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This study deals with the issue of one-dimensional solute transport in a two-aquifer system, where an
aquitard lies between two aquifers. Different from previous studies on analysis of the contaminant
transport affected by the presence of an aquitard, we developed a mathematical transport model in an
aquifer–aquitard–aquifer system with considering transport of solutes in the aquitard governed by both
advection and diffusion. The Laplace-domain solution of the model for concentration distributions is
obtained by the Laplace transform technique and its corresponding time-domain results are computed
numerically by using Laplace numerical inversion. An explicit finite difference model is also developed
to simulate two-dimensional contaminant transport process in the system. The simulated depth-averaged
concentrations in the lower and upper aquifers slightly differ from those predicted by the present solution.
The results show that the movement of contaminant in the upper aquifer is slowed down considerably due
to the advective transport in aquitard. When neglecting the aquitard advection (a zero Peclet number),
the concentration level in the lower aquifer will be underestimated, especially at late times. In addition,
the contaminant concentration in the lower aquifer increases significantly with aquitard’s Peclet number.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Groundwater contamination from deliberate disposal or acci-
dental spill of chemicals in aquifers has received much concern
for the quality of water resources. It is rather complicated to ana-
lyze or predict the migration of contaminants in layered geologic
formations analytically. Many aquifers with stratigraphic features
are bounded above and/or below by low permeable layers, referred
to as aquitards. Previous studies have demonstrated that the aqui-
tard plays an important role in the behavior of subsurface flow and
the migration of hazardous materials from underground storage
tanks or industrial waste landfill (e.g., Johnson et al., 1989; Parker
et al., 2004). The effect of the presence of an aquitard on the migra-
tion of contaminants is, however, commonly neglected or handled
based on some simplifications from previous studies on flow and
transport in stratigraphic formations. When the solutes migrate
in an aquifer–aquitard–aquifer system, the solutes may penetrate
the aquitard due to molecular diffusion. Furthermore, advective
flux of solutes may also penetrate the aquitard due to the presence
of hydraulic gradient produced by pumping in the adjacent aquifer
(Cherry et al., 2006, p. 11) and/or other driving force such as con-
centration or temperature gradients (Freeze and Cherry, 1979, p.
25) between the aquifers. Thus, transport by advection in the aqui-
tard might also be a significant transport process in the aquifer–
aquitard–aquifer system and that desires consideration. Zhan
et al. (2009a) mentioned that the advective flux in the aquitard
should be considered in modeling contaminant transport if the
aquitard is thin. For a thin aquitard, the solute may penetrate the
aquitard and enter the adjacent aquifer. As such, it is of importance
to include the contaminant transport in the adjacent aquifer in
modeling contaminant transport in multilayered aquifer systems.

In the past, many studies had been devoted to analyze the effect
of aquitards on groundwater flow systems. For instance, Hantush
and Jacob (1955) assumed that the confined aquifer is bounded from
below and above by aquitards of finite vertical extent in which flow
is entirely vertical and the effect of the aquitard’s elastic storage is
negligible. In addition, the flow in the confined aquifer is essentially
horizontal. From verification of the assumption of vertical flow in
aquitards and horizontal flow in the aquifer, Neuman and Wither-
spoon (1969) concluded that ‘‘When the permeabilities of the aqui-
fers are two or more orders of magnitude greater than that of the
aquitard, errors introduced by this assumption are usually less than
5%’’. Zlotnik and Zhan (2005) and Hunt and Scott (2007) investigated
the aquitard effect on the results of pumping tests by assuming that
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Fig. 1. Schematic representation of two-aquifer systems.
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a large conductivity contrast exists between the pumped aquifer and
the aquitard, implying that the flow is horizontal in the pumped
aquifer and vertical in the aquitard.

Diffusion at an aquifer–aquitard interface is somewhat similar to
diffusion at a matrix-fracture boundary. It has been shown that ma-
trix diffusion is an important process for contaminant transport in a
fractured medium (Tang et al., 1981; Liu and Yeh, 2003; Liu et al.,
2004). As a consequence, the advective flux in the aquitard has been
neglected deliberately in previous analyses to make the derivation
of analytical solutions tractable. Parker et al. (2004) showed that
the migration of dissolved contaminants in low-permeability mate-
rials is typically dominated by molecular diffusion and may occur
over time periods of hundreds to thousands years. Johns and Roberts
(1991) proposed a model for investigating solute transport in large-
aperture fractures under the consideration of lateral dispersion to
the small aperture regions and diffusion to the rock matrix. Liu
and Ball (2002) and Chapman and Parker (2005) recognized that
back diffusion of the solute from the aquitard to the aquifer is the
primary cause of the tailing effect observed in the aquifer. Note,
however, that the solute transport by advection in aquitards was
not taken into account in the above-mentioned studies. Zhan et al.
(2009b) demonstrated that the mass transported between the aqui-
fer and aquitard is sensitive to the aquitard’s Peclet number, but less
sensitive to the aquitard’s diffusion coefficient, particularly at late
times. In addition to the diffusive flux, their results implied that
the advective flux in the aquitard is an important transport process
for the contaminant to penetrate through the aquitard.

The objective of this paper is to develop a new mathematical mod-
el to describe contaminant transport in an aquifer–aquitard–aquifer
system. Different from previous studies, this model considers the
migration of contaminants by both advection and diffusion processes
in the aquitard. The solution of the model in the Laplace domain is
developed using Laplace transforms with the aid of both Ferrari’s
solution and Cardan’s solution (Korn and Korn, 2000) and its corre-
sponding results in the time domain are computed by de Hoog
et al.’s algorithm (1982). The steady-state solution is also obtained
from the Laplace-domain solution through the use of Tauberian the-
orem (Yeh and Wang, 2007). The concentrations predicted from this
new solution are compared with the simulated depth-averaged con-
centrations from a two-dimensional explicit finite-difference model.
Those newly developed solutions quantify the contaminant transport
in an aquifer–aquitard–aquifer system and can be used to analyze the
influences of aquitard properties on contaminant transport.
2. Conceptual and mathematical model

2.1. Conceptual model

Many aquitards exhibit variations in thickness or major internal
lithology and therefore are often discontinuous in geologic facies at
the regional scale. Cherry et al. (2006) presented a series of concep-
tual models for aquitards due to variations in depositional settings
and post-depositional processes. Fig. 1 shows the schematic repre-
sentation of the problem investigated in this study. The origin is lo-
cated at the lower left-hand corner of the upper aquifer. The arrow
shows the groundwater flow direction in both aquifers. Advection
and diffusion are the physical processes controlling the transport
of contaminants from the upper aquifer to the lower one through
the aquitard.
2.2. Mathematical model

The assumptions related to the geometry and hydraulic proper-
ties of an aquifer–aquitard–aquifer system in the conceptual model
are made as follows:
1. The flow and transport in both aquifers and aquitard is one
dimensional. In addition, the flow fields are steady and uniform
in the both aquifers and aquitard.

2. The hydraulic conductivity of the aquitard is a few orders of
magnitude less than those of two adjacent aquifers, thus the
direction of advective flow in the aquitard is vertical, i.e., per-
pendicular to the interface.

3. The aquifers and aquitard are homogeneous and isotropic with
constant dispersivities and retardation factor.

4. The contaminants with a concentration kept constant at the
inlet enter the two-aquifer system through the left boundary
of the upper aquifer, while the lower one is initially not
contaminated.

Based on these assumptions, the governing equations and asso-
ciated initial and boundary conditions for the upper aquifer, aqui-
tard, and lower aquifer are given below:

For the upper aquifer,

@C1

@t
¼ D1

R1

@2C1

@x2 �
v1

R1

@C1

@x
� C1

h1bR1
ð1Þ

C1 ¼ ha vaCa � Da
@Ca

@z

� �����
z¼0

ð2Þ

C1ðx;0Þ ¼ 0 ð3Þ

C1ð0; tÞ ¼ C0 ð4Þ

C1ð1; tÞ ¼ 0 ð5Þ

where C1 and Ca represent the contaminant concentration in the
upper aquifer and the aquitard, respectively; C0 is the constant con-
centration at x = 0; v1 is the average horizontal velocities of ground-
water flow in the upper aquifer; va is the vertical velocity of
groundwater flow in the aquitard; D1 is the longitudinal dispersion
coefficients for the upper aquifer and defined as D1 = aLv1 + D* with
the longitudinal dispersivity aL and the molecular diffusion coeffi-
cient in water D*; Da is the diffusion coefficient for the aquitard
and defined as Da = sD* with aquitard tortuosity s; variable b is
the half thickness of the aquifers; h1 and ha are the porosities of
the upper aquifer and the aquitard, respectively; R1 is the retarda-
tion factor in the upper aquifer, and t is elapsed time.

For the aquitard,

@Ca

@t
¼ Da

Ra

@2Ca

@z2 �
va

Ra

@Ca

@z
ð6Þ

Caðx; z;0Þ ¼ 0 ð7Þ

Caðx;0; tÞ ¼ C1ðx; tÞ ð8Þ

Caðx;�ba; tÞ ¼ C2ðx; tÞ ð9Þ
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where ba and Ra are the thickness and the retardation factor of the
aquitard, respectively. And for the lower aquifer,

@C2

@t
¼ D2

R2

@2C2

@x2 �
v2

R2

@C2

@x
þ C2

h2bR2
ð10Þ

C2 ¼ ha vaCa � Da
@Ca

@z

� �����
z¼�ba

ð11Þ

C2ðx;0Þ ¼ 0 ð12Þ

C2ð0; tÞ ¼ 0 ð13Þ

C2ð1; tÞ ¼ 0 ð14Þ

where C2 represents the contaminant concentration in the lower
aquifer; v2 is the average horizontal velocities of groundwater flow
in the lower aquifer; D2 is the longitudinal hydrodynamic disper-
sion coefficients for the lower aquifer, and defined as D2 = aLv2 + D*.
In addition, h2 and R2 are the porosities and the retardation factor in
the lower aquifer, respectively.

Eq. (2) represents the total flux crossing the interface between
the upper aquifer and the aquitard. Similarly, Eq. (11) denotes
the total flux through the aquitard and the lower aquifer (Zhan
et al., 2009a). Eqs. (8) and (9) represent the continuities of concen-
trations at the upper and lower aquifer–aquitard interfaces,
respectively.

2.2.1. Laplace-domain solutions
In the following, the Laplace-domain solutions to the governing

equations (i.e., Eqs. (1), (6), and (10)) are developed. Using the
dimensionless parameters listed in Table 1, Eqs. (1)–(14) can be ex-
pressed in dimensionless forms. Transforming Eqs. (1)–(14) into
dimensionless form and applying the Laplace transform to the gov-
erning equations and boundary conditions results in the following
equation groups:

For the upper aquifer,

d2C1D

dx2
D

� Pe1
dC1D

dxD
� e1C1D þ j1

dCaD

dzD
¼ pC1D ð15Þ

C1Dð0;pÞ ¼
1
p

ð16Þ

C1Dð1;pÞ ¼ 0 ð17Þ

For the aquitard,

d2CaD

dz2
D

� Pea
dCaD

dzD
¼ d1pCaD ð18Þ

CaDð0;pÞ ¼ C1DðxD;pÞ ð19Þ

CaDð�1;pÞ ¼ C2DðxD;pÞ ð20Þ

And for the lower aquifer,

d2C2D

dx2
D

� Pe2
dC2D

dxD
þ e2C2D � j2

dCaD

dzD
¼ d2pC2D ð21Þ
Table 1
Dimensionless parameters used in the study.

xD ¼ x
b ; zD ¼ z

ba
; tD ¼ t D1

R1b2 ; C1D ¼ C1
C0
; C2D ¼ C2

C0
; CaD ¼ Ca

C0

Pe1 ¼ v1 b
D1
; Pe2 ¼ v2 b

D2
; Pea ¼ vaba

Da
; e1 ¼ havab

h1D1
; e2 ¼ havab

h2D2
; j1 ¼ ha Dab

h1 D1 ba

j2 ¼ haDab
h2 D2ba

; d1 ¼ Ra
R1

D1
Da
ðba

b Þ
2
; d2 ¼ R2

R1

D1
D2
C2Dð0; pÞ ¼ 0 ð22Þ

C2Dð1; pÞ ¼ 0 ð23Þ

where p is the Laplace variable.
The detailed development of the solutions in the Laplace do-

main describing the concentration distributions in the upper aqui-
fer, aquitard, and lower aquifer is given in Appendix A. It is
important to recognize that the governing equation for the lower
aquifer becomes a linear fourth-order ordinary differential equa-
tion (ODE) when coupling the Laplace-domain solution with the
upper one, C

�
1DðxD; pÞ.

The fourth-order ODE can be transformed to a quartic algebraic
characteristic equation (Kreyszig, 1979). This quartic equation can
be reduced to a cubic equation by applying Ferrari’s solution and
reduced further to two quadratic equations using Cardan’s solution
(Korn and Korn, 2000). The roots of the quartic equation can be
determined from those two quadratic equations. Finally, the La-
place-domain solution for the lower aquifer can be found from
the general solution of the fourth-order ODE with associated
boundary conditions.

The final result of the dimensionless concentration in Laplace
domain in the upper aquifer is given by

C1DðxD;pÞ ¼
1þK1

p
expðs2xDÞ �

K1 cosðb2xDÞ �K2 sinðb2xDÞ
p

� expðm2xDÞ ð24Þ

with

K1 ¼ h1h2

½b2
2þðm2�s1Þ2 �½b2

2þðm2�s2Þ2 �
2m2�Pe1
2m2�Pe2

K2 ¼ h1h2

½b2
2þðm2�s1Þ2 �½b2

2þðm2�s2Þ2 �
m2ðm2�Pe1Þ�b2

2�g1
b2ð2m2�Pe2Þ

where

h1 ¼ j1b0 expðm0Þ= sin hðb0Þ; h2 ¼ j2b0 expð�m0Þ= sin hðb0Þ;
g1 ¼ 0:5e1 � j1b0= tan hðb0Þ þ p;

g2 ¼ 0:5e2 þ j2b0= tan hðb0Þ � d2p; s1 ¼ m1 þ b1;

s2 ¼ m1 � b1; m0 ¼ Pea=2;

m2 ¼ ðPe1 þ Pe2 � 2
ffiffiffiffi
l
p Þ=4; b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ d1p
q

;

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ g1

q
; and

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 � 2q1l�1=2

q
with

l ¼ �q2=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2=2Þ2 þ ðo2=3Þ3

q� �1
3

þ �q2=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2=2Þ2 þ ðo2=3Þ3

q� �1
3

� 2o1=3;

o2 ¼ �4r1 � o2
1=3; q2 ¼ 8r1o1=3� 2 � ðo1=3Þ3 � q2

1;

o1 ¼ Pe1Pe2=4� 3ðPe2
1 þ Pe2

2Þ=8� g1 þ g2;

q1 ¼ ðPe2 � Pe1Þðg1 þ g2Þ=2þ Pe1Pe2ðPe1 þ Pe2Þ=8� ðPe3
1 þ Pe3

2Þ=8;

r1 ¼ ðPe2g1 � Pe1g2ÞðPe1 þ Pe2Þ=4� ðg1g2 þ h1h2Þ � ðg1 � g2

� Pe1Pe2ÞðPe1 þ Pe2Þ2=16� 3ðPe1 þ Pe2Þ4=256:

The Laplace-domain solution of the dimensionless concentra-
tion in the aquitard has the form
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CaDðxD; zD;pÞ ¼
expðm0zDÞ
sin hðb0Þ

ðsin hðb0ð1þ zDÞÞC1D � expðm0Þ

� sin hðb0zDÞC2DÞ ð26Þ

Finally, the Laplace-domain solution of the dimensionless con-
centration in the lower aquifer is

C2DðxD;pÞ ¼
h2

b2ð2m2 � Pe2Þ � p
expðm2xDÞ sinðb2xDÞ ð27Þ
2.2.2. Steady-state solution
The steady-state solution for the dimensionless concentration

distributions in the aquifers and aquitard can be obtained by
applying the Tauberian theorem, also called the Final Value theo-
rem, to Eqs. (24), (26), and (27). The development of the steady-
state solution for the dimensionless concentration distributions
in the upper aquifer, aquitard, and lower aquifer is given in Appen-
dix B. The result for the upper aquifer is

C1D ¼ ð1þX1Þ expðs4xDÞ � ½X1 cosðb3xDÞ �X2 sinðb3xDÞ�
� expðm3xDÞ ð28Þ

with

X1 ¼ h3h4

ðb2
3þðm3�s3Þ2Þðb2

3þðm3�s4Þ2Þ
� 2m3�Pe1

2m3�Pe2

X2 ¼ h3h4

ðb2
3þðm3�s3Þ2Þðb2

3þðm3�s4Þ2Þ
� m3ðm3�Pe1Þ�b2

3�g3
b3ð2m3�Pe2Þ

where

h3 ¼ �j1m0 expð�m0Þ= sin hðm0Þ; h4

¼ �j2m0 expð�3m0Þ= sin hðm0Þ; g3 ¼ e1 � h3;

g4 ¼ e2 þ h4; s3 ¼ Pe1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPe1=2Þ2 þ g3

q
; s4

¼ Pe1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPe1=2Þ2 þ g3

q
;

m3 ¼ ðPe1 þ Pe2 � 2
ffiffiffiffiffi
l0

p
Þ=4; b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 þ 2o01 � 2q01ðl0Þ

�1=2
q �

2;

l0 ¼ �q02=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq02=2Þ2 þ ðo02=3Þ3

q� �1
3

þ �q02=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq02=2Þ2 þ ðo02=3Þ3

q� �1
3

� 2o01=3;

o02 ¼ �4r01 � o01
2
=3; q02 ¼ 8r01o01=3� 2 � ðo01=3Þ3 � q021 ; o01

¼ Pe1Pe2=4� 3ðPe2
1 þ Pe2

2Þ=8� g01 þ g02;

q01 ¼ ðPe2 � Pe1Þðg01 þ g02Þ=2þ Pe1Pe2ðPe1 þ Pe2Þ=8� ðPe3
1 þ Pe3

2Þ=8;

r01 ¼ ðPe2g01 � Pe1g02ÞðPe1 þ Pe2Þ=4� ðg01g02 þ h01h02Þ � ðg01 � g02

� Pe1Pe2ÞðPe1 þ Pe2Þ2=16� 3ðPe1 þ Pe2Þ4=256:

Likewise, Eqs. (26) and (27) admit the following steady-state
analytical expressions for the dimensionless concentration distri-
butions in the aquitard and lower aquifer, respectively, as

CaD ¼
ðexpðPeazDÞ � expð�PeaÞÞC1D þ ð1� expðPeazDÞÞC2D

1� expð�PeaÞ
ð30Þ

and

C2D ¼
h4

b3ð2m3 � Pe2Þ
expðm3 � xDÞ sinðb3 � xDÞ ð31Þ
When neglecting the advective term in the aquitard and assuming
that the aquitard thickness extends to infinity (i.e., ba !1), the
upper aquifer can be considered as a single fracture in a rock matrix.
As such, the variables h1, h2, K1, and K2 are all equal to zero. Eqs.
(24) and (26), respectively, can then be reduced to

C1DðxD;pÞ ¼
1
p

exp m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ
e1

2
þ p

r !
xD

" #
ð32Þ

CaDðz; pÞ ¼ C1D exp � z
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RaD1

R1Da
p

s !
ð33Þ

Note that Eqs. (32) and (33) are equivalent to the corresponding
terms in the solutions of Tang et al. (1981), developed for contam-
inant transport along a discrete fracture in a porous rock matrix,
which is indeed a special case of the present solution.

2.3. Finite difference model

A finite difference model is developed to simulate two-dimen-
sional contaminant transport in an aquifer–aquitard–aquifer sys-
tem and its simulation result is then used to compare with the
present solution. The governing equation for the model can be ex-
pressed as

@C
@t
¼ Dx

R
@2C
@x2 þ

Dz

R
@2C
@z2 �

vx

R
@C
@x
� vz

R
@C
@z

ð34Þ

The explicit finite difference approximation for Eq. (34) may be
written as

Cnþ1
i;j � Cn

i;j

Dt
¼ Dx

R
Cn

iþ1;j � 2Cn
i;j þ Cn

i�1;j

ðDxÞ2
þ Dz

R
Cn

i;jþ1 � 2Cn
i;j þ Cn

i;j�1

ðDzÞ2
� vxDz

R

�ðCn
i;j � Cn

i�1;jÞ �
vzDx

R
ðCn

i;j � Cn
i;j�1Þ

where Dx and Dz are the grid sizes in the x and z directions, respec-
tively, Dt is the time increment, Cn

i;j is the contaminant concentra-
tion at the nodal point (i, j), and time level n. The ordered integer
pair (i, j) is a distance (i � 1)Dx in the positive x direction and
(j � 1)Dz in the negative z direction. In addition, the superscript
n + 1 denotes the time level one step later than the time level n.

3. Results and discussions

Eqs. (24), (26), and (27) comprising hyperbolic functions (e.g.,
sinh(�) and tanh(�)) are rather complicated; thus their solutions
in the time domain may not be tractable. The inversion routine
DINLAP of IMSL (2003), developed based on a numerical algorithm
originally proposed by Crump (Crump, 1976; Yang and Yeh, 2005)
and later modified by de Hoog et al. (1982), is used to determine
the time-domain solutions of those equations. This algorithm
approximates Laplace inversion of the inverted function in a Fou-
rier series and accelerates the computation using Shanks method
(Yeh and Yang, 2006). Semi-analytical expressions for the concen-
tration distributions in the Laplace domain for the lower aquifer,
aquitard, and upper aquifer are numerically inverted using this
routine to yield concentration distributions in the real-time do-
main with accuracy to the sixth decimal.

3.1. Concentration distributions in the aquifer–aquitard system

We consider that the contaminants are well mixed with water
and enters the upper aquifer from the inlet boundary continuously.
The default parameters for the following study are listed in Table 2.
The molecular diffusion coefficient chosen for both the aquifers



Fig. 2. Spatial distributions of dimensionless concentration in the (a) upper aquifer
and (b) lower aquifer at various elapsed times for the cases with different aquitard
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and the aquitard (D*) is set to 1.57 � 10�9 m2/s. The select average
pore velocities (vx) for the upper and lower aquifer are
1.16 � 10�6 m/s and 1.16 � 10�7 m/s, respectively. The values of
the effective diffusion coefficient and average pore velocity of the
upper aquifer are adopted from Zhan et al. (2009b). The appropri-
ate average pore velocity of the aquitard is 1.16 � 10�9 m/s. Such a
value is reasonable if compared with field scale data given by Cher-
ry et al. (2006) in which they compiled hydrogeologic data from
field studies in different unlithified aquitards. Data from laboratory
and field experiments in unfractured sandy-silty aquitards in Swe-
den and Norway indicate that the vertical hydraulic conductivity
ranges from 5 � 10�9 to 5 � 10�5 m/s and the porosity is from
0.18 to 0.48. The field-scale dispersivity aL determined from tracer
studies and pump tests (Bedient et al., 1994; Chen et al.,1996) is set
to 2 m. Therefore, the corresponding dispersion coefficients for the
upper and lower aquifer are 2.32 � 10�6 m2/s and 2.32 � 10�7 m2/
s, respectively, if ignoring the molecular diffusion. Two different
leakage velocities in the aquitard are considered: va = 0 and
1.16 � 10�9 m/s, corresponding to Peclet numbers Pea of 0 and
0.5, respectively. In addition, a default porosity value is set to
0.36 for all units.

Fig. 2 shows the predicted spatial distributions of the dimen-
sionless concentration in the upper and lower aquifers for the cases
Pea = 0 and 0.5 at tD = 1, 5, 10 and1 (a steady state). Fig. 2a shows
that the penetration distance of contaminant mass in the upper
aquifer increases reasonably with elapsed time in the case of
Pea = 0. This figure indicates that the difference in dimensionless
concentration obtained from those two cases becomes large when
the elapsed time is large due to ignoring the leakage velocity of the
aquitard. Fig. 2b demonstrates that the advective transport process
in the aquitard drives the contaminant mass through the aquitard.
The dimensionless concentration in the lower aquifer increases
with the elapsed time. The dimensionless concentration for the
case of Pea = 0.5 is about 17% higher than that of Pea = 0 at
tD = 10, indicating moderate errors in the prediction of contami-
nant concentration are produced by neglecting the advective trans-
port in the aquitard at large time.

The dimensionless concentrations of contaminant as the func-
tion of distance in the aquitard are plotted at various elapsed times
shown in Fig. 3. Apparently, the dimensionless concentration at
location xD = 5 reaches its steady-state condition approximately
at tD = 5 regardless of the presence of aquitard advection or not.
It also shows that the dimensionless concentration is lower in
the case of Pea = 0. These results reveal that the leakage velocity
of the aquitard has some impact on the dimensionless concentra-
tion distribution for contaminant transport in an aquifer–aqui-
tard–aquifer system.
Table 2
The parameter values for the aquifers and aquitard.

Parameter Symbol Default value

Lower and upper aquifer thickness b1=b2=2b 4.0 m
Aquitard thickness ba 0.5 m
Longitudinal dispersivity of the aquifer aL 2 m
Average pore velocity in the aquifer v1,v2 1.16E�6,

1.16E�7 m/s
Average pore velocity in the aquitard va 1.16E�9 m/s
Longitudinal dispersivity of the aquifer aL 2.0 m
Longitudinal dispersion coefficient of the

aquifer
D1,D2 2.32E�6, 2.32E�7

m2/s
Longitudinal dispersion coefficient of the

aquitard
Da 1.16E�9 m2/sec

Effective diffusion coefficient D* 1.57E�9 m2/s
Tortuosity of the aquitard s 0.74
Porosity h1 = h2 = ha 0.36
Retardation factor R1, R2 1.0

Ra 1.0, 2.0

Peclet numbers.
Here we examine the contaminant concentration level in the
lower aquifer for various aquitard Peclet numbers and elapsed
times as shown in Fig. 4. The dimensionless contaminant concen-
tration in the lower aquifer apparently increases with the Peclet
number; however, the differences in concentrations for different
Peclet numbers are insignificant at early time. Moreover, the con-
taminant concentration in the lower aquifer will be largely under-
estimated if neglecting the presence of leakage velocity in the
aquitard, i.e., assuming a zero Peclet number.

3.2. Comparisons with finite difference simulation result

Consider a two-dimensional aquifer–aquitard–aquifer system
with a thickness of 4 m for the upper and lower aquifers and
0.5 m for the aquitard. The horizontal length of the aquifer system



Fig. 3. Dimensionless concentration distributions in the aquitard along the vertical
axis at various elapsed times and xD = 5 for the cases with different aquitard Peclet
numbers.

Fig. 4. Comparisons of dimensionless concentration distributions in the lower
aquifer with different aquitard Peclet numbers at various elapsed times.

Fig. 5. Spatial distributions of dimensionless concentration predicted by the
present solution and depth-averaged finite difference solution in the (a) lower
aquifer and (b) upper aquifer at dimensionless elapsed time of tD = 5 .
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is 120 m. The grid size for Dx and Dz are chosen as 1 m and 0.1 m,
respectively, and Dt is set as 0.05 day in the finite difference sim-
ulations. In other words, this aquifer–aquitard–aquifer system
with a domain of 120 m by 8.5 m is discretized into a 120 by 85 fi-
nite difference grids. The values of the model parameters assigned
to the block-centered nodes given in Table 2 are identical to those
used in the present solution. Additionally, various values of the
transverse dispersivity aT (m) with the aquitard retardation factor
Ra of 1 and 2 are used in the numerical simulations and compared
with the concentration distributions predicted from the present
solution.
In order to compare the spatial concentration distributions pre-
dicted by the present solution with finite difference solution, the
depth-averaged concentrations are taken over the entire vertical
direction for both upper and lower aquifers. Fig. 5a and b show
the spatial concentration distributions as the function of distance
in the lower and upper aquifers, respectively, along the x-direction
at elapsed time tD = 5 (i.e., t = 4000 days). Fig. 5a reveals that the
present solution is slightly different from the finite difference solu-
tion when considering the transverse dispersivity of 0.15 m in the
upper aquifer with the aquitard retardation factor of unity.
Obviously, a larger retardation factor provides better protection
to its adjacent aquifer from contamination than a smaller one.
The results also indicate that the contaminant concentration in
the aquitard is largely retarded by sorption. The depth-averaged
concentrations in the upper aquifer, as shown in Fig. 5b, are how-
ever all very close and slightly differ from the present solution in
the cases of the transverse dispersivity varying from 0.13 m to
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0.17 m. To verify the accuracy, relative differences of the present
solution with the simulated and depth- averaged results from the
two-dimensional finite difference solution are subsequently calcu-
lated. The largest relative difference between the present solution
and finite difference model for the lower aquifer are 4% at xD = 20
in the case of aT = 0.15 m and Ra = 1. For the case of Ra = 2, however,
the relative difference increases to 26%, which shows the estimated
concentration by numerical simulation is lower than that by the
semi-analytical solution. This discrepancy may come from two
facts. One is that both the vertical advective and dispersive fluxes
in the lower and upper aquifers are not considered in the present
solution. The other may be caused by the numerical errors intro-
duced at the aquifer–aquitard interfaces due to the drastic change
of aquifer parameters and concentration gradients near the aqui-
fer–aquitard interfaces (Zhan et al., 2009a).
Fig. 6. Temporal distributions of dimensionless concentration in the (a) upper
aquifer and (b) lower aquifer at different locations for the cases with different
aquitard Peclet numbers.
3.3. Breakthrough curves in the aquifer

Fig. 6 provides further analysis of the effect of the aquitard’s
Peclet number on the contaminant migration in the two-aquifer
system. Fig. 6a presents the variation in the temporal distribution
curves of dimensionless concentration in the upper aquifer at dif-
ferent observation locations (i.e., xD = 5, 10, and 20). It is seen that
the dimensionless concentration in the upper aquifer increases
with elapsed time and the contaminant concentration leaked
from the aquitard is deeply affected by the leakage velocity.
Fig. 6b shows the temporal distributions of dimensionless con-
centration in the lower aquifer observed at different locations.
When the flow system reaches its steady-state condition, the
dimensionless concentration of contaminant in the lower aquifer
is 0.022 while that in the upper one is about 0.781 at xD = 10
when Pea = 0.5. In comparison, the dimensionless concentration
is 0.018 in the lower aquifer and 0.819 in the upper aquifer when
ignoring the presence of leakage velocity at the aquitard (Pea = 0).
Those results indicate that the aquitard advection has some influ-
ence on the advance of the contaminant front to the lower
aquifer.
4. Conclusions

This study deals with the issue of one-dimensional contami-
nant transport in an aquifer–aquitard–aquifer system. A mathe-
matical model has been developed under the consideration of
leakage velocity in the aquitard. The Laplace-domain solution of
the model is derived by the technique of Laplace transforms
and its time-domain solution is obtained from de Hoog et al.’s
method. This solution is used to analyze the effects of leakage
velocity in the aquitard as well as advective–dispersive transport
in the aquifers on the contaminant concentration distributions in
aquifer–aquitard–aquifer systems. In addition, an explicit finite
difference model is also developed to simulate two-dimensional
contaminant transport in the two-aquifer system. The relative dif-
ferences in concentration distributions predicted by the present
solution and the depth-averaged concentrations of the finite dif-
ference solutions are small. The deviations between those two
solutions are mainly due to the neglect of the vertical advective
and dispersive fluxes in the lower and upper aquifers in the pres-
ent solution.

The influence of diffusion and advection on the migration of
contaminant in the aquitard and adjacent aquifers is also investi-
gated. When the diffusion process in the aquitard is significant,
the penetration distance of the contaminant in the upper aquifer
is considerably increased with elapsed time. Meanwhile, the con-
tamination through the lower aquifer from the aquitard is moder-
ately reduced compared with that when the contaminant
transport in the aquitard takes place by both diffusion and
advection.

Advection in the aquitard is very likely to occur in most strati-
fied porous media once there is a head gradient existed between
the aquifers. It is found that some prediction errors may be intro-
duced in such a two-aquifer system if ignoring the advective flux in
the aquitard.
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Appendix A. Development of Laplace-domain solution of the
present model

The solution of the contaminant transport equation is often ob-
tained by the techniques of Laplace transform. Taking the Laplace
transform of the concentration Ci(x, t) leads to

L½Ciðx; tÞ� ¼
Z 1

0
Ciðx; tÞe�stdt ¼ Ciðx;pÞ ðA1Þ

Eqs. (1)–(14) can be expressed in dimensionless forms using
dimensionless parameters given in Table 1. After taking the Laplace
transform, the dimensionless transport Eq. (6) becomes

d2CaD

dz2
D

� Pea
dCaD

dzD
¼ d1pCaD ðA2Þ

The general solution of Eq. (A2) can be written as

CaDðxD; zD;pÞ ¼ expðm0zDÞ � ½A1ðxD;pÞ expðb0zDÞ þ A2ðxD;pÞ
� expð�b0zDÞ� ðA3Þ

where m0 ¼ Pea=2; b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ d1p
q

; and coefficients A1 and A2 which
are independent of zD should be determined by the boundary
conditions.

The Laplace transform of Eqs. (8) and (9) in dimensionless forms
are, respectively, given by

C
�

aDðxD;0;pÞ ¼ C1DðxD;pÞ ðA4Þ

and

CaDðxD;�1; pÞ ¼ C2DðxD;pÞ ðA5Þ

The coefficients A1 and A2 are determined from substituting Eqs.
(A4) and (A5) into Eq. (A3), respectively, as

A1ðxD; pÞ ¼
C2D � C1D expð�m0Þ expðb0Þ

expð�m0Þðexpð�b0Þ � expðb0ÞÞ
ðA6Þ

and

A2ðxD; pÞ ¼
C1D expð�m0Þ expð�b0Þ � C2D

expð�m0Þðexpð�b0Þ � expðb0ÞÞ
ðA7Þ

The substitution of Eqs. (A6) and (A7) into Eq. (A3) admits the
dimensionless result for concentration distribution in the aquitard
as

CaDðxD; zD;pÞ ¼
expðm0zDÞ
sin hðb0Þ

fsin hðb0ð1þ zDÞÞC1D � expðm0Þ

� sin hðb0zDÞC2Dg ðA8Þ

In addition, it follows from taking Laplace transform of
Eq. (1) with the flux term defined by Eq. (2) in dimensionless
form that

d2C1D

dx2
D

� Pe1
dC1D

dxD
� e1C1D þ j1

dCaD

dzD

�����
zD¼0

� pC1D ¼ 0 ðA9Þ

subject to the boundary conditions

C1Dð0;pÞ ¼
1
p

ðA10Þ

C1Dð1;pÞ ¼ 0 ðA11Þ

The concentration gradient at the interface between the upper
aquifer and aquitard, i.e., at zD = 0, can be obtained as

dCaD

dzD

�����
zD¼0

¼ m0 þ
b0

tan hðb0Þ

� �
C1D �

b0 expðm0Þ
sin hðb0Þ

� �
C2D ðA12Þ
Substituting Eq. (A12) into Eq. (A9) results in the following
equation for C1DðxD; pÞ:

d2C1D

dx2
D

� Pe1
dC1D

dxD
� g1C1D ¼ h1C2D ðA13Þ

where g1 ¼ e1=2� j1b0= tan hðb0Þ þ p and h1 ¼ j1b0 expðm0Þ=
sin hðb0Þ. Since Eq. (A13) is a linear second-order ordinary differen-
tial equation (ODE), it can be solved by applying the superposition
principle. The Laplace-domain solution of Eq. (A13) can therefore be
expressed as the sum of a homogeneous solution Ch

1D and a non-
homogeneous solution Cp

1D:

C1Dðx1D; pÞ ¼ Ch
1DðxD;pÞ þ Cp

1DðxD;pÞ ðA14Þ

The general solution of homogeneous equation Eq. (A13) can be
found as

Ch
1DðxD;pÞ ¼ expðm1xDÞfB1 expðb1xDÞ þ B2 expð�b1xDÞg ðA15Þ

where m1 ¼ Pe1=2; b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ g1

q
; B1 and B2 are undetermined

constants.
The non-homogeneous solution of Eq. (A13) can be obtained as

Cp
1DðxD;pÞ ¼

h1

2b1

Z xD

0
C2Dðn;pÞfexpððxD � nÞðm1 � b1ÞÞ

� expððxD � nÞðm1 þ b1ÞÞgdn ðA16Þ

Substituting Eqs. (A15) and (A16) into Eq. (A14), the general
solution for the upper aquifer in the Laplace-domain has the form

C1DðxD;pÞ ¼ B1 expðs1xDÞ þ B2 expðs2xDÞ þ
h1

s2 � s1

�
Z xD

0
C2Dðn; pÞfexpððxD � nÞs2Þ � expððxD � nÞs1Þgdn ðA17Þ

where s1 ¼ m1 þ b1 and s2 ¼ m1 � b1.
Furthermore, for the concentration distribution in the lower

aquifer, after taking the Laplace transform to Eq. (10) with the flux
term defined by Eq. (11) in dimensionless form it follows that

d2C2D

dx2
D

� Pe2
dC2D

dxD
þ e2C2D � j2

dCaD

dzD

�����
zD¼�1

� d2pC2D ¼ 0 ðA18Þ

subject to the boundary conditions

C2Dð0;pÞ ¼ 0 ðA19Þ

C2Dð1; pÞ ¼ 0 ðA20Þ

The concentration gradient at the interface between lower aqui-
fer and aquitard, i.e., at zD ¼ �1, can be expressed as

dCaD

dzD

�����
zD¼�1

¼ b0 expð�m0Þ
sin hðb0Þ

C1D þ m0 �
b0

tan hðb0Þ

� �
C2D ðA21Þ

Substituting Eq. (A21) into Eq. (A18) results in the following
equation for C2DðxD; pÞ:

d2C2D

dx2
D

� Pe2
dC2D

dxD
þ g2C2D ¼ h2C1D ðA22Þ

where g2 ¼ e2=2þ j2b0= tan hðb0Þ � d2p and h2 ¼ j2b0 expð�m0Þ=
sin hðb0Þ.

Substituting Eq. (A17) into Eq. (A22), the governing equation for
the lower aquifer can be rearranged as

d2C2D

dx2
D
� Pe2

dC2D
dxD
þ g2C2D � h1h2

s2�s1

R xD
0 C2Dðn; pÞfexpððxD � nÞs2Þ

� expððxD � nÞs1Þgdn ¼ h2fB1 expðs1xDÞ þ B2 expðs2xDÞg ðA23Þ

Taking the derivative of Eq. (A23) with respect to xD leads to
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d3C2D

dx3
D
� Pe2

d2C2D

dx2
D
þ g2

dC2D
dxD
� h1h2

s2�s1

s2 expðs2xDÞ
R xD

0 C2ðn; pÞ expð�s2nÞdn

�s1 expðs1xDÞ
R xD

0 C2ðn; pÞ expð�s1nÞdn

 !

¼ h2fB1s1 expðs1xDÞ þ B2s2 expðs2xDÞg

A third-order ODE for the upper aquifer is obtained by subtract-
ing Eq. (A24) from Eq. (A23) and multiplying it by s1 as

d3C2D

dx3
D

� ðPe2 þ s1Þ
d2C2D

dx2
D

þ ðg2 þ Pe2s1Þ
dC2D

dxD
� s1g2C2D

� h1h2 expðs2xDÞ
Z xD

0
C2ðn; pÞ expð�s2nÞdn

¼ h2B2ðs2 � s1Þ expðs2xDÞ ðA25Þ

Taking the derivative of Eq. (A25) with respect to xD results in

d4C2D

dx4
D

� ðPe2 þ s1Þ
d3C2D

dx3
D

þ ðg2 þ Pe2s1Þ
d2C2D

dx2
D

� s1g2
dC2D

dxD

� h1h2

s2 expðs2xDÞ
R xD

0 C2ðn; pÞ expð�s2nÞdn

þ expðs2xDÞC2ðxD;pÞ expð�s2xDÞ

0
@

1
A

¼ h2B2ðs2 � s1Þs2 expðs2xDÞ ðA26Þ

Similarly, subtracting Eq. (A26) from Eq. (A25) and multiplying
it by s2 yields a fourth-order ODE for the upper aquifer expressed
as

d4C2D

dx4
D

� ðPe1 þ Pe2Þ
d3C2D

dx3
D

� ðg1 � g2 � Pe1Pe2Þ
d2C2D

dx2
D

� ðPe1g2 � Pe2g1Þ
dC2D

dxD
� ðg1g2 þ h1h2ÞC2D ¼ 0 ðA27Þ

The characteristic equation of Eq. (A27) can then be expressed
as (Kreyszig, 1979, p. 104)

k4 þ dk3 þ ek2 þ fkþ l ¼ 0 ðA28Þ

where k is an undetermined constant; d = �(Pe1 + Pe2);
e ¼ g2 � g1 þ Pe1Pe2; f ¼ Pe2g1 � Pe1g2; l ¼ �g1g2 � h1h2. Assuming
y ¼ kþ d=4 and substituting it into Eq. (A28) results in

y4 þ o1y2 ¼ �q1y� r1 ðA29Þ

where o1 ¼ e� 3d2
=8; q1 ¼ f � ed=2þ ðd=2Þ3; r1 ¼ l� fd=4þ e

ðd=4Þ2 � 3ðd=4Þ4.
Eq. (A29) can be reduced to a cubic equation by applying Fer-

rari’s solution (Korn and Korn, 2000, p. 24). Adding ðd=2Þ2 to Eq.
(A29) in both sides yields

y2 þ d
2

� �2

¼ ðd� o1Þy2 � q1yþ d
2

� �2

� r1 ðA30Þ

Note that the left-hand side of Eq. (A30) is a perfect square. If
the right-hand side of Eq. (A30) is also a perfect square, then its
discriminant will be zero. That is q2

1 � ðd� o1Þðd2 � 4r1Þ ¼ 0 or

d3 � o1d
2 � 4r1dþ ð4o1r1 � q2

1Þ ¼ 0 ðA31Þ

Then setting U ¼ d� o1=3 and substituting it into Eq. (A31)
leads to

U3 þ o2U þ q2 ¼ 0 ðA32Þ

where o2 ¼ �ð4r1 þ o2
1=3Þ and q2 ¼ 8r1o1=3� 2ðo1=3Þ3 � q2

1.
Eq. (A32) can further be reduced to two quardratic equations by

Cardan’s solution (Korn and Korn, 2000, p. 23) as

U ¼ � q2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

� �2
þ o2

3

� �3
r !1=3

þ � q2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

� �2
þ o2

3

� �3
r !1=3
or

d ¼ � q2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2

2
Þ

2
þ ðo2

3
Þ

3
r !1=3

þ � q2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

� �2
þ ðo2

3
Þ

3
r !1=3

þ o1

3
ðA33Þ

Accordingly, Eq. (A30) can be rewritten as.

y2 þ d
2

� �2

¼ ðd� o1Þ y� q1

2ðd� o1Þ

� �2

ðA34Þ

which is indeed a quadratic equation and implies that it can be
solved by the method of Completing the Square. This transforms
the problem of finding the four roots of the quartic equation to that
of determining the roots of following two quadratic equations.

y2 þ d
2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d� o1

p
y� q1

2ðd� o1Þ

� �
ðA35Þ

The general solution of the lower aquifer with four undeter-
mined coefficients can then be obtained as

C2DðxD; pÞ ¼ exp
ffiffiffiffilp

2
� d

4

� �
xD

� �

E1 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 þ 2q1l�1=2

p
2

xD þ E2 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 þ 2q1l�1=2

p
2

xD

 !

þ exp �
ffiffiffiffilp

2
þ d

4

� �
xD

� �
E3 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 � 2q1l�1=2

p
2

xD

 

þE4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 � 2q1l�1=2

p
2

xD

!
ðA36Þ

where

l ¼ � q2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

� �2
þ o2

3

� �3
r !1=3

þ � q2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

� �2
þ o2

3

� �3
r !1=3

� 2o1

3
ðA37Þ

and E1, E2, E4, and E4 are undetermined coefficients.
From the boundary conditions of Eqs. (A19) and (A20), E1, E2,

and E3 are then zero. The general solution for the lower aquifer
can thus be reduced to

C2DðxD;pÞ ¼ E4 expðm2xDÞ sinðb2xDÞ ðA38Þ

where m2 ¼ ðPe1 þ Pe2 � 2
ffiffiffiffilp Þ=4 and b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2o1 � 2q1l�1=2

p
.

Substituting Eq. (A38) into Eq. (A22) and incorporated with the
boundary conditions of Eqs. (A10) and (A19), E4 can be determined as

E4 ¼
h2

b2ð2m2 � Pe2Þp
ðA39Þ

Finally, the solution for the lower aquifer in the Laplace domain
can be found as

C2DðxD;pÞ ¼
h2

b2ð2m2 � Pe2Þp
expðm2xDÞ sinðb2xDÞ ðA40Þ

Similarly, substituting Eq. (A40) into Eq. (A17) subject to the
boundary conditions, Eqs. (A10) and (A11), the general solution
for the upper aquifer in the Laplace-domain can be obtained as

C1DðxD;pÞ ¼
ð1þK1Þ

p
expðs2xDÞ

�K1 cosðb2xDÞ �K2 sinðb2xDÞ
p

expðm2xDÞ ðA41Þ
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with

K1 ¼ h1h2

ðb2
2þðm2�s1Þ2Þðb2

2þðm2�s2Þ2Þ
� 2m2�Pe1

2m2�Pe2

K2 ¼ h1h2

ðb2
2þðm2�s1Þ2Þðb2

2þðm2�s2Þ2Þ
m2ðm2�Pe1Þ�b2

2�g1
b2ð2m2�Pe2Þ
Appendix B. Development of steady-state solution

The steady-state solution can be obtained from the Laplace-do-
main solution by applying the Tauberian theorem as

Ciðx;1Þ ¼ Lim
p!0

pCiðx;pÞ ðB1Þ

Accordingly, substituting Eq. (24) into Eq. (B1) results in

C1Dðx;1Þ ¼ Lim
p!0
ðð1þK1ðpÞÞ expðs2xDÞ � ðK1ðpÞ cosðb2xDÞ

�K2ðpÞ sinðb2xDÞÞ expðm2xDÞÞ ðB2Þ

In the limit of Eq. (25) as p! 0, one has

X1 ¼ h3h4

ðb2
3þðm3�s3Þ2Þðb2

3þðm3�s4Þ2Þ
� 2m3�Pe1

2m3�Pe2

X2 ¼ h3h4

ðb2
3þðm3�s3Þ2Þðb2

3þðm3�s4Þ2Þ
� m3ðm3�Pe1Þ�b2

3�g3
b3ð2m3�Pe2Þ

The steady-state solution for the upper aquifer can be deter-
mined by substituting Eq. (B3) into Eq. (B2) as

C1D ¼ ð1þX1Þ expðs4xDÞ � ½X1 cosðb3xDÞ �X2 sinðb3xDÞ�
� expðm3xDÞ ðB4Þ

Similarly, substituting Eqs. (26) and (27) into Eq. (B1) leads the
steady-state solutions for the aquitard and lower aquifer to the
forms of Eqs. (30) and (31), respectively.
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