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HIGHLIGHTS

A single-hidden-layer quantum neural network is proposed.

Grover learning is presented for training the network.

Our model is proposed based on some concepts and principles in the quantum theory.

Some experiments are taken to compare the proposed method with other SLFNNs.
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In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based
on some concepts and principles in the quantum theory. By combining the quantum mechanism with the
feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and
used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural
network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions
in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter
setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron
and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural
network characteristic of reduced network, high efficient training and prospect application in future.
Some simulations are taken to investigate the performance of the proposed quantum network and the

result show that it can achieve accurate learning.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the past seventy years, artificial neural networks (ANNs) have
made rapid developments and been successfully applied into a
great deal of practical scientific and engineering problems (Bishop,
1995; Hastie, Tibshirani, & Friedman, 2001; Haykin, 1994). Feed-
forward neural networks (FNNs) and recurrent neural networks
(RNNSs) are two major types of popular artificial neural networks.
The single-hidden-layer feed-forward neural network (SLFNN) is
one of the most widely used ANNs, which have no lateral con-
nections and/or cyclic connections and whose features resort to
parameters of the weighted connections and hidden nodes (Er-
dogmus, Fontenla-Romero, Principe, Alonso-Betanzos, & Castillo,
2005; Huang, Chen, & Siew, 2006; Huang, Zhu, & Siew, 2006; Kim
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& Adali, 2003; Liang, Huang, Saratchandran, & Sundararajan, 2006).
Modification of these adjustable parameters in the ANNs allows the
network to learn an arbitrary vector mapping from the space of
inputs to the outputs. Finding an approximate set of parameters
which can minimize the defined performance function is often re-
alized by iterative learning. However, this process is very tedious
and the optimization result relies heavily on the learning algorithm
and the complexity of performance function. Moreover, the classi-
cal feed-forward neural networks are also facing many difficulties,
including the dimensionality calamity, the determination of the
best architecture, the limited memory capacity, time-consuming
training, and so on.

In recent years there has been an explosion of interest in quan-
tum computing. Quantum processing allows the solution of an op-
timization problem through the exhaustive search undertaken on
all the possible solutions of the problem itself, and now it has
been applied to several scientific fields such as physics, math-
ematics, and an extension to the entire field of computational
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intelligence (Ezhov & Ventura, 2000; Fiasché, 2012; Friedman, Pa-
tel, Chen, Tolpygo, & Lukens, 2000; Gupta & Zia, 2001; Han, Gao, Su,
& Nie, 2001; Han & Kim, 2002; Kak, 1995; Narayanan & Menneer,
2000; Panella & Martinelli, 2007; Perkowski, 2005; Platel, Schliebs,
& Kasabov, 2009). Nowadays several essential ideas in the quantum
computing have formed the basis for researches of quantum intelli-
gent computing, including the linear superposition, entanglement
and so on.

Linear superposition is closely related to the familiar mathe-
matical linear combination. The basis of linear superposition state,
and in general the superposition coefficient of the state is complex.
Entangled quantum system is the potential to show the classical
correlation. From a computing point of view, entanglement seems
to be intuitive enough. In fact, the existence of quantum superpo-
sition makes the correlation exist. When the consistency lost, the
communication correlation is probably between the qubits in some
way.

Recently there have been growing interests in ANNs based on
some concepts and principles in quantum theory (Ezhov & Ventura,
2000; Gupta & Zia, 2001; Kak, 1995; Narayanan & Menneer, 2000;
Panella & Martinelli, 2007; Perkowski, 2005). The quantum system
lays a foundation of the microcosmic systems for all the physical
process, including the biologic process and mental process.
Several works have combined the quantum computing with
the traditional evolution algorithms that simulate the biological
evolution (Fiasché, 2012; Han & Kim, 2002; Platel et al., 2009). So
the quantum system is more suitable for the description of the
complex biological evolution as well as the biological neurons.

Combining quantum computing with training and implemen-
tation of neural networks has been studied by many researches
(Ababneh & Qasaimeh, 2006; Ezhov & Ventura, 2000; Fiasché,
2012; Friedman et al., 2000; Gupta & Zia, 2001; Han et al., 2001;
Han & Kim, 2002; Kak, 1995; Karayiannis et al., 2006; Kretzschmar,
Bueler, Karayiannis, & Eggimann, 1996; Levy & McGill, 1993; Mal-
ossini, Blanzieri, & Calarco, 2008; Narayanan & Menneer, 2000;
Narayanna & Moore, 1996; Panella & Martinelli, 2007; Patel, 2001;
Perkowski, 2005; Platel et al., 2009; Purushothaman & Karayiannis,
1997). In 1997, Quantum neural network with multi-level activa-
tion function is firstly proposed by Karayiannis, which uses quan-
tum ideas superposition in the quantum theory (Bishop, 1995;
Haykin, 1994). The multi-stage activation function in the network
is a linear activation Sigmoid function in the hidden layer of QNN,
which is the so-called superposition. Each Sigmoid function has a
different quantum interval. By adjusting the Quantum interval, the
data can be mapped to different spaces that are determined by the
quantum level. Given appropriate training algorithm, the network
can adaptively extract the inner rules even if class boundaries or re-
gression functions are blurred. Therefore, in the classification task,
if the feature vector in the boundary between the classes overlap,
QNN will be assigned to all classes (Bandyopadhyay, Karahaliloglu,
Balkir, & Pramanik, 2005; Barbosa, Vellasco, Pacheco, Bruno, &
Camerini, 2000; Hou, 2011; Mukherjee, Chowdhury, Raka, & Bhat-
tacharyya, 2011; Qiao & Ruda, 19993, 1999b; Takahashi, Kurokawa,
& Hashimoto, 2011; Xuan, 2011). Therefore, the multi-quantum
level of activation is the key reason that QNN can solve fuzzy clas-
sification and regression effectively (Gao, Zhang, Liu, Chen, & Ni,
2010; Guowei, Ning, & Deyou, 2010; Huifang & Mo, 2010; Ji, Liu,
Yu, & Wu, 2011; Li & Xu, 2009; Liu, Peng, & Yang, 2010; Sagheer &
Metwally, 2010; Xianwen, Feng, Lingfeng, & Xianwen, 2010; Yan &
Xia, 2010).

In this paper, we establish a quantum neuron and weights
based feed-forward neural network model, single hidden layer
feed-forward quantum neural network (SLFQNN), and propose a
Grover learning algorithm based on the quantum parallelism and
entanglement. The activation function of quantum neurons in the
hidden layer is characteristic of quantum coherence and quantum

transition, whose type is not fixed. The coherent coefficient can
be adjusted according to the problems to be solved, and a Grover
based quantum learning algorithm is used to train the network for
a fast and accurate learning. Some simple examples are also given
to prove its superiority.

The rest of this paper is organized as follows. Section 2 intro-
duces the single-hidden-layer feed-forward quantum neural net-
work. In Section 3, the Grover based quantum learning is explained
in detail. In Section 4, some experiments are taken to investigate
the performance of our proposed method by comparing it with
other related methods. The conclusions are finally summarized in
Section 5.

2. Single-hidden-layer feed-forward quantum neural network
(SLFQNN)

In a real human brain, there are many different kinds of neu-
rons that process different information. In quantum computation,
a quantum state can be looked as a superposition of many ground
states. Inspired by it, we take quantum hidden neurons in SLFNN,
which is in a state of quantum superposition that is a combina-
tion of many ground states. The method of superposition can be
described by the amplitude of quantum probability and the posi-
tion of quantum jump. For an explicit understanding of the quan-
tum system, firstly we have a presentation on the quantum theory.

2.1. Quantum bits

Information is stored in the smallest unit in the two state quan-
tum computer is called a quantum bit or qubit. A qubit is in the
two dimensional Hilbert complex unit vector. For the purposes of
Quantum computing, the ground state |0) and |1) represent the
classical bit values 0 and 1. However, unlike classical bits, a qubit
can in the superposition of state |0) and |1).

In a quantum system, the quantum state is the carrier of infor-
mation, and a quantum state |¥) can be regarded as a superpo-
sition of many ground states (Kak, 1995; Narayanan & Menneer,
2000):

N N
) =) Gln) (szl), (1)
n=1 n=1

with |n) is the ground state with corresponding coefficient G,,
whose amplitude is the appear probability of the state |n). Given
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states from a 3-qubit system. Additionally, along with the conver-

gence of the quantum chromosomes, the diversity fade away and

the algorithm converges.

Similar to the quantum state |¥), the neuron in human brain
is just in such a quantum superposition and accordingly we call
it quantum neuron. This quantum neuron has such an activation
function f (N, C, x) (Friedman et al., 2000):

N
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Fig. 1. The model of quantum neuron.
Here f,(x) (n = 1,...,N) is a nonlinear basis function. Ac-

cording to the quantum mechanics of biological brain neuron, the
activation function of artificial neurons can be associated to the so-
lution of basic such as Schroedinger’s equation for various types of
external potential. If the external potential is zero or constant then
such basis functions will be Gaussian functions; if the external po-
tential is harmonic such basis functions will be Hermite functions;
moreover, a Morlet wavelet basis function can also be expanded
by a spectral superposition of Gaussian basis functions. For other
types of wavelet functions, the probability density functions asso-
ciated to quantum mechanical equations can be approximated by
wavelet expansions, however, these expansions do not coincide
with the mathematical solutions of the associated partial differ-
ential equations. So in the formula (2) the admissible neuron ac-
tivation function f (x) can be radial Gaussian function, or Wavelets
functions, x is the input data. They are corresponding to the quan-
tum ground states at different energy levels, and A, is the quan-
tum transition position of these states. Accordingly, the output of
quantum neuron f (-) will be in a superposition state that is formed
by these ground states. The model of quantum neuron is shown in
Fig. 1.

2.2. Quantum neural network

By adopting the quantum neurons as the hidden neurons of a
SLENN, we can establish a SLFQNN. Assume the connected weights
in the output layer are represented by W, g is the activation
function of the hidden layer (often a classical linear function is
adopted), there is a hidden neuron in SLFQNN, so the output of
the network is y = g(W, f(N, C, x)) (Haykin, 1994). Here N is the
number of ground states of quantum neurons; C is the amplitude
of appear probability of states in quantum neuron. According to
the result of Kreinovich in 1991, a nonlinear function in the hidden
layer can make SLFNN approximate any continuous function on the
condition of a weak limitation (Kreinovich, Vazquez, & Kosheleva,
1991), so SLFQNN can be proved to have generalized approxima-
tion ability. In the training, by adjusting |C,|?, we can get optimal
activation functions of hidden layer in SLFQNN by the subsequent
learning.

3. Grover based quantum learning

In comparison with the classical hidden neurons in ANNSs,
SLFQNN has two new parameters: the superposition coefficient
and the jump position. Assume an SLFQNN with the structure
L;—1—L,, if the number of the training samples is P and the number
of the ground states is N. Firstly we define such a cost function J
(Bishop, 1995):
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Fig. 2. The quantum neural network.

where y;; is the output of the j-th neuron for the i-th training
sample:

Yij = g(W,f(N, C, X))

1 M - N
= 5 2o 1D Y 1GPf i — An)
=1 n=1

i=1,...,P,j=1,...,L), (4)

and d;; is the corresponding expected output, wj; is the connected
weights between the j-th output neuron and the hidden neu-
ron. Searching for an approximate set of parameters including the
weights W and the undetermined parameters in quantum neuron,
including the quantum superposition state f, and quantum transi-
tion A, in the possible solution space to minimize the cost function
is the goal of training the network.

Assume the type of quantum neuron is coded with I; = log,(N)
qubits, the transition of quantum neuron is coded with I, =
log,(Q) and quantum weights W are coded with I35 = log,(M)
quantum bits. Unlike classical bits, qubits are in the superposition
of states |0) and |1). At some time, the type of hidden quantum
neuron is in the superposition state (Panella & Martinelli, 2007):

1 N
v) = § nls 5
| ) mn:l|f> ()

and the transition of the hidden neuron is also in such a superpo-
sition state:

1 &
lp) = —= ) |4n). (6)
VPR
The quantum weights are in the state:
1 M
W) =—= > |w) (7)
i
which is the superposition of all possible states wy € [0, 1, ..., 2

—1], and each state is corresponding to a determined weights. Con-
sider a database of S elements exactly one of which is “marked”
as satisfying some desirable characteristic, Grover’s algorithm uses
the parallelism of afforded by quantum superposition to accom-
plish the task with only 0(5'/?) queries (Liu et al., 2010). In this
paper, we introduce the quantum Grover algorithm to search for
the optimal weights and neurons that can maximize the defined
performance function. The network is shown in Fig. 2.
Defining 1/] as the performance function of the network:

FW,f, ) =1/]. (8)

Grover searching algorithm is to compute the performance func-
tion of different states in parallel and search the best parameter
set with the highest performance function. Firstly define a |q) with
I; + I, + 15 quantum bits, which is in a combination state of |/), |¢)
and |q). Then additional b quantum bits |c) are added on |q), |c) is
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the control register to control the appearance of the optimal state
and the obtained |q) is of lengthn = I; + I + I3 + b:
la) : 1Y, @, W, c).

The process of searching for the solution that maximizes the per-
formance function can be described as the following steps. First,
represent the performance function F as:

FOW,f, A) =F(q1, 42 - -+ qn)- 9)
Define the unity quantum operation U as (Trugenberger, 2002):

U= exp (iZFaor(@. - 40)) (10)
with

F(qq, ..., — Fpi
Q) = (41 qn) min (11)

Fmax - Fmin
Here Fyax, Fmin represent the upper and lower bound of the perfor-
mance function respectively. Perform the unity quantum operation
U on the state |q):

Fnor(qL cee

L+l +I3
u= [] ¢ (12)
k=1

where G¥ is the k-bit diagonals quantum gate as follows (Grover,
1997):
= dlag(e 2 nor(Ol """ 0"), ei‘%Fgor(ll ~~~~~ 1k)) (13)

(qls --~7q1<) mm

nor(qlv cees CIk) =

Fmax - len

I+l +; n
(K: > k‘(k)> (14)

k=1

Firstly the b control bits in |q) are initialized as all zeros:
=
=— Gk : 01, ..., 0p). (15)
Vi

Perform the Hadamard gate H = 7 [ _]1] on the first control

bit, we can obtain:

l n
lq") = EZ Gk : 01, ..., 0p)
k=1

-l n
+— (qk:h,...,Ob). (16)
Van &
Introduce the control gate (Trugenberger, 2002):
U = ) (1l ® Up +100) (0c| @ U, ! (17)

which represent that if the control bit takes “1”, perform unity op-
eration U on the state |q*); if the control bit takes “0”, then perform
U~ on the state |g), which can be realized by employing the con-
trol gate:

Uz =[[[Jce" e~ (18)
k=1

Perform UCi on |g?), we can obtain,

Ze—l Fnor(‘]k)'qk O] 0 >

lg*) =
ﬁ =

— Zelenor(QI<>|qk ‘l] 0 > (‘19)
v k=1

Apply the Hadamard gate H on the first control bit ¢;, we can
obtain,

Zsm( nor(Qk)) |qi : 01, ..., Op)

+—Zcos( Faor(@0)) 4t Tr, .- Op). (20)

So performing the transform HCUCquC can fulfill the performance
function estimation of |q), and consequently we perform such a
transform on each control bit Cy, ..., G, and finally we get the
result (Trugenberger, 2002):

g”) = Z Z cos”™ (%Fnor(Qk))

=1 i=0

x sin’ (%Fnor(qk)) PUARTS! (21)
Ui

where {J'} represent the length of binary string with i “zero” and
b — i “1”. In this procedure, b times of operation HCU H, is used
to amplify the probability amplitude of the state with hlgher per-
formance function. The state with highest performance function
should have a lot of zero control bit. When all the bits in the
control register being in zero, the amplitude of the optimal state
reaches the maximum. Commonly speaking, the required state can
be obtained by repeatedly performing the above determined quan-
tum transformation and random quantum measurements. The ex-
pected iterative times needed to obtain the optimal state is 1 /Pl?,
and

Z sin®? ( Fnor(qk)> (22)

is the probability of |cq, ..., cs) = |04, ..., 0p). Once the control
register detects the desired state, the measurement can be per-
formed on |q), and then we can obtain the state |q,) with the proba-
bility P, (qi). We can see from it that with the F,,.(qx) approaches 1,
P,(qi) becomes bigger and bigger. Finally, as we have expected, P
achieves the maximum at the state with the highest performance
function.

So the Grover based quantum learning algorithm can be de-
scribed as:

The procedure of the Grover based learning algorithm:
Step 1: Initialize the parameters of the network:

la) :1g1, G2, - .-, Qi 1. G2, -+, A1y, 15 G2, - - -, Gig» €1, C2

. Cb)
where |q1, G2, . . ., qi;) code the type of quantum neuron;
|91, g2, - . ., qi,) code the transition of quantum neuron;
|91, G2, - . ., qi3) code the connection weights of output layer
and [cq, Ca, .. ., ¢p) are the control bits. The ¢y, . . ., ¢, control

bits in |q) are initialized as all zeros:

Step 2: Defining 1/] as the performance function of the
network, and perform the unity quantum operation U on the
state |q).

Step 3: Perform the quantum transform H, Ué;HC on the
coding bits and control bits to estimate the performance
function of the states. Repeat this process for Pz? times.

Step 4: Perform the observation on the quantum neuron and
weights, which will collapse into one state, and it is the best
state having the highest performance function.
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Table 1

The probability of falling into a local optimal solution.

Length of b Lengthof Iy, I, I3 R = Fiocal max/Fglobal max
R R = 0.2000 R =0.500 R = 0.800 R = 1.000
2 0.500 0.452 0.250 0.048
b=1 3 0.354 0.320 0.177 0.034
4 0.125 0.226 0.063 0.024
2 0.500 0.409 0.125 0.005
b=2 3 0.354 0.289 0.088 0.003
4 0.125 0.205 0.063 0.002
2 0.500 0.370 0.063 4.354e—004
b=3 3 0.354 0.262 0.044 3.078e—004
4 0.125 0.185 0.031 2.177e—004
The variation of training error with the iteration times
35 l T T T The variation of fraining error witH the iteration times.
| \‘ =@=BPNN | ,,
3F 1 ==d== \WWNN 0.09 B
[} === SLFQNN |0
] 1
250\ £ 1
\ “g,’ == SLFONN
| o
S 2h ‘\ "o |
g "‘ \ 0,03
1 g 5\ 002
® 1.5 5\ 001 ~q
= Yl R
4 .\ 3 35 4 45 5 55 6 65 7 15
1L . Iteration times |
0.5 R
3 I I . . . .
0 1 2 3 4 5 6 7
0

Fig. 3. The function to be approx.

4. Experimental results

In this section, some experiments are taken to investigate the
performance of the proposed method.

Experiment 1. In the following, a simple example is used to illus-
trate the efficiency of the proposed Grover quantum learning al-
gorithm. Firstly we investigate the probability of Grover algorithm
based quantum learning falling into a local optimal solution. The
result is shown in Table 1. From it we can see that when the num-
ber of control bits reaches 3 and the information bits reaches 4,
the possibility of falling into a local optimal solution becomes very
small. So as long as the bits are defined in |q), Grover based quan-
tum learning is feasible.

Experiment 2. Considering the problem of the function approxi-
mation, the function to be approximated is

sin 3x X

— 2sin —. (23)
2

The function is shown in Fig. 3.

In SLFQNN Gaussian function is adopted as the fundamental ac-
tivation function of the network. The difference among different
fn relies on the width of Gaussian function, and the transition A,
reflects the centers of Gaussian function. Let [y = L, = I3 = 4
and b = 3. BP-NN model is a feed forward neural network with
the learning rule of error back propagation. It has a three-layer
(or single-hidden-layer) network structure: the input layer, hid-
den layer and the output layer. In the network, the parameters of
the network are tuned using the traditional gradient descent algo-
rithm. It provides a possible way of finding an approximated opti-
mal solution to the network parameters and is very popular in the

y(x) = sinx +

—=C=—0 @
7

o @

Iteration times

Fig. 4. The convergence curves of BPNN, WNN and SLFQNN.

practical application of ANNSs. It is also a representative neural net-
work model that has the activation functions with global support.
WNN is an improved version of the BP-NN, which replace the Sig-
moid function in the hidden layer by a local and multiscale wavelet
function, followed by a linear output layer. In the training process
of the network, the parameters are also adjusted by the traditional
gradient descent algorithm, including the connected weights of the
network, the scale and position of the hidden neurons. Because
the local property of wavelet functions in time and frequency,
WNN is more efficient than BP-NN in approximating and classifi-
cation tasks. It proves to present good results in many engineering
fields. Therefore we compare these two networks with our pro-
posed SLFQNN. In this experiment, BP-NN, WNN and SLFQNN are
used to approximate the function in (21). In the training, the initial
weight and neuron parameters are selected randomly. The SLFQNN
network is trained according to the algorithm above.

The result shows that BPNN (Backpropagation neural network),
SLFQNN and WNN (wavelet neural network) all can converge
within eight epochs to reach the error below 0.01. The SLFQNN
converges rapider than BPNN and WNN, as shown in Fig. 4. How-
ever, for SLFQNN, it only requires four iterations to reach the error
1.3741e—3. Additionally the classical neural network needs more
hidden neurons to obtain a satisfactory solution, however, only one
hidden neuron is employed in our proposed SLQFNN.

Experiment 3. In this test, we applied it to the task of classifi-
cation, and the data is from http://www.research.att.com/~yann/
ocr/mnist in AT&T Bell laboratory in America. The number of test
samples is 1000, and N = 3. Moreover, two binary classification
datasets came from UCI dataset: Bld (Bupa Liver Disorders), Ttt
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Table 2
Result of classification.
Dataset # training samples RBF NN SLFQNN
Error L, Error Ly
100 24 72 20 1
AT&T Bell 196 1.8 127 1.8 4
289 1.1 206 09 10
Bld (Bupa Liver Disorders) 400 5.2 143 4.1 7
Ttt (tic-tac-toe endgame) 300 5.9 221 44 8

(tic-tac-toe endgame) are also used to test the proposed method.
RBFNN is a popular single-hidden-layer feed-forward neural net-
work that takes the radial-basis-function as the activation func-
tion in the hidden layer. The activation function has the multiscale
characteristics and it is considered as a special case of the WNN.
Different with WNN, RBFNN calculates the distance between the
input pattern and the centers in the hidden layer. Because the cen-
ters of the hidden neurons can be determined by some supervised
clustering algorithm, the training of RNFNN is rapider than that of
WNN. In the experiment, we compare the proposed SLFQNN with
RBFNN, which uses the Gaussian function as the activation func-
tion in the hidden layer and works well in function fitting, and the
result is shown in Table 2. Here L, represents the number of hidden
layer. From it we can see that the classical neural network needs a
great deal of hidden neurons to obtain a satisfactory solution, how-
ever, only a small number of hidden neurons are needed to reach
the same precision in SLFQNN.

5. Conclusions

In this paper, a single hidden layer feedforward quantum neural
network is proposed based on the combination of quantum the-
ory and neural network. In the network, the hidden neurons are
quantum neurons that are characteristic of the superposition and
transition of multiple states, which can produce a wide range of
nonlinear activation functions in the hidden layer of the network.
Moreover, the Grover searching algorithm is proposed to outstand
the optimal parameter setting iteratively and thus makes very ef-
ficient neural network learning possible. The quantum neuron and
weights, along with a Grover searching algorithm based learning,
result in a novel and efficient neural network characteristic of re-
duced network, high efficient training and prospect application in
future.
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