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N U M E R I C A L  C O M P U T A T I O N S  OF I N T E G R A L S  
PATHS O N  R I E M A N N  S U R F A C E S  OF G E N U S  N 

J . -E .  Lee  

O V E R  

This paper is a continuation of work by Forest and Lee [1,2]. In [1,2] it was proved that  the function theory of 
periodic soliton solutions occurs on the Riemann surfaces ~? of genus N, where the integrals over paths on 
play the most fundamental role. In this paper a numerical method is developed to evaluate these integrals. 
Precisely, the aim is to develop a computational code for integrals of the form 

f(z) R(z) ' or f(z)R(z) dz, 

where f(z) is any single-valued analytic function on the complex plane C, and R(z) is a two-valued function 
on C of the form 

2N+5 

1-I (z-zo(k)), 5 = 0  or l, 
k=l  

where {z0 (k), 1 < k < 2N + 5} are distinct complex numbers which play the role of the branch points of the 
Riemann surface ~ = { (z,R(z)) } of genus N -  1 + 5. The integral path 3' is continuous on ~. The numerical 
code is developed in "Mathematica" [3]. 

1. I N T R O D U C T I O N  

It is well known at present  tha t  the  funct ion theory of the periodic soliton equat ions occurs on Riemann  
surfaces of genus N (for example,  [1,2]). Much numerical  work has been done on the  periodic soliton 
equat ions and their  pe r tu rba t ions  in order to discuss various subjects  such as linearized instabil i ty analysis, 
bifurcat ion theory and chaotic mot ions ,  etc. (for example,  [3, 4, 5, 6]). It is a powerful tool. In this paper,  
we focus on the numerical  compu ta t i on  of integrals over pa ths  on the Riemann  surfaces of genus N since 
these integrals are among  the most  fundamenta l  elements in the theory of R iemann  surfaces, in part icular ,  
in the theory of periodic  soliton equations,  and are in general impossible to calculate analytically. For 
example,  in the  theory  of periodic  soliton equations,  the followings are all in te rms of integrals: the wave 
numbers  and frequencies of the N-phase ,  quasi-periodic solutions, the Floquet  exponents  for the  linearized 
instabil i ty analysis of the  N-phase ,  quasi-periodic solutions, the R iemann  invariants of the  modu la t i ng  N- 
phase, wavetrains for the modula t iona l  instabil i ty analysis, etc. According to the rule of the square-root 
funct ion ~ in "Mathemat ica ,"  which will be specified in See. 2, we develop the computa t iona l  me thods  
rigorously in Theorem 1 in See. 3 for those integrals on ghe Riemann  surfaces with N arbi t rary  cut-structures.  
To our knowledge,  such work has not appeared  anywhere explicitly. 

Given 2(N + 5)(5 = 0 or 1) dist inct  complex numbers  {z0[j], 1 _< j _< 2(N + 5)}, let ~N be the 
R iemann  surface of the  hyperel l ipt ic  curve R(z), where 

2 N + ~  

1-I 5 = 0  or i. (1) 
k : l  
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Each pair of the branch points {z0[2k - 1], z0[2k]} provides a cut in the complex pleme C (for 5 = 1, 
z0[2N + 2] is taken to be the infinite point e~). We want to develop a numerical scheme to evaluate 
integrals on Nn of the form 

, or f(z)R(z)dz (2) 

where f(z) is any single-valued, analytic function in the complex plane C, and 3' is any continuous curve 
on ~N. For systematic argument, each pair {z0[2k - 1],z0[2k]} is renamed such that 

Im[zo[2k]] < Im[zo[2k-  1]] 

o r  

Im[zo[2k]] = Im[zo[2k-  1]] and Re[zo[2k]] < a e [ z o [ 2 k -  1]]. (3.b) 

For each z in C, we denote by (z,R+(z)) and (z,R-(z)) (or, briefly, R+(z) and R , ( z ) )  the corresponding 
points in the first sheet f~l and the second sheet f~2 of NN respectively, and 

R-(z )  = - R + ( z ) .  (4) 

For practical reasons, R(z) is evaluated as 

2N+6 
R(z) = I I  v ' z -  zo[k], ~ : 0 or 1. (4a) 

k-----1 

Since we shall see later that V'-- in "Mathematica" is defined as a single-valued function in C (which will 
be specified in See. 2), we denote 

h(z) = the value of R(z) evaluated by "Mathematica." (4b) ] 

Then, Theorem 1 in Sec. 3 gives the simple and precise rule determining R+(z) in terms of h(z). tt is the 
key theory in the entire scheme, since then we can apply the integral operator in "Mathematica" to evaluate 
the integrals (2) along any continuous curve 7 + lying in f~l. Then, due to (4), the integrals (2) along any 
continuous curve 3'- lying in f~2 can be performed, and so does the numerical evaluation of integrals (2) 
along any continuous curve 3' on 9~N. Therefore, by the theorem in See. 3, it is enough to develop the 
numerical evaluation of the integrals (2) along any continuous curve 7 lying in f~t, and we will do it in the 
following manner: 

1. The path 3' is replaced by its "simplest" homologous path 3`* such as a union of line segments and 
canonical cycles on f~l- Due to the homology, the integrals (2) over 7 and over 7* are identical. 

2. According to criterion (11) in Theorem 1, 7" is partitioned into two finite sets of disjoint curves 
r l  = {3`~i, 1 < i < m} and F2 = {7~k, 1 < k < n} for some m, n such that 

R+(z) = h(~) for z e 3`;~,VZ;; e r~, (sa) 

R+(z) = -h ( z )  for z ~ 3`?k,V'rh e r~, (Sb) 

3. The integral (2) over 7" is the sum of the integrals over U 7~i and U 7~k respectively. Each integral 
is directly evaluated by "Mathematica" according to the proper sign in (5). 

4. A numerical code for the entire scheme is completed and written in a manner which can be applied 
directly or easily modified for general purposes. For each 3', to make sure that the code is correct, the same 
integral over at least two distinct homologous paths of 3' are performed. These numerical values should be 
almost identical. 
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2. T H E  S T R U C T U R E  OF V/z IN " M A T H E M A T I C A " ;  
THE S T R U C T U R E  OF T H E  R I E M A N N  S U R F A C E S  

By definition, the two-valued, square-root function v/-Z in C is defined as 

v ~  = I ~ 1  e~~ whenever z = re i~ r _> 0, 0 �9 R.  (6a) 

Consider the two copies of C, ~+ = {z = re i ' ~ , -1  <_ t < 1,r >_ 0} and ~ -  = {z = re its, 1 <_ t < 3, r >_ 0}. 
Define ~+ to be the fundamenta l  branch of v~;  then the first sheet of the Riemann surface N0 of x/~ is 
a01 = {(z, v ~ ) , z  �9 -~+ } and the second sheet of N0 is a02 = {(z, v/~), z �9 3 -  }- We denote (z, vff) in fb~ 
as v G+,  and (z, v G) in a02 as v G - .  In "Mathematica,"  the value of x/~ is unique and exactly identical to 
V ~ +  except those z along the negative real line {z = - r ,  r > 0} where v/-d has exactly two values, i.e., for 
each integer n, 

vG= -i[,/71 for z = - r  = re i(-1+4n)~, (6.b) 

and 

From now on, 

v ~  = ilv~] for z = - r  = r e  i ( l + 4 n ) r r .  

we denote the "Mathematica" value of x/~ as ho(z), i.e., 

(6.c) 

ho(z) = v/~ + whenever z E 3 +. (6.d) 

It is clear that ,  in "Mathematica,"  x / ~ =  ho(z) whenever z �9 C\(-cxD, 0) or z = re - '~,  r > O. 
We now consider the Riemann surface NN of the hyperelliptic curve R(z) in (1). For each branch point 

z0[k], 1 _< h < 2N + ~, let hk(z) be the value of V/Z - z0[h] evaluated by "Mathematica,"  i.e., 

hk(z) = ho (Z-  z0[k]), Vz �9 C, 1 <__ k < 2X + ~, (Ta) 
2N- i -5  

h(~) = 1-I hk(z), Vz �9 c .  (Tb) 
k = l  

We define the principal branch for each cut along {z0[2k-  1],zo[2k]} as follows. 
{zo[2k - 1], zo[2k]}, let 

Ok = A r g [ z o [ 2 k ] -  Zo [2k -  1]]. 

Due to (3), Ok can be chosen such that  
Ok �9 [-~,0) .  

Let dk be the straight cut from z0[2k] to Zo[2k - 1] in C parameterized as 

For each pair 

(8a) 

(8b) 

Jk = { z  = Zo[2k -- 1] + tei~ < t < I z o [ 2 k ] -  Zo[2k - 1]1 } .  (8c) 

Define the initial edge of Jk lying in the first sheet ~1 of NN as 

J~+ = {(z ,R(z)) ,z  e Jk}  (8d) 

Clearly, according to (6d) and (8a), (8b), since (z - Zo[2k-  1]), ( z -  zo[2h]) E 8 + for z E Jk, so 

v/z - zo[Zk- 1] -- h2k-l(~), 

V/z - zo[2k] = hzk(Z) for ( z ,R(z ) )  e J+ k "  

(Se) 
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zo[e*-l] 
__ Z 0 [2k - l] ! Z 0 [2k- 1<+ 

,o[2k3 + ,oti k-l.J ~ - I + \ 
zo[gk] zo[~] zo[ek] 

case 2.! Case g.g case2.3 Ca~e 2.4 

Fig. I. The generic cut Jk. 

�9 ,. -J I IA ",, 
/ . . .  - - . . , , - - - 1 : 1 ~ , .  " , ,  ~ a4, 

~ i  "" . o~ \ "'-*'~,c"x-N-n 

Fig. 2. The generic cut-structure and canonical a, b-cycles of 9~ for N = 5. 

L7 . . . .  ~ t~ . . . . .  .a . . . . .  7ZQ[2k'I] 

L..~, ~..., , ! ~ ,  ,, . . . .  ~,,'""/'~ 
�9 t j" b 1"3" a 

Fig. 3. 

The terminal  edge of Jk lying in the first sheet [21 
sheet f~2) of NN is 

J [  = { (z, a z ) ) , z  �9 4 }, 

where Jk is parameter ized as 

Jk = {z = z0[2k - 1] + t~(2"+~ < t < ]z0[2k]-  z0[2k - 111}. 

It is clear that (z--  zo[2k-- 1]) e 3 -  for z �9 Jk" Moreover, 
clear in Sec. 3 that 

(i.e., the initial edge of dk iying in the second 

(8f) 

(Sg) 

due to the continuity of x/-- in ~N, it will become 

V/Z - z0[2k - 1] = - h 2 k - l ( Z ) ,  (8h) 

v / z -  z0[2k] = h2k(z) for (z,R(z)) e J;.  

The generic J +  are i l lustrated in Fig. 1. The generic cut-s tructure and canonical a, b-cycle s of ~N for 
N = 5 is given in Fig. 2. Next, we determine R+(z)  in terms of =kh(z). 
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3. D E T E R M I N A T I O N  O F  R+(z) 

D e t e r m i n a t i o n  of  V/z - z0[2k - 1], V/Z - z0[2k] for z in ftl. Now, as illustrated in Fig. 3a, let 7 be 
a simple closed path in [21 such that 3' encloses the cut Jk, and the three points A, B, C in 3' are such that 

Re[A] < Re[zo[2k - 1]], 

Re[B] < Re[zo[2k]], 

Im[A] = Im[zo[2k-  1]], 

Im[B] = Im[zo[2k]], 

and C is the intersection between 3' and the line through the cut ork such that Im[C] _< Im[zo[2k]]. Notice 
that when Jk is a horizontal cut where Im[z0[2k-  1]] = Im[zo[2k]], then A = B = C. Except for 
this particular case, {A, B, C} partitions the path 3' into three paths, namely, ")'CA, 3`AB, and 3`Bc. Along 
3`CA\{A}, since both arguments of ( z - z o [ 2 k - 1 ] )  and (z-zo[2k]) are strictly between -re and % according 
to (Se), 

v / ~  - z o p k  - i] = h~_~(z), 

v / z  - zo[2k]  = h2k(z) fo r  z E 3`CA\{A} in  f ~ l .  

Notice that both h2~-l(Z) and h2k(Z) are continuous in 3`CA\{A}. While h2k(z) is continuous at A, 
h2k-1 (z) = ho(z-zo[2k-1]) has a jump at A since (z-zo[2k-1]) now has argument - %  i.e., (z-zo[2k-1]) E 
3- .  To assure that V/Z - z0[2k - 1] is continuous through A, it is necessary that 

V/Z-  zo[2k-  1] = - - h 2 k _ l ( Z  ) for Z e 3 ` A B \ { B }  in ~'~1. 

Clearly, X / 7 -  zo[2k] is continuous along 7AB\{B} since the arguments of ( z -  z0[2k]) are strictly between 
-re and rr, so 

V / z -  Zo[2k]-- h2k(Z) for z E 7AB\{B} in a , .  

Now, at B in 3 ,̀ (-)h2k-l(z) is continuous while h2k(z) has a jump. To assure that both V/Z-  z0[2k-  1] 
and V/z - z0[2k] are continuous through B, it is necessary that 

V / Z -  z 0 [ 2 k -  1] = --h2k_l(Z), 

V/Z-  z0[2k] = --h2k(Z) for Z E 3`Bc\{C} in ~"L 1. 

For the special case where J~ is horizontal, we have A = B = C, and V / Z - z 0 [ 2 k - 1 ]  = h2k-l(z), 
V/Z-  z0[2k] = h2k(Z) for z E 7, the simplest case. In summary, we have 

P r o p o s i t i o n  1. (Determinations of V/Z-  z0[2k-  1], V/Z - zo[2k] along 7 in ftl.) Let 7 be a simple 
closed path in the first sheet ~2~ of i~ of R(z) such that 7 encloses a nonhorizontal cut Jk from z0 [2k] to 
z0[2k-  1]. The values of V / z -  z0[2k - 1] and V / z -  z0[2k] along 7 are given as 

V / Z -  zo[2k -- 1] = h2k-l(z), 
V / Z -  z o [ 2 k -  1] = --h2k-l(z), 
~ z -  z o [ 2 ~ -  1] = -h2~_,(z), 

v% - zo[2~] = h ~ ( ~ )  

v% - zo[2k] = h~(z) 
v / ~ -  zo[2~] = - h ~ ( ~ )  

for z E 7CA\ {A} ,  (i) 

for z E 3`AB\{B},  (ii) 

for z E 7 B c \ { C } .  (iii) 

When dk is horizontal, then v/Z - zo[2k-  1] = h2k-l(z), V/Z-  z0[2k] = h2k(z) for z E 3 .̀ 
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Z t .... ~ ~  

"/  / *  T 

1/7 
Fig. 4. The determination of V/(z - z0 [2N q- 1] in ai .  

(: "0 0 0 

P2 P~ P~ Ps / P~ Ps P9 h 
t 

Fig. 5. The parametrization of horizontal J~ in f2i. 

From Proposit ion 1 for z along a curve in f~i, it is now easy to determine V/z - z0[2k - 1] and . . z ~ -  z0[2k] 
in terms of +h2k-a(z) ,  +h2k(z) for arbitrary number z in f~l. As illustrated in Fig. 3b, let L1, L2, L3 be 
the three rays in ~ 1  where L1 starts at zo[2k - !] and through A, L2 starts at zo[2k] and through B, 
and L3 starts at zo[2k - 1] and through C. Then {La,L2,L3} partitions ~~1 into three regions Pa, P2, 
and F3 (each including its boundaries) where F2 is bounded by {L~, J k ,  L2}, F3 is bounded by {L2; L3}, 
and Pl = [al\(r~ @r~)] UL, UL~UJ+~. Proposition 1 yields 

P r o p o s i t i o n  2. (Determinations of V/Z - z0 [2k -  1], V / Z -  z0[2k] for z in f~i.) Let z be a point in f~i 
of N of R(z). Then 

v / z -  z o [ 2 k -  11 = h2k_l(Z), 
V / Z -  z o [ 2 k -  1] = --h2k-l(z), 
V / Z -  z o [ 2 ~ -  11 : --h2k_l(Z), 

v/~ - zo[2k] = h~k(~) 

V'Z - zo[2k] = h ~ ( z )  

V ' z -  zo[2k] = - h ~ ( ~ )  

for z E F~\L1, (i) 

for z E F2\L2, (ii) 

for z E F3\L3. (iii) 

When Jk is horizontal, v / Z -  Zo[2h - 1] = h2k_l(Z), V / Z  - -  z0[2]C] = h2k(Z ) for Z E "/. 

R e m a r k .  In case 5 = 1 in R(z), the determinat ion of V / Z -  zo[2N + 1] in terms of :kh2N+l(z) can 
be done similarly. As il lustrated in Fig. 4 where zo[2N + 1] and. oz determine an infinite cut JN+I,  

r+ of the let 3, be a simple curve in ~ i  such that  3' starts at a point (B~R+(B)) in the initial edge ~N+i 
cut, and ends at the "same point" ( B , R - ( z ) )  in the terminal edge JN+l" Let A in 7 be such that  
ae[A] < ae[z0f2N + 1]], Im[A] = Im[z0[2N + 1]]. Notice that  when JN+a is a horizonta! cut, where 
JN+i + = {z = z0[2N + 1] + se -i~, s _> 0}, we have A = B. Except for this particular case, {A, B} partitions 
the path  3, into two paths 3'AB and 7BA. The same reason as for Proposition 1 yields 

P r o p o s i t i o n  3. (Determinat ion of V / Z -  z0[2N + 1] along 7 in a l . )  V / Z -  z0[2N + 1] along 7 in a1 is 
given as 

V/z -- zo[2N q- 1] = h2N+l(Z) 
V / z -  zo[2N if- 1] = --h2N+l(Z) 

for z ~ W ~ \ { A } ,  (i) 

for z e ~AB\{B} .  (ii) 
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In particular, when JN-I-1 is horizontal, ~,/z - z0[2N + i] = hzN+~(z) for z e 3 ~. 

Again, as illustrated in Figure 4, let L1 be the ray that starts at z0[2N + 1] and passes through A. Then 
{L~, JN++e, JN+I} partitions a~ into F1, F2 (each includes its boundaries), where F2 is bounded by L~ and 
JN+I, and Pl = ( a ~ \ r ~ ) U L z  [.] J++l .  Proposition 3 yields 

P r o p o s i t i o n  4. (Determination of V/Z - z0[2N + 1] for z in f~.) For 5 = 1 in R(z),  and z is a point in 
f~l of N of R(z). Then 

V/Z-  zo[2N + 1] = hzN+l(z) 

v / z -  z0[2N + ~=-h~u+~(z)  
for z E Pl\L1, (i) 

for z E r2\J;+t. (ii) 

In particular, when JN+I is horizontal, V/Z - z0[2N + 1] = h2N_l_l(Z), Z e ~1.  

D e t e r m i n a t i o n  of  R+(z) in t e r m s  of  •  Now, by observing Proposition 2 and Proposition 4, we 
determine R+(z), the value of R(z) in t2~ of N. Let z be a point in f~l. First, according to Proposition 2 
and Proposition 4, if z0[k] is a branch point of a horizontal cut, then 

x/z - ~o[k] ~ = hk(z) = ho(~ - zoN). (9) 

For a nonhorizontat cut ork with the two branch points {z0[2k-  1],z0[2k]}, let L k be the oriented line 
through z0[2k I in the direction of (z0[2k - 1 ] -  z0[2k]), i.e., 

L~= { w  Im[(w-zo[2~])/(zoI2k-1]-zo[2~])l =0} .  (io~) 

When 5 = 1 in R(z),  if JN+I is not horizontal, we take z0[2N +2] to be any finite point lying in this infinite 
cut JN+I starting from z0[2N + 1], and let L g+l be the oriented line through z0[2N + 2] in the direction 
of (zo[2N + 1]- zo[2Y + 2]), i.e., 

L N + I =  { w : I m [ ( w - z 0 [ 2 N + 2 ] ) / ( Z o [ 2 N + l ] - z 0 [ 2 N + 2 ] ) ]  = 0 } .  (10b) 

Now, with the simplest cases (9), Proposition 2 and Proposition 4 yield 

T h e o r e m  1. (Determination of R+(z).) Let (z ,R+(z))  be a point in ~1 of N. Then R+(z) is given by 
"Mathematica" as 

R+(z) : (-i)~h(z) (il) 

where nz is the number of branch point(s) zo[p] of those nonhorizontal cuts Jk such that z and zo~v] satisfy 
the following two relationships: 

Ira[z] < Im[zo[p]]. (12a) 

The point z ties in the half plane to the left of L k in the complex plane C, i.e., 

z C { w : I m [ ( w - z 0 [ 2 k ] ) / ( z o [ 2 k - 1 ] - z o [ 2 k ] ) ]  > 0 }  (12b) 

where p = 2k or 2h - 1. If  none of zo[p] satisfies (12a), (12b), then nz = 0 and R+(z) = h(z). 
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4. C O N C L U S I O N  

The major theory in this paper is Theorem 1 in Sec. 3. Theorem 1 states how to evaluate 5t-~(z) by 
"Mathematica." Accordingly, we can write a numerical program to evaluate integrals (2). There are two 
delicate points for writing such a program: (i) the indications of the exact positions z where the integrand 
R(z) change signs along the integration path V; (ii) the parameterizations of z along the horizontal cuts J~ 
Here, we should point out that the definition of ~ in "Mathematica" version 2.2 is incorrect. Before 
any correct new version appears, we should run the programs by "Mathematica" version 2.1. The subject 
of our next work parallels that in this paper except that the integral path V wilt be a dynamical curve: 
For example, 7 is related to some evolution equations whose function theory occurs on Riemann surfaces. 
Such evolution equations include periodic soliton equations and their perturbations. One further work is 
to perform numerical evaluations of multi-fold, multi-valued integrals. 
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