking space is partially or
fully occluded by a car at an adjacent parking space.

Some researchers adopt hybrid methods to detect vacant
parking spaces. For example, Dan [14] trains a general support
vector machine (SVM) classifier to differentiate car regions
from space regions by using image features made of the color
vectors inside the parking space. However, this method cannot
properly handle the inter-occlusion problem. To overcome the
occlusion problem, Wu et al. [15] propose a method to group
three neighboring spaces as a unit and they define the color
histogram of the three-space unit as the feature in their SVM
classifier. Even though these hybrid methods have considered
both car model and space model, the classification perfor-
mance of their algorithms is still affected by the environmental
variations. In general, the lighting changes may dramatically
degrade the detection accuracy. On the other hand, in [16],
the authors propose an efficient method to combine static and
dynamic information for vacant parking space detection. To
extract static information, a histogram classification process
is used to detect pavement regions while an edge counting
process is used to identify vehicle regions. To extract dynamic
information, they use blob analysis to track moving vehicles.

TABLE I

Comparisons of Vacant Space Detection Algorithms for Five

Types of Challenges: Perspective Distortion (PD), Inter-object

Occlusion (IO), Shadow Effect (SE), Lighting Variations (LV ),

and Insufficient Illumination at Night (IIN ). Meaning of

Symbols: X: Not Good Enough; �: Fair; O: Good

Type Method PD IO SE LV IIN
Car Tsai [1] X X � � X
Car Mejía-Iñigo [2] X X � � X
Car Masaki [3] X X � � X
Car Schneiderman [4] � X O O �

Car Felzenszwalb[5] � X O O �

Space Funck [6] X X X O X
Space Background Modeling [7]–[9] X X X O X
Space Yamada [10] X X � � X
Space Lee[11] X X � � X
Space Fabian [12] X X � � X
Space López-Sastre [13] O X � � X
Hybrid Dan [14] � � � X X
Hybrid Wu [15] � O � � X
Hybrid Blumer [16] � � � � X
Parking-lot Huang [17] O O � � X
Parking-lot Huang [18] O O O � X
Parking-lot Proposed Method O O O O �

In order to alleviate the inter-occlusion problem, however, their
camera usually needs to be placed at a very high altitude.

Rather than focusing on the detection of individual cars or
parking spaces, parking-lot-oriented methods model the geo-
metric structure of the whole parking lot in order to properly
handle the inter-occlusion situations. In [17]–[18], Huang et al.
propose a Bayesian hierarchical framework (BHF) to integrate
the 3-D scene knowledge and the classification of image
pixels into a three-layer hierarchical framework. The structural
scene properties of a parking lot, together with the pixel-
based car model and parking space model, are well utilized to
improve the performance of vacant space detection. Moreover,
to conquer the variations of lighting condition and the shadows
cast on the scene, Huang et al.’s method assumes that the
parking lot scene is uniformly lighted by sunlight and they
have made a lot of effort to dynamically estimate the lighting
condition. However, although their method can produce robust
detection results in the daytime, it fails in the nighttime due
to the complicated lighting condition at night. Actually, so far
as we know, very few systems have ever discussed the vacant
parking space detection problem in the nighttime.

For the sake of clarification, we summarize in Table I the
comparisons of several algorithms for vacant parking space
detection. As indicated in this table, none of these existing
methods can handle all the five types of challenges, including
perspective distortion, inter-object occlusion, shadow effect,
lighting variations, and insufficient illumination at night. In
this paper, a new parking-lot-oriented method is presented to
deal with all these challenges.

In the proposed method, we further improve the Bayesian
hierarchical framework (BHF) in [18] to achieve robust detec-
tion of vacant parking spaces in both daytime and nighttime.
In our method, we model the whole parking lot as a 3-D
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Fig. 2. System flow of the proposed algorithm.

structure consisting of plentiful planar surfaces. A plane-based
classification process using robust texture features is proposed
to replace the pixel-based classification in [18]. Furthermore,
by using a modified BHF framework for inference, we can sys-
tematically model the relation between the 3-D planar surfaces
and their image appearance. The inter-vehicle occlusion is well
modeled in the modified BHF framework and illumination-
insensitive object textures are well used for robust parking
space detection. Furthermore, by introducing a multi-exposure
pre-process to enhance the captured image sequence, we can
perform vacant parking space detection days and nights under
a unified framework.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the overview of the proposed system. In
Section III, we illustrate the preprocessing stage for generating
high-dynamic-range images in the nighttime. In Section IV, we
present the proposed plane-based BHF inference framework
for vacant space detection. Experimental results and discus-
sions are presented in Section V. Last, Section VI concludes
this paper.

II. Overview of the Proposed Method

In order to develop a vacant parking space detection system
that can work all day, we focus on two major issues. The first
issue is about how to obtain well exposed images for inference.
In an outdoor scene, the lighting condition may have dramatic
changes. Those variations greatly affect the appearance of
image features, such as edges or colors, especially in the
nighttime. To deal with this issue, we adopt a pre-process to
enhance the visibility of image contents. On the other hand,
the second issue is about how to improve the performance of
vacant parking space detection and how to speed up the system
for practical applications. To deal with this issue, a plane-
based BHF framework is proposed for vacant parking space
detection. By decomposing a parking lot into many 3-D planar
surfaces, we can effectively exploit the texture information for
vacant parking space detection and well represent the patterns
of inter-vehicle occlusion.

In Fig. 2, we show the flowchart of the proposed method,
which consists of a preprocessing step and a detection step. In
the preprocessing step, we design a multi exposure system to

Fig. 3. (a) Image with a short exposure. (b) Image with a medium exposure.
(c) Image with a long exposure. (d) Fusion result of the images in (a),
(b), and (c).

capture images with different exposure settings. These images
are then fused to obtain images with improved quality. In
the detection step, a plane-based BHF inference framework is
proposed. First, based on the proposed plane-based 3-D scene
model, the normalized patches of interest, corresponding to the
projection of 3-D surfaces onto the fused image, are identified.
For each normalized patch, the histogram of oriented gradients
(HOG) features are extracted and are further compressed
via linear discriminant analysis (LDA) [20]. Finally, we use
the proposed plane-based BHF framework to integrate 3-D
scene information with plane-based classification results for
the optimal inference of the status of the parking spaces. In the
following sections, we will explain the details of the proposed
system in steps.

III. Pre Processing Step

When capturing images in a dark environment, the color
and texture information degrades. The degradation of image
features may dramatically deteriorate the performance of va-
cant parking space detection. Hence, a pre-processing stage is
used in our system to enhance the quality of nighttime images.

Up to now, plentiful methods have been proposed to
enhance image contrast, like the Retinex-based algorithms
in [21], [22], the histogram-equalization-based algorithms in
[23]–[26], the Gray level grouping method in [27], [28], the
discrete cosine transform DCT-based method in [29], the tone-
mapping method in [30], and the Bayesian inference method
in [31]. Although those methods can improve image quality
impressively, some side-effects, like noise amplification and
halo effects, may generate extra image features and harm the
following detection process. Different from those approaches
which are based on a single image, we enhance nighttime
images based on multiple images under different exposure
settings. In a dark environment, some image features, like
colors or edges, may be missing if the exposure time is too
short, as shown in Fig. 3(a). On the contrary, image color or
intensity may get saturated if the exposure time is too long,
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Fig. 4. Illustration of multi-exposure image capturing.

as shown in Fig. 3(c). The choice of exposure time is usually
a trade-off. With the use of multiple images under different
exposure settings, we are able to extract useful image features
in both dark and bright areas. By fusing these images into a
single image, we can obtain an image with improved details,
as shown in Fig. 3(d).

To get multi exposure images, we use the AXIS M1114
IP camera which can adjust the exposure value (EV) during
image capturing. By using the software development kit (SDK)
provided by AXIS, we capture images from a short exposure
period to a long exposure period in a cyclic manner with the
period of N image frames, as illustrated in Fig. 4. In our
system, the longest and shortest exposure period is 3 s and
0.33 s, respectively. By using the two-step exposure fusion
method proposed in [32] to combine every N images, we get
images of improved contrast.

IV. Detection Step

A. Plane-Based Structure and Feature Extraction

In our system, we attempt to find a way to benefit from both
car-oriented and space-oriented approaches. For car-oriented
methods, they usually check a car area like that in Fig. 5(a);
while for space-oriented methods, they check the ground area
like that in Fig. 5(b). In our approach, we treat the parking
spaces as a set of cuboids, as illustrated in Fig. 5(c). Each
cuboid is composed of six patches, as illustrated in Fig. 5(d).
Based on the 3-D cuboid model, we represent the structure of
parking by a set of 3-D planar surfaces, as shown in Fig. 5(e).
By projecting those 3-D surfaces onto the image, we get image
patches of parallelogram shape. These patches are to be used
for the status inference of parking spaces.

Due to the perspective projection in image formation,
image patches may appear to be quite different in shape
and size. To overcome perspective distortion, we normalize
each image patch into a rectangle, with Rl pixels in length
and Rw pixels in width. After that, we extract features from
the normalized patches. For feature extraction, we adopt the
HOG feature proposed in [19], which is less affected by
shadows and the changes of illumination. To extract HOG
features, a normalized image patch is regularly segmented into

Fig. 5. (a) Image region for car-based inference. (b) Image region for space-
based inference. (c) Cuboid modeling of parking spaces. (d) Planar surfaces
in the cuboid model. (e) Parking lot model composed of planar surfaces.

Fig. 6. Patch normalization and HOG feature extraction.

non overlapping cells, with each cell containing Cl×Cw pix-
els. In total, there would be (Rl/Cl)·(Rw/Cw) cells in each
normalized patch. For each cell, a histogram of oriented
gradients, as defined in [19], is built. Each histogram has Hb

histogram bins. By combining the histograms of all cells in the
normalized patch, we obtain the HOG feature. In our system,
the parameters (Rl×Rw, Cl×Cw, Hb) are empirically chosen
to be (64×32, 16×16, 10). That is, each normalized patch
contains eight cells and the dimensions of its HOG feature is
80. In Fig. 6, we illustrate the processes of patch normalization
and HOG feature extraction. As will be explained later, these
high-dimensional HOG features will be converted into low-
dimensional features via LDA so that the following inference
process can be implemented in a more efficient way.

B. Patch Classification

In this section, we explain how to perform patch classifi-
cation in the proposed plane-based BHF framework. As men-
tioned before, in our plane-based model, each parking space
is approximated as a cuboid with six 3-D planar surfaces.
We classify these surfaces into four different types: ground
surface (G), side surface (S), front (or rear) surface (F), and
top surface (T). Via perspective projection, these four types of
planar surfaces are projected onto four types of image patches:
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Fig. 7. Illustration for the subclass definitions of image patch.

G-patch, S-patch, F-patch, and T-patch. Due to the inter-object
occlusion in the 3-D space, we further classify each type of
image patch into a few sub-classes. In Fig. 7, we illustrate how
we define the sub-classes for each kind of image surface. Here,
without loss of generality, we use a camera configuration with
a 45-degree view to explain the proposed patch classification.
For the G-patch of the parking space “c” in Fig. 7, its image
content is affected not only by the status of the parking space
“c” but also by the status of the adjacent parking space “b.”
Depending on whether these two parking spaces are occupied
or vacant, there are four types of image patterns according to
four different parking statuses: 1) “c” is occupied while “b”
is vacant; 2) “c” is vacant while “b” is occupied; 3) both “c”
and “b” are occupied; and 4) both “c” and “b” are vacant.
Similarly, for the S-patch shared by “b” and “c” or the F-
patch shared by “a” and “b,” there would be four major kinds
of image patterns. For the T-patch of the parking space “b,”
on the other hand, we may either classify its image patterns
into four sub-classes that relate to the four status combinations
of the spaces “b” and “c,” or into eight sub-classes that relate
to the eight status combinations of “a,” “b,” and “c.” In our
experiments, for the sake of simplification, we choose the four-
subclass classification for T-patches

In Table II, based on the illustration in Fig. 7, we further
define the indices of the four subclasses for each surface
type according to the four status combinations of the present
parking space and the most influential adjacent parking space.
In this table, “o” means “occupied,” “v” means “vacant,” and
“X” means “do not care.” In total, there are 16 kinds of image
patches related to the four different types of planar surfaces
and the four different combinations of parking statuses for
each surface type. In the following paragraphs, we will use
the notation TypeIndex, where Type ∈ {T, G, S, F} and Index
∈ {1, 2, 3, 4}, to label these 16 kinds of image patches.
The whole set of these 16 patch labels is denoted as L ≡
{T−1, T−2, T−3, T−4, G−1, G−2, G−3, G−4, S−1, S−2, S−3, S−4,

F−1, F−2, F−3, F−4}.
In Fig. 8, we illustrate the 16 kinds of image patches for a

parking space, together with some patch samples. Note that
the front surface and the rear surface belong to the same
surface type. Similarly, the surfaces on the two sides of the
parking space belong to the same surface type. It can be
observed in these samples that the image content inside a
patch may reveal not only the information of the current
parking space but also the information of the adjacent parking
space. Moreover, for each surface type, the image contents for
different combinations of parking statuses appear to be quite

Fig. 8. Sixteen kinds of patch patterns and their classification labels. Each
patch pattern is indicated by the rectangular region.

different. Hence, it would be possible for us to classify a given
image patch into one of the four subclasses simply based on
its image content. The classification result provides evidence
to support not only the status inference of the current parking
space but also the inference of the adjacent parking space.
Even though the classification result at a single image patch
may not be always correct, we can combine the classification
results of several image patches around a parking space to
achieve more robust inference.

Given a parking lot, we first set up an IP camera on the roof
of a building near the parking lot. The camera is geometrically
calibrated to obtain the 3-D to 2-D projection model and to
construct the 3-D plane-based scene model. After that, we
capture a few image sequences of the monitored parking lot
and extract plentiful image patches for each type of planar
surface. For each image patch, we manually collect its patch
label and extract its HOG feature from the normalized patch.
Based on the labeled patch type and the HOG feature, we learn
the conditional probability function p(o|l), where o denotes the
observed feature of an image patch and l ∈ L denotes the label
of the image patch.

Since the surface type of an image patch can always be
determined based on the 3-D scene model and the 3-D to 2-D
transformation, we simply construct the conditional probability
model for each of the four surface types. Before classification,
we apply the multi-class LDA over the training image patches
of each surface type to reduce the high-dimensional HOG
features down to a much lower dimension. Taking the learning
process of the surface type T as an example, each image
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TABLE II

Specification of Surface Sub-Classes Based on Fig. 7. Meaning of Symbols: V: Vacant; O: Occupied; and X: Do Not Care

Surface Type T G S F
Subclass Index 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Status of Space “a” X X X X X X X X X X X X O V O V
Status of Space “b” O V O V V O O V V O O V V O O V
Status of Space “c” V O O V O V O V O V O V X X X X

Fig. 9. Feature distributions of 16 subclass models.

patch is normalized and its HOG feature vector is extracted.
Each image patch is manually labeled as one of the label
set {T−1, T−2, T−3, T−4} for a four-class LDA analysis. While
adopting an LDA process, we performed eigenvalue decom-
position. We found that for each surface type most training
samples can be well approximated (up to 99%) by using only
the first three eigenvectors that have the largest eigenvalues.
Hence, after the LDA process, the dimension of the HOG
features is reduced from 80 down to 3 and we obtain four
subsets of 3-D features for the four subclass of the surface
type T. For each of the four subclasses, say l, we model the
conditional probability function of observing the 3-D feature
x given l as a Gaussian function represented by the following
equation:

N(x; μl, �l) =
1

(2π)3/2 |�l|1/2 exp{−1

2
(x − μl)

T �−1
l (x − μl)}.

(1)
In (1), the mean vector μ and the covariance matrix � are
estimated from the 3-D training features of the corresponding
subclass.

Similarly, for each of the surface types G, S, and
F, we can obtain the 3-D training features for its four
subclasses and construct the corresponding four Gaussian
models, as shown in Fig. 9. In total, we obtain 16 low-
dimensional training features for the 16 patch labels
{T−1, T−2, T−3, T−4, G−1, G−2, G−3, G−4, S−1, S−2, S−3, S−4,

F−1, F−2, F−3, F−4}.
For an image patch o, if we denote the overall feature

extraction process as a mapping from o to x, we can model
the conditional probability function p(o|l) in terms of x as

follows:

p(o|l) ≡ p(x|l)= 1

(2π)3/2 |�l|1/2 exp

{
−1

2
(x−μl)

T �−1
l (x−μl)

}
.

(2)

C. Inference of Parking Status

Once we have learned the conditional probability function
p(o|l), we can start to infer the status of parking spaces in
new coming images. For example, given an image patch, we
first determine its surface type based on the pre-established
plane-based 3-D scene model and the pre-calibrated 3-D to
2-D transformation. After that, based on the surface type,
the image patch o, and the measured 3-D feature x, we
obtain the likelihood function p(o|l). By finding the label that
maximizes the likelihood function, we can classify the image
patch into one of the four subclasses and then deduce the
status of the corresponding parking space. This maximum
likelihood approach is pretty simple and efficient. However, the
deduced classification label, which depends on a small image
patch, provides only local decision of the parking status. The
inevitable errors in subclass classification may lead to a wrong
decision of the parking status

As mentioned before, the classification results of relevant
patches may provide extra supports for the status inference
of parking spaces. However, from time to time, the inferred
status from relevant patches may happen to conflict with one
another. For example, after patch classification, the top patch
of the parking space “c” is labeled as T−4, which implies that
the space “c” is vacant. On the other hand, the ground patch of
space “c” is labeled as G−1, which implies that “c” is occupied.
The parking status inferred from these two labels conflict with
each other. Hence, it is apparently not enough to infer the
parking status by simply using the local classification results.
We need to find a way to effectively fuse the supports from
relevant image patches.

To unify the 3-D scene information and patch classification
results for vacant parking space detection, we propose a three-
layer hierarchical framework, named plane-based BHF, as
shown in Fig. 10. Based on this framework, we build the
connections between the 3-D scene model and 2-D image
patches in a plane-based manner so that we can infer the
statuses of parking spaces in a unified way. The proposed
hierarchical framework consists of three layers: the scene layer
(SL), the label layer (LL), and the observation layer (OL).
Each layer contains either nodes or parallelograms. In the
scene layer, each node indicates the status of a parking space.
For example, the node sj in SL denotes the status of the jth
parking space, which can be either occupied or vacant. In
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Fig. 10. Proposed plane-based BHF.

the observation layer, each parallelogram represents an image
patch obtained by projecting the corresponding 3-D surface
onto the image. These image patches in the observation layer
provide image features for patch classification. Between the
scene layer SL and observation layer OL, we design a label
layer LL. Each node in the label layer indicates the inferred
label of the corresponding image patch. The label can be one
of the 16 labels in the aforementioned label set L. The label
layer LL links to both the scene layer SL and the observation
layer OL. These links play important roles in connecting
the 3-D scene model and the 2-D image observation for the
inference of vacant parking spaces. The links between SL

and LL pass the information from the 3-D scene model to
enforce consistent labels in the labeling layer. On the other
hand, the links between OL and LL convey the likelihood
messages from image patches. In the following paragraphs,
we will explain how to utilize both image observations and
3-D scene information for parking status inference

In our framework, we denote a status hypothesis St as a
combination of the status of the parking spaces. For example,
as shown in Fig. 11, if we consider only three parking spaces
in the parking lot, the status hypothesis St can be one of the
eight combinations:{(v, v, v), (v, v, o), (v, o, v), (v, o, o), (o,
v, v), (o, v, o), (o, o, v), (o, o, o)}, where “v” denotes vacant
and “o” denotes occupied. On the other hand, we denote our
image observation as a set of image patches: O = {oi}i=1∼N ,
where i is the patch index and N denotes the total number of
image patches in the parking lot. For the three parking spaces
in Fig. 11, there are N =16 image patches in total. Based on the
above definitions, the inference of the optimal parking status
is equivalent to the maximization of p(St|O). That is

S∗
t = arg max

St

p(St|O). (3)

To solve (3), we treat the set of classification labels L as a
hidden layer that bridges the gap between St and O. Based on
a status hypothesis, like the St ={v,o,o} hypothesis in Fig. 11,
we deduce the expected label set LSt = {lSt

i }i=1∼N for all N
patches. Here, the superscript in LSt indicates that this label
set is constrained by the status hypothesis St . Since there is
a one-to-one mapping between St and LSt , we have p(L|St)

Fig. 11. Example of parking status inference in the proposed framework.

=δ(L − LSt ) and

p(O|St) =
∫

p(O|L)p(L|St)dL

=
∫

p(O|L)δ(L − LSt )dL = p(O|LSt )
. (4)

Moreover, based on the Bayes’ rule, we can rewrite (3) as

S∗
t = arg max

St

[p(O|St)p(St)] = arg max
St

[p(O|LSt )p(St)]. (5)

In our system, p(O|LSt ) is formulated as

p(O|LSt ) =
N∏
i

p(oi|lSt

i ) (6)

where we assume that the observation nodes {oi}i=1∼N are
conditionally independent once if the labels of the labeling
layer are given. In (6), p(oi|lSt

i ) represents how likely the
image observation oi on the ith image patch belongs to the
patch label l

St

i . Note that l
St

i is the expected label of the ith
patch under the status hypothesis St . Moreover, the probability
function p(St) in (5) represents the prior knowledge about the
parking statuses in the parking lot. In our system, we simply
assume p(St) to be uniformly distributed. Under this uniform-
distribution assumption, the p(St) term in (5) can be ignored
and we get the final formulation as follows:

S∗
t = arg max

St

[(
N∏
i

p(oi|lSt

i ))p(St)] = arg max
St

[
N∏
i

p(oi|lSt

i )].

(7)
In (7), the calculation of p(oi|lSt

i ) is based on the pre-learned
conditional probability model and the expected label l

St

i for
the ith image patch. To find the optimal status hypothesis
S∗

t , an exhaustive search over all possible status hypotheses
is used. However, for a parking lot containing tens of parking
spaces, the number of status hypotheses would be extremely
high. Hence, instead of generating the status hypotheses for
all parking spaces in the parking lot at one time, we adopt
a sequential block-wise approach. In Fig. 12(a), we illustrate
how we perform the generation of status hypotheses. In this
example, we sequentially infer the parking status from left to



HUANG et al.: VACANT PARKING SPACE DETECTION BASED ON PLANE-BASED BAYESIAN HIERARCHICAL FRAMEWORK 1605

Fig. 12. (a) Illustration of status hypothesis generation and the order of
parking status inference. (b) Status hypothesis generation on the border.

right. Note that there is no difference if we infer the status from
right to left. Due to inter-object occlusion, we need to take into
account the relevant parking spaces as we infer the status of
a parking space. In our system, we consider six spaces at one
time and determine the parking statuses of the two central
parking spaces. In the example in Fig. 12(a), these parking
spaces whose statuses have already been inferred are labeled
as either vacant (v) or occupied (o). The region within the red
boundary indicates the six parking spaces to be considered
at this moment. Within the region, the parking spaces to
be inferred are marked by yellow squares while the relevant
parking spaces are marked by green triangles. For these six
parking spaces, a plane-based BHF framework is built. Since
the statuses of the two parking spaces in the left have already
been inferred, we only need to generate 16 status hypotheses
relating to the 16 status combinations of the parking spaces A,
B, C, and D. By calculating the value of

∏N
i p(oi|lSt

i ) for each
of the 16 hypotheses, the optimal combination can be picked
and the status of the two central parking spaces is inferred.
Based on this sequential way to generate status hypotheses,
the system complexity grows only linearly as the number of
parking spaces increases.

To detect the parking status on the border, the inference
process is slightly modified. As shown in Fig. 12(b), the red
boundary indicates the six parking spaces to be considered and
there are four parking spaces marked by the yellow squares.
These four parking spaces need to be inferred at the same
time. Similar to the aforementioned inference process, a plane-
based BHF framework for six parking spaces is built. However,
without knowing the two parking spaces on the left, we need
to test 64 status combinations of the six parking spaces. By
finding the optimal status combination, the status of the four
yellow-marked parking spaces is inferred.

In the proposed plane-based BHF framework, the inclusion
of the 3-D scene information provides a few benefits. First, the
image patches under analysis can be systematically selected
via geometric projection and the surface type of each image
patch can be easily determined. This allows us to apply LDA

TABLE III

Conditions of 12 Test Databases. Meaning of Symbols: SShot:

Snapshot; ID: Identity; FPM: Frame Per Minute; NoF: Number of

Frame; AT: Acquisition Time; WC: Weather Condition; CP:

Camera Position

to deal with four surface types separately. Second, the status
hypotheses in the 3-D space can be systematically converted
into expected classification labels that consistently relate rel-
evant image patches. This automatically avoids the inconsis-
tency problem mentioned in the aforementioned maximum-
likelihood approach.

V. Experiments and Discussions

A. Experiment Environment and Test Data

In our experiments, we evaluate our system at three outdoor
parking lots. For each parking lot, we set up an IP camera to
monitor the statuses of parking spaces day and night. The
camera was geometrically calibrated beforehand and a few
image sequences were captured for the learning of p(o|l) for 16
patch labels. Note that these training sequences were collected
differently from our test datasets. For performance evaluation,
we have collected 12 datasets in total, including nine daytime
datasets under four different weather conditions and three
nighttime datasets under rainy or rainless conditions. These 12
datasets were captured at 6 different locations with different
capturing conditions, as listed in Table III. In this table, we
assign each dataset an identity (ID), together with a snapshot
of the dataset. Based on these datasets, we tested our system in
daytime and nighttime periods, under different weather condi-
tions, different viewing angles, different surrounding objects,
different perspective distortion, and different levels of inter-
vehicle occlusion. The 12 datasets, together with the ground
truth of parking status and the detection results of our system,
are available at our website [33]. Among these 12 datasets,
the dataset DS−11 is originally released by Huang et al. in
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TABLE IV

Space Detection Results in the Daytime

Data Set ID Number of tested spaces Proposed method
vacant parked total FPR FNR ACC

Typical (DS−1) 4123 7397 11520 0.280% 1.190% 99.39%
Sunny (DS−2) 8121 3399 11520 0.088% 0.860% 99.37%
Cloudy (DS−3) 5353 6167 11520 0.047% 0.260% 99.85%
Rainy (DS−4) 3544 6896 10440 0.640% 0.370% 99.45%

[18]. Since the parking statuses in these databases changed
gradually, we performed vacant parking space detection for
every five minutes.

B. System Evaluation

To quantitatively evaluate the performance of our system,
we calculate false positive rate (FPR), false negative rate
(FNR), and accuracy (ACC). Their definitions are expressed
as follows:

FPR =
number of parked spaces being detected as vacant

total number of parked spaces
.

(8)

FNR =
number of vacant spaces being detected as parked

total number of vacant spaces
.

(9)

ACC =
number of correct detection in both parked and vacant spaces

total number of tested spaces
.

(10)

To test our system, we evaluate the performance in the
day time under different weather conditions, the performance
at nighttime, and the performance with different geometric
settings.

1) Daytime Performance Evaluation: To evaluate our
system under different conditions, we firstly divide a day
into the daytime period and the nighttime period. For the
daytime period, we tested four video sequences, including a
typical day case (DS−1), a sunny day case (DS−2), a cloudy
day case (DS−3), and a rainy day case (DS−4). Here, we
use the term “typical day” to indicate the weather condition
which is partially cloudy and partially sunny. These four
test sequences contain different kinds of shadow effects and
varying lighting conditions. For the sunny day case, there are
plentiful overly exposed regions and strong shadows in the
images. The variations of illumination cause apparent drifts in
colors and brightness. For the typical day case, the lighting
condition switches dramatically between sunny and cloudy.
Sometimes, a shadowed region may suddenly disappear when
the sunlight is blocked by a passing cloud. For the rainy day
case, the raindrops may degrade the visibility of the camera.
Moreover, moving pedestrians may affect the detection of
vacant parking spaces.

In Fig. 13, we show a few daytime images and their
detection results. In Table IV, we list the evaluation results,
including the detection results under various kinds of weather
conditions. Even though the changes of weather condition
may cause slight performance degradation in our system,

Fig. 13. Results of vacant space detection in the daytime. (a) Cloudy day.
(b) Typical day. (c) Sunny day. (d) Rainy day. Green rectangles indicate the
ground truth and red rectangles indicate the detection results.

these experimental results demonstrate that our system can
effectively deal with the occlusion problem, shadow effect,
and the changes of lighting condition in the daytime period.

2) Nighttime Performance Evaluation: For the nighttime
period, we tested another three datasets DS−5, DS−6, and
DS−7. To detect vacant parking spaces at night, we need to
deal with different kinds of shadow effects caused by multiple
lighting sources. In addition, the non-uniform illumination
makes some parts of the image overly exposed while some
other parts poorly exposed. Moreover, vehicles tend to dynam-
ically move in the scene and the unpredictable lighting changes
produced by car headlights causes another big challenge. In
Fig. 14, we show some night images and their detection results.
Here, we also show the nighttime images captured under
different exposure settings. These images are further fused
to generate a well-exposed image for vacant parking space
detection.

In Table V, we list the evaluation results of these three
nighttime datasets. Comparing with the detection in the day
time, the performance is slightly degraded. We can further
divide the nighttime datasets into static cases and dynamic
cases. In a static case, as shown in Fig. 14(a), there is no
moving car in the scene. The challenges come from insufficient
illumination, heavy shadows caused by streetlamps, and inter-
vehicle occlusion. These variations can be well learned be-
forehand and can be well handled by the proposed framework.
Hence, the system performance is quite stable in static cases.
On the other hand, in the dynamic case, moving cars with
unpredictable lighting changes make our system less stable.
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Fig. 14. Results of vacant space detection in the nighttime (a) without
moving cars in the scene and (b) with moving cars in the scene. Row 1:
image samples with EV=10, EV=50, and EV=90. Row 2: fused images and
the corresponding detection results. Green rectangles indicate the ground truth
and red rectangles indicate the detection results.

TABLE V

Space Detection Results in the Nighttime

#of tested spaces Proposed method
vacant parked total FPR FNR ACC

Seq−1 (DS−5) 4165 3035 7200 1.610% 2.420% 97.92%
Seq−2 (DS−6) 4569 2631 7200 0.800% 1.730% 98.61%
Seq−3 (DS−7) 1428 2172 3600 0.46% 3.29% 98.42%

As shown in Fig. 14(b), there are three cars moving at the
same time. Since the car is moving during the acquisition
period, the car headlights introduce unexpected textures in
the fused image. These unexpected textures may sometimes
cause incorrect inference. Moreover, based on the evaluation
results of the three nighttime datasets, we could find that the
proposed system is able to achieve stable performance under
both rainy and rainless conditions. Note that DS−5 and DS−6
were collected on days without rain while DS−7 was collected
in a rainy day.

3) Performance Under Different Geometric Settings: To
evaluate the influence of perspective distortion, we divide
a parking lot into three blocks as shown in Fig. 15. The
performance for each block is evaluated. The detection results
are listed in Table VI. In general, the performance is getting
better as the parking block is closer to the camera. This
is because we have less perspective distortion and larger
patches for vacant space detection. In this experiment, the

Fig. 15. Experiment environment for evaluating the influence of perspective
distortion.

TABLE VI

Space Detection Results in Different Blocks

datasets DS−1∼DS−4 are integrated together to evaluate the
performance in the daytime. On the other hand, the datasets
DS−5∼DS−6 are integrated to evaluate the performance in
the nighttime. These results show that the proposed system
can handle the perspective distortion well.

On the other hand, to evaluate the robustness against dif-
ferent camera settings, we also tested our system by using
datasets collected with different camera heights and different
viewing angles. In this experiments, six datasets (DS−1 and
DS−8∼DS−12), which were captured at six different camera
positions, were used. To illustrate the field of view of each
dataset, six snapshots corresponding to the six datasets are
shown in Fig. 16. These six datasets also include the variations
of the surrounding objects, like trees and buildings. The
detection results are shown in Table VII. In the results, we
may find that the height and the viewing angle of a camera
are critical for vacant parking space detection. For a camera
setting at a lower altitude, such as the case in Camera Position
6 (DS−12), the inter-vehicle occlusion is very severe and
the system performance degrades. On the other hand, If we
compare DS−8 with DS−11, we can find that a wider coverage
of the parking lot can monitor more parking spaces at one time
but with the degradation in accuracy.

4) Evaluation of Patch Classification: In the proposed
method, the patch classification is quite sensitive to the setting
of camera height and viewing angle. In our experiment, for
each camera setting, we collected the training sequence in one
day while collected the test sequences in other days. We also
manually labeled the ground truth of the parking status of each
parking space and determined the relationship between patch
labels and parking status. Based on the 3-D cuboid model and
the status of each parking space, we can automatically crop
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Fig. 16. Datasets captured at six different positions.

Fig. 17. Detection Results at Different Locations with Different Viewing
Angles

the image patches and generate the classification label for each
image patch. Those cropped patches are used for training and
testing. Note that since the perspective projection process is
highly relative to the camera setting, the patch classification
models need to be re-trained for different camera settings. In
Table VII, we summarize the performance results of the patch
classification process under four different camera settings by
using the datasets DS−1, DS−5, DS−8, and DS−9. For each
dataset, the number of training patches (Train Num.), the
number of test patches (Test Num.), and the accuracy (ACC)
of patch classification for the S-patch, T-patch, F-patch, and
G-patch are reported. In these results, it is noticeable that the
performance of patch classification is highly relative to the
viewing angle and the height of the camera position. Moreover,
even though the classification performance of individual image
patch may not be satisfactory, by using the proposed plane-
based BHF to provide a unified framework for information
fusion, we still obtain a reliable strong classifier to achieve
robust vacant parking space detection

C. Comparison of System Performance

For comparison, the receiver operating characteristic (ROC)
curves are plotted. To plot an ROC curve, we define the prior

TABLE VII

Performance of Patch Classification

Dataset DS−1 Dataset DS−5
Camera Position 1 (CP1) Camera Position 1 (CP1)

(Daytime, 45 Degrees, High) Nighttime, 45 Degrees, High)
Patch Train Num. Test Num. ACC Train Num. Test Num. ACC
S-patch 12110 25408 86.86% 7490 20020 86.01%
T-patch 12453 26131 96.82% 7701 20589 94.60%
F-patch 18511 38840 86.43% 11449 30602 81.70%
G-patch 12110 25408 90.49% 7490 20020 89.70%

Dataset DS−8 Dataset DS−9
Camera Position 2 (CP2) Camera Position 3 (CP3)

(Daytime, 45 Degrees, Low) (Daytime, 90 Degrees, High)
Patch Train Num. Test Num. ACC Train Num. Test Num. ACC
S-patch 10920 12324 73.81% 11154 13386 52.82%
T-patch 10920 12324 93.38% 11136 13416 97.32%
F-patch 16380 18486 72.23% 16731 20124 86.64%
G-patch 10920 12324 70.41% 11154 13416 92.45%

probability p(os) as a tunable parameter. Here, p(os) indicates
how likely a parking space is being occupied. In our exper-
iment, we assume the prior probabilities of different parking
spaces are independent. If St indicates the status of N parking
spaces, with K of the N spaces being occupied, then the
probability p(St) is calculated by p(St) = p(os)k(1−p(os))N−K.
By changing the value of p(os), we adjust the prior belief of
the status of N parking spaces, p(St), and an ROC curve can
be plotted.

Moreover, we tested two daytime datasets (DS−1 and
DS−11) and one nighttime dataset (DS−6) for performance
comparison with some other systems. In this simulation, the
methods proposed by Dan [14], Wu et al. [15], and Huang
et al. [18] were tested for comparison. The ROC curves
are plotted in Figs. 17 and 18 for comparison. The area
under the ROC curve (AUC) is also computed for reference.
Compared to with Huang et al.’s work in [18], the proposed
method achieves comparable performance in the daytime pe-
riod. However, as mentioned before, The method in [18] is
much more complicated and needs to dynamically model the
lighting condition for pixel-based classification. In addition,
the method is mainly based on color intensity to classify the
parking status. However, when the images are captured in the
nighttime period, the color information degrades. This caused
serious performance degradation of Huang et al.’s method. In
comparison, the proposed method can well handle the change
of lighting condition by using the texture information in image
patches. In Fig. 18, we plot the ROC curves of the methods in
[14], [15], and [18], and the proposed method for comparison.
This figure shows that the proposed method can achieve better
accuracy during the nighttime period.

D. System Complexity

The whole system has been implemented in the Visual C++
environment on a PC with a 2.4GHz Pentium-4 CPU. In the
daytime, it takes about 2 s to infer the statuses of 72 parking
spaces in a 320×240 color image. In the nighttime, due to the
use of multi-exposure images, it takes about 5 s to perform
the detection. In comparison, Huang et al.’s work in [18] takes
about 30 s to perform vacant parking space detection.
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Fig. 18. ROC curve comparison in daytime. (a) Performance comparison
by using the dataset DS−1. (b) Performance comparison by using the dataset
DS−11.

So far, we have tested our system at six different locations.
In average, it takes two days to install each system. The
first day is used for hardware setup, camera calibration, and
training data collection. The second day is used to label the
training data and to learn models for patch classification.
Within the whole process, the most time-consuming steps are
training data collection and training data labeling. For the data
labeling step, we have designed a user-friendly interface to
help the users label the status of each parking space. Based on
the 3-D cuboid model and the status of each parking space, our
system automatically crops the image patches and generates
the classification label for each image patch. The whole system
has been designed to make the system setup process simple
and practical. For a new comer, he/she only needs to learn the
camera calibration process.

E. Discussion and Future Work

Even though our system works pretty well in an outdoor
parking area, it is still a challenge to detect vacant parking
spaces in an indoor parking lot. For an indoor parking lot,
the proposed method might not be suitable. The bottleneck is
not the technical part but the efficiency and cost. Owing to

Fig. 19. ROC curve comparison by using the nighttime dataset DS−6.

the severe occlusion in an indoor environment and the limited
field of view, we may need dozens of cameras to monitor the
whole indoor parking lot.

On the other hand, the system performance in the nighttime
can be further improved. Most of the failure cases are caused
by the headlight of moving cars. In Fig. 14, we have shown
a challenging case in which cars are moving in the parking
lot. We will require a new mechanism to handle these unpre-
dictable lighting changes. A possible solution is to include
temporal information or to adopt moving vehicle tracking
technique. These could be the future works for our vacant
parking space detection system.

VI. Conclusion

In this paper, our goal was to find suitable modeling
so that the performance of texture-based detection can be
leveraged for vacant parking space detection. In the survey
of previous works, we found that decomposing a parking
lot into a composition of individual cars or parking spaces
made it difficult to model the inter-object occlusion. On
the other hand, we also found that pixel-based detection
was quite sensitive to environmental variations if compared
with texture-based detection. Hence, to improve the system
performance of vacant parking space detection, we proposed
a plane-based modeling that regarded the whole parking lot
as a structure containing plentiful planar surfaces. With the
proposed structure, we systematically combined the texture
information in image patches with the 3-D scene information
to obtain robust detection results. We also introduced an
image processing flow to improve the visual quality of
nighttime images. Experiments demonstrated that our vacant
parking space detection system performed well under various
kinds of weather conditions in both daytime and nighttime.
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