
Improving Dynamic Binary Optimization Through
Early-Exit Guided Code Region Formation

Chun-Chen Hsu Pangfeng Liu
National Taiwan University

{d95006,pangfeng}@csie.ntu.edu.tw

Jan-Jan Wu
Institute of Information Science,

Academia Sinica
wuj@iis.sinica.edu.tw

Pen-Chung Yew
University of Minnesota

yew@cs.umn.edu

Ding-Yong Hong
Institute of Information Science,

Academia Sinica
dyhong@iis.sinica.edu.tw

Wei-Chung Hsu
National Chiao Tung University

hsu@cs.nctu.edu.tw

Chien-Min Wang
Institute of Information Science,

Academia Sinica
cmwang@iis.sinica.edu.tw

Abstract
Most dynamic binary translators (DBT) and optimizers (DBO) tar-
get binary traces, i.e. frequently executed paths, as code regions to
be translated and optimized. Code region formation is the most im-
portant first step in all DBTs and DBOs. The quality of the dynam-
ically formed code regions determines the extent and the types of
optimization opportunities that can be exposed to DBTs and DBOs,
and thus, determines the ultimate quality of the final optimized
code. The Next-Executing-Tail (NET) trace formation method used
in HP Dynamo is an early example of such techniques. Many exist-
ing trace formation schemes are variants of NET. They work very
well for most binary traces, but they also suffer a major problem:
the formed traces may contain a large number of early exits that
could be branched out during the execution. If this happens fre-
quently, the program execution will spend more time in the slow
binary interpreter or in the unoptimized code regions than in the
optimized traces in code cache. The benefit of the trace optimiza-
tion is thus lost. Traces/regions with frequently taken early-exits are
called delinquent traces/regions. Our empirical study shows that at
least 8 of the 12 SPEC CPU2006 integer benchmarks have delin-
quent traces.

In this paper, we propose a light-weight region formation tech-
nique called Early-Exit Guided Region Formation (EEG) to im-
prove the quality of the formed traces/regions. It iteratively iden-
tifies and merges delinquent regions into larger code regions. We
have implemented our EEG algorithm in two LLVM-based multi-
threaded DBTs targeting ARM and IA32 instruction set architec-
ture (ISA), respectively. Using SPEC CPU2006 benchmark suite
with reference inputs, our results show that compared to an NET-
variant currently used in QEMU, a state-of-the-art retargetable
DBT, EEG can achieve a significant performance improvement of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $15.00

up to 72% (27% on average), and to 49% (23% on average) for
IA32 and ARM, respectively.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Modeling techniques; D.3.4 [Processors]: Incremental
Compilers; D.3.4 [Processors]: Optimization; D.3.4 [Proces-
sors]: Run-time environments

General Terms Design, Performance

Keywords Dynamic Binary Translation, Trace-Based JIT Compi-
lation, Virtual Machine, Hardware-based Performance Monitoring,
Hot Region Formation

1. Introduction
Dynamic binary translation and optimization are core technolo-
gies in system virtualization [22]. Most dynamic binary transla-
tors (DBTs) and optimizers (DBOs) target binary traces, i.e. fre-
quently executed paths, as code regions to be translated and opti-
mized. Code region formation is the most important first step in
all DBTs and DBOs. The quality of the dynamically formed code
regions determines the extent and the types of optimization oppor-
tunities that can be exposed to DBTs and DBOs, and thus, deter-
mines the ultimate quality of the final optimized code. As code re-
gions are formed by traces, we will use the terms trace and region
interchangeably for the rest of the paper.

Many DBT and DBO systems [6, 7] follow the well-known run-
time trace formation algorithm, called Next-Executing-Tail (NET),
developed in HP Dynamo [3].

Instead of profiling all execution traces at runtime to select the
hottest trace, NET forms a trace by selecting the basic blocks1 that
are most recently executed. The idea is that when a basic block
becomes hot, it is likely that the following basic blocks are also
hot.

As a hot trace is formed by cascading a sequence of hot basic
blocks, there will be a conditional branch at the end of each member
basic block, referred to as the early exit of the trace. DBTs needs
to generate compensation code at each of such early exits to handle
the case when the conditional branch is taken [22]. If early exits
are frequent, then not only will such extra compensation code need

1 A basic block is a sequence of instructions terminated by a control transfer
instruction

23

80522be 80522e580522ce

8052280

80522be

80522ce

80522e5

80522ce8052280

early exit

trace head

early exit target
13% 7%9%

81%

26% 20% 28% 52%

18% 98%

(b) Traces generated by NET

(a) CFG of the for−loop in 456.hmmer.

Figure 1. An example of delinquent traces of NET in 456.hmmer.

to be executed, but also program execution will spend more time
in the slow binary interpreter or in unoptimized code regions. The
benefit of trace optimization by the DBT is thus lost. Traces with
frequently taken early-exits are called delinquent traces.

Since NET does not use edge profiling [3] information to se-
lect next basic blocks, early exits may occur when program behav-
ior changes in different execution phases. For example, the func-
tion P7Viterbi in 456.hmmer (a SPEC 2006 CPU benchmark)
contributes most of its execution time. P7Viterbi updates global
variables according to different conditions in a performance critical
for-loop as shown in Figure 1(a).

NET splits the for-loop into four traces as shown in Figure 1(b).
Each large rectangle represents a trace. The execution time of each
trace, shown as the percentage of total execution time, is noted on
the left top corner of the trace. The probability of an early exit being
taken is also noted on each exit edge. Figure 1(b) shows a trace for a
loop starting at 0x80522be. The probability of taking an early exit
during the loop execution is 98%. Such a high probability for an
early exit will certainly diminish the performance benefit expected
from the loop trace. Our proposed region formation technique (see
Section 3) will merge those four traces into a large code region
shown in Figure 1(a), which can improve its performance by 68%.

To accomplish this, we propose a light-weight technique called
Early-Exit Guided (EEG) region formation to detect and merge
delinquent regions. There are two key issues in EEG: (1) which
regions should be merged, and (2) when to merge those regions.
A simple approach for the first issue is to instrument counters into
all traces. However, this approach is prohibitively expensive. In-
stead, we employ hardware-assisted dynamic profiling to select
hot regions and to avoid monitoring and merging unimportant re-
gions. To address the second issue, we monitor regions by instru-
menting counters to detect early exits. When the counter exceeds a
threshold, we merge this region with the region that begins at the
branch target of the early exit. We also employ a heuristic to decide
whether it is beneficial to merge the selected regions or not. We
will not merge regions if it will cause too much register pressure;
i.e. too many store/load operations to spill and fill values between
registers and the stack (see Section 3.4).

We summarize the main contributions of this work as follows:

1. Our experimental results show that there is a substantial amount
of delinquent traces, and that more than 100 early exits are
taken for every million executed instructions in 65% of SPEC
CPU2006 integer benchmarks. We proposed an Early-Exit-
Guided region formation algorithm (EEG) that uses hardware-

Chunk 2 Chunk 3 Chunk 4Chunk 1

Initialization

execution

dispatch
Translate

Block Translate

Traces/Regions

Optimization

Threads

EEG Region

Formation

NET* Trace

Formation

Feedback

Profile Data

miss

Execution Threads

hit

Shared Code Cache

Collect Runtime Data

From Code Cache
Profiling
Thread

Task Queue

Figure 2. Control flow of execution threads and optimization
threads

assisted dynamic profiling and instrumented software counters
to detect and merge delinquent traces/regions into larger re-
gions.

2. We implement the EEG scheme in two LLVM-based [1] multi-
threaded DBTs targeting ARM and IA32 instruction set archi-
tecture (ISAs), respectively. They off-load DBTs to other cores
and allow more aggressive and sophisticated optimizations to
be done on the larger code regions formed by EEG.

3. Using SPEC CPU2006 benchmark suite with reference inputs,
our results show that compared to NET, EEG can achieve a
significant performance improvement of up to 72% (27% on
average) for IA32, and to 49% (23% on average) for ARM.

The rest of the paper is organized as follows. Section 2 presents
our region-based multi-threaded DBT. Section 3 describes our early
exit detection technique and early-exit guided region formation
scheme. Section 4 presents our experimental results. Section 5
describes related work, and Section 6 gives some concluding re-
marks.

2. Region-Based Multi-threaded Dynamic Binary
Translator

In this section, we describe the design of our region-based multi-
threaded dynamic binary translator, called LnQ [14]. We have im-
plemented the EEG scheme in LnQ. LnQ uses QEMU [2] as the
front-end emulation engine, and uses LLVM [1] compilation infras-
tructure to handle its back-end code optimization and target code
generation. We implement our EEG scheme using this framework.
Figure 2 shows the major components and the control flow of our
region-based multi-threaded dynamic binary translator.

We use code segments to refer basic blocks and traces/regions,
and use code fragment to refer a translated code segment by DBT.
Therefore, there are basic block fragments and trace/region frag-
ments. Each code fragment has a prologue to load the guest ar-
chitecture states, such as the content of the guest registers, from
the memory to the host registers before execution. Also, each code
fragment has an epilogue to store modified machine states back to
memory before leaving the code fragment. Each code fragment has
its own register mapping decided by the LLVM register allocator.

LnQ uses execution threads and optimization threads. Execu-
tion threads are responsible for translating basic blocks and exe-
cuting translated code fragments. That is, if an execution thread
reaches a new guest basic block during execution, the execution
thread generates a basic block fragment using LLVM. Optimization
threads generate optimized traces and regions fragments also using
LLVM. Execution threads compile blocks with “O0” optimization

24

level to minimize compilation overhead. On the other hand, opti-
mization threads compile traces and regions with “O2” to gener-
ate optimized code. All execution threads share one software code
cache. As shown in Figure 2, we partition the code cache into sec-
tions, and each thread has its own section to store the translated
code fragments so that threads can generate code concurrently.

The DBT system separates trace compilation from program ex-
ecution. By running optimization threads concurrently on other
cores, the execution threads are not disrupted. Execution threads
may create region compilation tasks and send them to a Task Queue
(see Figure 2) when traces or regions are formed as described in
Section 3. We use a lock-free concurrent FIFO queue [19] to imple-
ment the task queue so that execution threads can insert trace/region
compilation tasks into the queue while the optimization threads
take those tasks from the queue without locks.

When an optimization thread generates a new trace or region,
it dispatch execution threads to the newly generated code fragment
by atomically patching jump instructions in the code cache. To do
this in IA32, we need to align the patched instructions to 4-byte
alignment, and use the self-branch technique mentioned in [24] to
patch jumps atomically.

3. Early Exit Index and Early-Exit Guided
Region Selection

In this section, we first describe the NET algorithm used in our
system. We then define an early exit index to quantify how often
early exits are taken in a trace. Finally we describe our early exit
guided region selection technique.

3.1 Trace Selection Algorithm
We adopt a modified NET algorithm called NET∗, which is similar
to [6], to builds traces. The difference is that NET∗ considers all
basic blocks as potential trace head candidates, while NET only
considers blocks which are targets of backward branches as trace
head candidates in that they may form potential loops.

The NET∗ algorithm has two advantages. First, the NET algo-
rithm [3] was designed for DBT systems in which a single DBT
thread is responsible for both execution and trace building. To re-
duce the overhead of building traces, NET needs to be very selec-
tive in potential traces. In contrast, NET∗ can take advantage of
modern multi-core platforms to offload the overhead of building
traces. Hence, it can afford to try all basic blocks as potential trace
heads.

Second, NET may not identify all loops by only considering
targets of backward branches. By considering all basic blocks as
possible trace heads, NET∗ can discover more hot traces than
NET can. As reported in Section 4.1.1, NET∗ achieves 12% and
5% performance improvement on average over NET for SPEC
CINT2006 and CFP2006 benchmarks, respectively.

Our NET∗ algorithm works as follows. We instrument software
counters to record the number of times each block is executed. A
block becomes a trace head when the number of times the block
has been executed exceeds a threshold value. NET∗ forms a trace
by appending blocks along the execution path until one of the
following terminal conditions is met: (1) A branch to the trace head
is taken, (2) The number of blocks exceeds a threshold, (3) The
next block is the head of another trace, or (4) A guest system call
instruction is encountered.

3.2 Early Exit Index
We first define an early exit of a trace. A trace can be a straight-line
execution path or a cycle. If a trace is a straight-line path, then all
exit edges along the path are early exits except the exit edge of the

last basic block in the trace. If a trace is a cycle, all exit edges are
early exit.

We define an Early-Exit Index (EEI) to measure the frequency
of early exits taken in traces. More specifically, EEI is the number
of early exits being taken for every million instructions executed in
traces. It can be formally defined as in the following equation.

EEI =

∑
i∈Γ ni × ρi
N

where Γ is the set of traces, ni is the number of times early exits
being taken in trace i, ρi is the percentage of instructions executed
in trace i, and N is the number of million instructions executed.

3.3 Early-Exit Guided Region Selection
In this section, we describe our proposed Early-Exit Guided (EEG)
region selection scheme. It detects and merges regions that have
frequently taken early exits. The key issues in EEG are (1) how to
efficiently detect delinquent regions; and (2) when to merge them
at runtime. We address them as follows.

The simplest approach to address the first issue is to instrument
counters in all traces and regions. However, this approach is in-
efficient and may merge too many regions that are not frequently
executed. Instead, we use a dynamic profiling approach with the
help of on-chip hardware performance monitor (HPM) to select hot
regions.

We create a profiling thread called profiler at the beginning
of execution to perform dynamic profiling. The profiler collects
program counters periodically for every million instructions retired.
When a threshold number of samples are collected, the profiler
accumulates the sample counts for each trace to determine the
degree of hotness of each trace. The hotness of a trace is measured
by the following equation.

HT = max{α, β}
Here, α is the percentage of instructions executed in the trace

during the last sampling period, and β is the percentage of instruc-
tions executed in the trace during the entire execution. Intuitively,
α represents the hotness of the trace during the last period, and β
represents the accumulated hotness during the entire execution. We
choose the maximum of α and β as its hotness measure.

When the hotness of a trace exceeds a threshold, we start mon-
itoring the trace by instrumenting counters to its early exits. Cur-
rently, we only monitor the early exits of conditional branches. If a
counter exceeds a pre-defined threshold, it means the control leaves
the region through the corresponding early exit very frequently.
Then, we merge the monitored region with the target region of
the early exit. We translate and optimize the merged region with
our LLVM-based DBT, and replace the monitored region with the
merged region.

We argue that the overhead of the instrumentation is negligible
because early exits should be rarely taken. A frequently taken
early exit would have triggered region formation when the counter
exceeded the threshold.

3.4 Spill Index of a Region
The benefits of EEG region formation come from eliminating the
overhead caused by frequently taken early exits, and potential op-
timization opportunities from a larger code region. Despite the fact
that we can mostly eliminate the overhead of frequently taken early
exits via region merging, we may not always have potential opti-
mization opportunities from the merged region. In particular, if the
quality of the translated code of a region is not good enough, it is
not beneficial to merge such a region.

We define an index, called Spill Index, to assess the quality of
the code generated by the LLVM compiler for a region formed

25

A

C

B D

EF

G

(a)

A

D

E

GG

C

B

F

G

A

DB

C E

G

F

G

(d)

A

B

F C E

G

(c)

(b)

D

Figure 3. Illustration of region selection.

by the EEG technique. A spill instruction is an instruction for
load/store operations between registers and stack. The Spill Index is
the percentage of spill instructions in the translated code fragment.
When the Spill Index of a code fragment exceeds a threshold, that
region should not be further merged because a high percentage of
spill instructions often forestalls good performance due to improper
register allocation of the LLVM compiler.

3.5 Region Versus Trace
By creating larger regions, we reduce the amount of specialization
that the compiler can do for traces. As we know, the benefit of traces
comes from the instruction scheduling within traces [15].

However, we need to limit the instruction scheduling optimiza-
tions when we compile traces in dynamic binary translation, be-
cause we have to rematerialize full guest state in case a hardware
exception or a signal was raised.

The main advantage of EEG region formation is that it can im-
prove DBT performance by removing transition overhead among
traces, such as removing redundant loads/stores of guest state
among traces.

We use Figure 3 as an example to illustrate our region formation
strategy. Figure 3(a) is the control flow graph (CFG) of a hot
region in a guest application. During execution, each block is first
translated as shown in Figure 3(b). Then NET∗ forms three traces
as in Figure 3(c). Trace A would be the first selected for early
exit detection (see Figure 3(c)) since a loop is likely to become
hot. Thus the early exit of A, marked by a dashed arrow from the
trace started with A (enclosed by the dotted rectangular) to the trace
started with B, is monitored with an instrumented software counter.

We merge Trace A and Trace B to form a code region when the
early exit is taken frequently. A code region, called Region A and
is enclosed in the dotted rectangular in Figure 3(d), that consists
of traces A and B is formed. After the code fragment of Region A
is formed, we replace Trace A and Trace B with Region A so that
Trace F now branches to Region A rather than to Trace A. Note that
Region A will not be monitored because the spill index of Region
A exceeds the threshold.

4. Experiments
In this section, we evaluate the performance of Early-Exit-Guided
region selection algorithm in our LLVM-based parallel DBT sys-
tems. We start by describing our measurement methodology.

We evaluate the performance with SPEC CPU 2006 benchmarks
on a 3.3GHz quad-core Intel Core i7 machine. The machine has
12 GB main memory and the operating system is 64-bit Gentoo
Linux with kernel version 2.6.30. We use the LnQ [14] dynamic
binary translation framework to build two translators which trans-
late IA32 and ARM guest ISAs to x86 64 host ISA. For CFP2006
benchmarks, we only compile them into IA32 binaries because
most CFP2006 benchmarks are written in Fortran and the ARM
tool chain we use does not provide cross-compilation for For-
tran. The result of ARM 464.h264ref is not reported because the
SPEC runspec tool reports a mis-match error even when it runs
464.h264ref in a native ARM machine.

The benchmarks are compiled with GCC 4.3.4 for IA32 binaries
and GCC 4.4.1 for ARM binaries. For all benchmarks, “-O2” flag
is used. For IA32 benchmarks, we use “-m32” to generate IA32
binaries. For CFP2006, we use “-msse2 -mfpmath=sse” extra flags
to generate SSE vector instructions. We use runspec script provided
by SPEC to run benchmarks and report the median of 5 runs for all
performance metrics.

We compare three region selection strategies in our experi-
ments, which are NET, NET∗ and EEG as described in Section 3.
In EEG strategy, we first use NET∗ to select traces, and use EEG to
merge traces into regions. We set block count threshold to 50 and
allow at most 16 blocks in a trace. For EEG strategy, the threshold
of spill index is set to 15%, i.e. regions cannot be further merged
when the percentage of spill instructions in the translated fragment
exceeds 15%.

We use Perfmon2 [21] for hardware-assisted dynamic profiling
to collect runtime information for every one million retired instruc-
tions. The early exit threshold is set to 1000 and we use two opti-
mization threads to compile traces and regions in all experiments.

4.1 Performance Results of SPEC CPU2006
The performance results of SPEC CPU2006 are shown in Figure 4
and Figure 5. For clearness of presentation, the benchmarks in both
figures are sorted in decreasing order of speedup ratio so that it
is easier to see the maximum, the minimum, and the geometric
average of the results. We explain the results in the following
sections.

4.1.1 Performance of NET∗

The performance of NET∗ algorithm compared to NET in SPEC
CINT2006 benchmarks is shown as red bars in Figure 4. For
CINT2006 benchmarks, NET∗ achieves an average improvement
of 12% and 10% for the IA32 and ARM benchmarks, respec-
tively, with up to 53% and 46% for IA32 456.hmmer and ARM
471.omnetpp. The results show that NET∗ discovers more hot
traces than NET does by considering all blocks as possible trace
heads, and our DBTs do not incur significant overhead because the
compilation overhead is offloaded to optimization threads.

We notice that only ARM 462.libquantum has 8% slowdown.
We compare traces generated by the two algorithms and show the
difference, in Figure 6, among traces generated by NET and NET∗

for a hot loop in function quantum toffoli of 462.libquantum.
As shown in Figure 6 (a) and 6 (b), both NET and NET∗ have

the same trace T-d10c, but NET∗ splits trace T-d094 of NET
into T-d094 and T-d0b4 because NET∗ generates T-d0b4 before
T-d094. The transition between traces T-d094 and T-d0b4 in
NET∗ results in 8% slowdown compared to NET.

However, both NET and NET∗ have the delinquent trace
T-d10c with frequently taken early exit to T-d094 due to an unbi-

26

80%

100%

120%

140%

160%

180%

462.libquantum

456.hm
m

er

458.sjeng

445.gobm
k

483.xalancbm
k

400.perlbench

473.astar

401.bzip2

403.gcc

464.h264ref

429.m
cf

471.om
netpp

G
eoM

ean

471.om
netpp

462.libquantum

458.sjeng

400.perlbench

483.xalancbm
k

429.m
cf

445.gobm
k

401.bzip2

473.astar

403.gcc

456.hm
m

er

G
eoM

ean

S
p
e
e
d
u
p
 R

a
ti
o

127% 123%

172%

149%
EEG
NET*
NET

SPEC CINT2006- IA32 SPEC CINT2006 - ARM

Figure 4. Performance results of NET∗ and EEG compared to NET in IA32 and ARM SPEC CINT2006.

80%
90%

100%
110%
120%
130%

447.dealII

454.calculix

453.povray

416.gam
ess

450.soplex

444.nam
d

465.tonto

482.sphinx3

435.grom
acs

434.zeusm
p

433.m
ilc

481.w
rf

436.cactusAD
M

410.bw
aves

470.lbm

437.leslie3d

459.G
em

sFD
TD

G
eoM

ean

S
p
e
e
d
u
p
 R

a
ti
o

EEG
NET*
NET

145%
131%

107%

SPEC CFP2006- IA32

Figure 5. Performance results of NET∗ and EEG compared to NET in SPEC CFP2006.

ased branch in block d10c. In the next section, we show that EEG
can merge the delinquent trace T-d10c into one region as shown in
Figure 6(c) and improves the performance of NET∗ by 54%.

Figure 5 shows the speedup ratio of NET∗ algorithm with
NET as baseline performance for the SPEC CFP 2006 bench-
marks. NET∗ achieves significant improvement only in 447.dealII,
453.povray, and 454.calculix (31%, 18% and 12% respectively),
and it gains 4.9% improvement on average in CFP2006 bench-
marks. Most CFP2006 benchmarks spend their time in small num-
ber of hot loops, which can all be identified by NET and NET∗.
Thus, there is little difference between traces of NET and NET∗ in
these benchmarks.

4.1.2 Performance of EEG Region Selection
The performance of EEG compared to NET in SPEC CINT2006
benchmarks is shown in Figure 4. For CINT 2006 benchmarks,
EEG achieves an average improvement of 27.5% and 23% for
the IA32 and ARM benchmarks, respectively, with up to 71.7%
and 49% for IA32 456.hmmer and ARM 471.omnetpp. Merging
traces can reduce the prologue and epilogue code executed hence
the transition overhead among different traces/regions are reduced.
As we will see in Section 4.3, the execution with EEG has less
memory and branch operations compared to NET.

We now take a closer look at IA32 456.hmmer and ARM
462.libquantum to give more insight of the benefit of EEG. In
456.hmmer, the hottest function is P7Viterbi, which updates
global variables according to different conditions in a performance
critical for-loop. NET∗ splits this loop into four traces as shown
in Figure 1(a).

Consequently, the transition among four traces results in sig-
nificant overhead. Through early exit detection, EEG merges four
traces into one region containing the loop as shown in Figure 1(b).

The merged region achieves 70% performance improvement be-
cause of the elimination of the transition overhead among traces.

For 462.libquantum, NET∗ splits a for-loop of function
quantum toffoli into three traces as shown in Figure 6(b). As
described in the previous section, trace T-d10c is a delinquent
trace with a frequently taken early exit to trace T-d094 due to an
unbiased branch in block d10c. EEG improves performance by
54% by merging the two traces into one region as shown in Fig-
ure 6(c).

As shown in Figure 5, EEG improves NET∗ by 4.8% to 7% on
CFP2006. The improvement is minor because there are few early
exits in these floating point benchmarks. In the next section, we
measure the early exit index and show the relation between the
number of early exits and the performance improvement.

We also observe that EEG loses 2.7% and 2.9% performance
compared to NET in 437.leslie3d, and 459.GemsFDTD respec-
tively. In 437.leslie3d, the time is spent in a small number of nested
loops in the procedure EXTRAPI of file tml.f. The regions gener-
ated by EEG contain nested loops while each trace generated by
NET contains only the innermost loop. Therefore, in 437.leslie3d
and 459.GemsFDTD, the translated code for traces is better than
translated code for regions. As a result, EEG loses about 2.7% per-
formance compared to NET.

4.2 Early Exit Index
In this section, we measure the Early Exit Index (EEI) of bench-
marks with the NET∗ strategy. We insert counters at each side exit
to collect the number of early exits taken in each trace, and we
measure the execution frequency of traces by sampling program
counters per one million retired instructions. We calculate EEI with
the collected numbers as described in Section 3.2. The results are
shown in Figure 7. The Y-axis on the left side shows the measured

27

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

4
5
6
.h

m
m

e
r

4
6
2
.lib

q
u
a
n
tu

m

4
7
3
.a

sta
r

4
2
9
.m

cf
4
7
1
.o

m
n
e
tp

p

4
0
1
.b

zip
2

4
0
0
.p

e
rlb

e
n
ch

4
5
8
.sje

n
g

4
6
4
.h

2
6
4
re

f
4
0
3
.g

cc
4
4
5
.g

o
b
m

k
4
8
3
.xa

la
n
cb

m
k

4
6
2
.lib

q
u
a
n
tu

m

4
2
9
.m

cf
4
7
3
.a

sta
r

4
0
1
.b

zip
2

4
0
0
.p

e
rlb

e
n
ch

4
5
8
.sje

n
g

4
8
3
.xa

la
n
cb

m
k

4
5
6
.h

m
m

e
r

4
0
3
.g

cc
4
7
1
.o

m
n
e
tp

p

4
4
5
.g

o
b
m

k
4
5
4
.ca

lcu
lix

4
4
7
.d

e
a
lII

4
7
0
.lb

m
4
5
0
.so

p
le

x
4
1
0
.b

w
a
ve

s
4
3
3
.m

ilc
4
1
6
.g

a
m

e
ss

4
3
5
.g

ro
m

a
cs

4
5
3
.p

o
vra

y
4
4
4
.n

a
m

d
4
8
2
.sp

h
in

x3
4
6
5
.to

n
to

4
8
1
.w

rf
4
3
4
.ze

u
sm

p
4
5
9
.G

e
m

sF
D

T
D

4
3
7
.le

slie
3
d

4
3
6
.ca

ctu
sA

D
M

0%
8%
16%
24%
32%
40%
48%
56%
64%
72%
80%

E
a

rl
y
 E

x
it
 I

n
d

e
x

Im
p

ro
v
e

d
 P

e
rf

o
rm

a
n

c
eSPEC CINT2006- IA32 SPEC CINT2006 - ARM SPEC CFP2006 - IA32

EEI
Improved Performance

Figure 7. Measured Early Exit Index in NET∗ and the performance improvement of EEG.

IA32 CINT2006
Improved Reduced Instructions or Misses

Ratio MemInst BrInst L1 ICache
Misses

456.hmmer 69.9% 52.8% 36.9% 31.0%
473.astar 25.5% 35.4% 20.4% 3.3%
458.sjeng 20.4% 29.9% 17.0% 43.7%
445.gobmk 17.1% 18.2% 7.6% 29.2%
462.libquantum 12.1% 33.6% 9.3% 0.7%
429.mcf 9.9% 33.9% 14.7% 18.2%
401.bzip2 9.3% 18.8% 11.8% 19.0%
471.omnetpp 8.2% 17.2% 7.1% 46.2%
400.perlbench 4.2% 9.5% 4.1% 15.1%
403.gcc 1.9% 5.6% 1.8% 9.8%
464.h264ref 1.0% 1.3% 2.5% 18.6%
483.xalancbmk 0.0% 6.8% -3.5% 3.0%

ARM CINT2006
Improved Reduced Instructions or Misses

Ratio MemInst BrInst L1 ICache
Misses

462.libquantum 54.0% 69.0% 15.8% -1.3%
429.mcf 20.5% 45.5% 17.3% 59.4%
458.sjeng 19.2% 17.9% 11.5% 35.5%
473.astar 13.3% 21.1% 10.7% 3.7%
401.bzip2 12.2% 26.8% 13.9% 20.4%
445.gobmk 6.1% 6.5% 5.3% 17.6%
400.perlbench 4.1% 3.3% 6.3% 13.2%
471.omnetpp 1.8% -0.8% 1.6% 7.8%
456.hmmer 1.7% 0.2% 0.7% 59.7%
483.xalancbmk 0.7% 1.5% 7.2% 2.9%
403.gcc -0.6% 0.1% 2.4% 4.7%

Table 1. Reduced memory/branch instructions and cache misses of EEG for CINT2006 benchmarks.

early exit indices; the Y-axis on the right side shows the perfor-
mance improvement of EEG compared to NET∗.

In Figure 7, we observe that integer benchmarks are likely to
have high EEI values. For example, 65% of CINT2006 benchmarks
have EEI values larger than 100, which means there are over 100
early exits per million instructions in those benchmarks in NET∗.
CINT 2006 benchmarks also show positive correlation between
early exit index and performance improvement. The correlation
coefficient of IA32 CINT2006 and ARM CINT2006 are 0.78 and
0.93.

For CFP2006 benchmarks, all the EEI values are relatively
small compared to those in integer benchmarks. Only 35% of
the benchmarks have EEI values larger than 100. The correlation
coefficient of early exit index is 0.43 in CFP2006. Small EEI values
are due to the fact that floating point benchmarks usually spend
most of their time in simple loops with fewer early exits. We also
notice that some benchmarks with small EEI values achieve good
performance improvements, such as 445.sjeng and 445.gobmk,
which improve 20% and 17%, with EEI values as low as 143 and
36 respectively. In the next section, we collect performance profiles
to further analyze the sources of improvement.

4.3 Performance Profiles of EEG
In this section, we collect the number of memory, branch in-
structions and the L1 instruction cache misses of NET∗ and EEG
through hardware performance monitoring. We calculate the per-
centage of reduced memory/branch operations and cache misses in
EEG compared to NET∗. We focus on the profiles of CINT2006,
which are shown in Table 1.

As shown in Table 1, benchmarks with large improvement
tend to have high percentage of reduced operations or L1 instruc-
tion cache misses. For example, IA32 456.hmmer reduces 52.8%,
36.9% and 31% of memory, branch instructions and L1 i-cache
misses, and achieves 70% improvement over NET∗. There are
also significant percentage of reduced instructions and misses in
458.sjeng and 445.gobmk, which contributes to the improve-
ment of these two benchmarks. The profiling data show that EEG
can not only reduce the memory and branch instructions but also
reduces L1 instruction cache misses by merging delinquent traces
into regions.

4.4 Effect of The Threshold of Spill Index
In this section, we study the effect of the threshold of spill index,
described in Section 3.4, on the performance of EEG. As shown in
Figure 8(a), the performance of EEG is less sensitive to the thresh-
old of spill index for IA32 benchmarks except 471.omnetpp. The
results show that the register pressure is not a problem in the region
fragments of IA32 benchmarks because the IA32 guest architecture
has only 8 general purpose registers while there are 16 registers on
x86 64 host architecture.

For 471.omnetpp, the performance degrades by 13.5% when
the threshold changes from 15% to 20%. The reason is that when
threshold changes from 15% to 20%, the spill index of the hottest
fragment changes from 18% to 36% because that fragment merges
one more region and its CFG becomes complex when threshold
is set to 20%. As a result, the extra spill instructions degrade the
performance of 471.omnetpp.

28

-8%

0%

8% 400.perlbench 401.bzip2 403.gcc

-8%

0%

8% 429.mcf 445.gobmk 456.hmmer

-8%

0%

8% 458.sjeng 462.libquantum 464.h264ref

-8%

0%

8%

5% 10% 15% 20% 25%

471.omnetpp

5% 10% 15% 20% 25%

473.astar

5% 10% 15% 20% 25%

483.xalancbmk

(a) Results of IA32 CINT2006.

-8%

0%

8% 400.perlbench 401.bzip2 403.gcc

-8%

0%

8% 429.mcf 445.gobmk 456.hmmer

-8%

0%

8% 458.sjeng

10%

30%

50% 462.libquantum

-8%

0%

8% 471.omnetpp

-8%

0%

8%

5% 10% 15% 20% 25%

473.astar

5% 10% 15% 20% 25%

483.xalancbmk

5% 10% 15% 20% 25%

464.h264ref(N/A)

(b) Results of ARM CINT2006.

Figure 8. Effect of spill index. The X-axis of each plot is the improvement ratio using the performance of 5% threshold as the baseline, and
the Y-axis is the threshold of spill indices ranged from 5% to 25%.

d12c d084 d170 d0b4

d0fc d148 d0d8 d15c

(c) Region merged by EEG.

d12c d084

d170

d15cd0d8d148

d15c d0d8 d148 d0fc

d12c d170

d0fc d148 d0d8 d15c

(a) Traces generated by NET.

(b) Traces generated by NET*.

d084

d0fc

d10c

d094

d0b4

d10c

d170 d0b4 d0d8 d148 d0fcd094

d10c d0b4

d0b4

d094

Figure 6. Traces/regions generated by NET, NET∗ and EEG for a
loop in function quantum toffoli of ARM 462.libquantum.

For ARM benchmarks, the performance of EEG is more sensi-
tive to the threshold of spill index as shown in Figure 8(b). This is
because there are 16 general purpose registers in ARM guest archi-
tecture, and register pressure becomes a problem when translating
ARM instructions to x86 64 instructions. Consequently, if we al-
low regions with high spill indices, i.e., high percentage of spill
code in the translated code, to be merged, the performance tends to
degrade. For example, in ARM 456.hmmer, a 12% degradation is
observed when the threshold of spill index increases from 15% to
20%.

4.5 Statistics of Selected Traces and Regions
Table 2 shows the statistics of selected regions in NET, NET∗ and
EEG for CINT2006. First, the number of traces in NET∗ increase
by 54% and 59% on average compared to NET for IA32 and ARM

benchmarks respectively. The average numbers of blocks per trace
are similar in NET and NET∗.

13.6% and 11.5% of traces in NET∗ are merged into regions
by EEG for the IA32 and ARM benchmarks respectively, which
indicates that our HPM-based region selection approach described
in Section 3.3 can effectively select hot traces to be merged. The
average numbers of blocks per region are 14.4 and 13.4 for the
IA32 and ARM benchmarks respectively, which are 3.4X and 2.9X
larger than the traces generated by NET∗.

We also compute the number of merges in EEG. There are 2.1
and 1.7 merges per region on average in IA32 and ARM bench-
marks, which indicates that most regions become stable after few
number of merges. The last two columns of Table 2 are percent-
age of execution time spent in traces and regions. On average, our
DBTs spend 72.3% and 58.4% execution time in regions for the
IA32 and ARM benchmarks respectively.

5. Related Works
The choice of optimization unit is critical to achieving good per-
formance for Just-In-Time compilation systems. In this section, we
categorize the related works of finding hot code region into dy-
namic binary translation systems, dynamic binary optimization sys-
tems, and language virtual machines.

5.1 Dynamic Binary Translation Systems
Dynamic binary translation (DBT) is widely used to support legacy
binary code to run on a new architecture such as IA-32EL [4],
DAISY [9], and Transmeta [8]. IA32-EL is a process virtual ma-
chine that enables IA32 applications to run on Intel Itanium. IA32-
EL uses hyper-blocks as its unit of optimization in the hot code
translation phase. A hyper block is a set of predicated basic blocks
with a single entry and multiple exits. IA32-EL forms hyper blocks
based on the execution counts of basic blocks and edge counters
collected collected during the cold code execution.

DAISY and Transmeta are system virtual machines, where
DAISY supports IBM PowerPC applications to run on VLIW pro-
cessors and Transmeta supports IA-32 applications to run on a
proprietary VLIW processor. Transmeta did not revealed details
about how to find hot code regions. IBM DAISY uses tree groups
as the translation unit. Tree groups have a single entry point and
multiple exit points. No control flow joins are allowed within a tree
group. Control flow joins can only occur on group transitions. Like
IA32-EL, DAISY also uses profiling information collected dur-
ing interpretation for tree group formation. Both hyper-blocks and
tree groups have little advantage to non-VLIW machines, such as

29

IA32 CINT2006 NET
#Traces Avg.Blks

400.perlbench 6646 4.1
401.bzip2 583 3.8
403.gcc 23058 4.0
429.mcf 239 4.7
445.gobmk 9468 2.9
456.hmmer 424 3.8
458.sjeng 1216 3.3
462.libquantum 200 2.5
464.h264ref 2434 3.3
471.omnetpp 2918 5.0
473.astar 613 5.2
483.xalancbmk 4453 5.9
Geometric Mean 3.9

NET∗

#Traces Avg.Blks
8966 5.9

894 5.0
34019 3.9

605 3.5
10961 3.9

687 3.6
1749 4.7

326 2.2
3974 4.3
4859 5.5

942 4.5
8355 4.4

4.2

EEG Merges %Time Spent in
#Regions Avg.Blks Avg. Max Trace Region

1627 13.5 1.6 16 45.3% 51.6%
206 14.4 1.8 6 19.2% 79.4%

2728 12.2 1.6 17 27.1% 37.0%
83 15.1 2.7 5 1.2% 95.3%

2258 13.3 1.7 20 20.9% 71.6%
61 25.5 4.5 6 1.5% 97.8%

764 18.9 2.5 43 15.2% 84.5%
20 8.4 1.8 4 17.6% 82.2%

781 11.9 1.8 11 22.0% 73.3%
345 12.1 1.4 11 29.0% 69.6%
185 24.3 5.3 7 2.3% 96.8%
538 11.4 1.3 12 37.0% 59.1%

14.4 2.1 12.4% 72.3%

ARM CINT2006 NET
#Traces Avg.Blks

400.perlbench 7839 5.1
401.bzip2 672 4.7
403.gcc 24703 3.7
429.mcf 362 3.6
445.gobmk 14175 3.5
456.hmmer 847 4.8
458.sjeng 1299 4.6
462.libquantum 606 8.6
471.omnetpp 4584 3.5
473.astar 959 3.9
483.xalancbmk 4844 5.1
Geometric Mean 4.1

NET*
#Traces Avg.Blks

10438 5.1
1125 4.7

36710 3.7
726 3.6

16587 3.5
1378 4.8
1811 4.6

951 8.6
7163 5.1
1432 4.6
8690 3.9

4.6

EEG Merges %Time Spent in
#Regions Avg.Blks Avg. Max Trace Region

1860 12.8 1.6 12 32.9% 62.2%
205 16.4 1.7 5 22.1% 75.0%

2595 12.1 1.5 10 13.1% 32.5%
125 22.3 2.9 6 1.2 % 96.8%

3071 11.9 1.6 19 28.8% 60.9%
58 10.8 1.4 7 52.9% 46.7%

760 14.7 2.5 35 19.8% 79.6%
85 12.0 2.4 11 41.0% 58.4%

364 12.2 1.4 12 57.0% 41.6%
180 13.6 1.6 10 25.6% 72.8%
559 11.9 1.3 8 49.1% 45.9%

13.4 1.7 23.0% 58.4%

Table 2. Statistics of Traces/Regions in NET∗ and EEG.

x86 64, since they are primarily designed to maximize instruction-
level parallelism in VLIW architectures. Therefore we do not apply
their approach in our system.

Moreover, DAISY, Transmeta, and IA32-EL handle early exits
with chaining, i.e. the execution directly transfers to another code
region. The transition overhead in those systems is not as high as
in LnQ because most guest architecture states are mapped to the
host architecture in these systems. For example, IA32-EL maps the
state of IA-32 guest registers directly to Itanium registers. On the
other hand LnQ, a retargetable dynamic binary translator, does not
make any assumption about the guest and host ISAs. Consequently
LnQ has to load guest states in the prologue of code fragments, and
save them back to memory in the exit stubs, which incurs transition
overheads.

5.2 Dynamic Optimization Systems
ADORE [18] and Dynamo [3] are same-ISA dynamic binary opti-
mizers, which means the input and the output instructions are from
the same instruction set architecture. Both ADORE and Dynamo
use traces, i.e. super-blocks, as the unit of optimization.

ADORE uses Hardware Performance Monitor (HPM) sampling
approach to collect path profiles from the Branch Target Buffer
(BTB) hardware performance counters in Itanium. It forms traces
based on the collected path profiles. Dynamo was the first trace-
based dynamic optimizing compiler that used the Next-Executing-
Tail (NET) algorithm. Dynamo pioneered many early concepts
of trace formation and trace runtime management. Many DBT
systems [6, 7, 13, 25] and just-in-time compilers [10, 16, 26] use
NET or its variants to form traces.

StarDBT [25] uses MRET2 [27], which improves NET by in-
creasing the completion rate of traces. MRET2 first uses NET to
select a potential trace, then it clears block execution counters
and restarts NET to select another potential trace. Both potential
traces share the same starting address but may have different tails.
MRET2 then improves the completion rate by selecting the com-
mon path of both potential traces as a hot trace. Hiniker et al. [12]
proposed Last-Executed Iteration (LEI) and a trace combination
algorithm, which needs to interpret each taken branches to form
traces.

The main difference between the proposed EEG and previous
works is that EEG expands the existing regions and re-optimizes
them during execution. The process of region expansion in EEG
can be divided into three stages. The first stage is to decide how
to form the initial region. The second stage is to decide when to
expand the region. The third stage is to decide which blocks are to
be merged. Previous trace formation algorithms, such as LEI and
MRET2, could be used in the first stage of EEG to build the initial
regions. Therefore, the proposed EEG can be used effectively in
most trace-based dynamic binary translators.

5.3 Language Virtual Machines
5.3.1 Method-Based Language Virtual Machines
Region expansion is widely used in method-based JIT systems,
e.g., HotSpot Java VM [20]. These JIT systems compile methods as
follows. When a method-based JIT system compiles a method for
the first time, it only compiles those basic blocks whose execution
counts exceed a threshold during interpretation. If the execution
frequently leaves a region from side exits, the JIT system expands

30

this region to include those basic blocks that are the destinations of
these side exits.

Our EEG and method-based JIT systems use similar heuristics
to decide when to expand regions during the second stage of region
expansion, but they are very different in the first stage and the third
stage of region expansion in terms of motivation and the type of
blocks they merge.

The major difference between EEG and those systems in the
first stage is the motivation in forming the initial regions. EEG uses
traces as initial regions for two reasons. First, traces represent those
frequently executed paths that may span across several methods.
Second, it takes less time to optimize traces because of their simple
control flow graph and small numbers of basic blocks. For exam-
ple, we found only 4.2 blocks per trace in EEG. On the other hand,
method-based JIT systems build initial regions by selecting blocks
from hot methods, and excluding those blocks that are rarely exe-
cuted. For example, HotSpot JVM excludes blocks that are never
executed during interpretation.

The major difference between EEG and method-based JIT sys-
tems in the third stage is the type of blocks they merge. In the
third stage EEG merges traces that contains frequently executed
paths. However, in the third stage method-based JIT systems will
only merge blocks that are rarely executed in the first stage, since
those frequently executed blocks in the first stage have already been
merged.

Suganuma et al. [23] investigate how to use region-based com-
pilation to improve the performance of method-based Java Just-In-
Time compilation. They use region-based compilation to partially
inline procedures, instead of using traditional method inlining tech-
niques. They collect execution counts of basic blocks in order to
understand program runtime behavior, and they apply static code
analysis on the Java bytecode to identify those rarely executed code
blocks, such as those handle exception. They use these informa-
tion to identify and optimize those often executed code blocks only,
without optimizing the entire method.

In our case it is difficult to identify those rarely executed regions
by a static code analysis, as they did for Java bytecode. Therefore
we cannot apply their approach in our system.

5.3.2 Trace-Based Language Virtual Machines
Recently, trace-based compilation has gained popularity in dy-
namic scripting languages [5, 10] and high level language virtual
machines [11, 16, 17, 26]. Wu et al. [26] and Inoue et al. [16, 17]
investigate the performance of several variations of NET on trace-
based Java virtual machines.

Gal et al. [10] propose merging loop traces into a trace-
tree. Their approach requires adding annotation while compiling
JavaScript into bytecode, and thus cannot be applied in our case.

In contrast, our EEG merges delinquent traces/regions, which
are not necessarily loop traces. EEG uses hardware monitoring to
identify often executed code traces, then determines whether they
have many side exits, and finally merges those often executed code
regions that have many side exits to avoid early exits from a region,
EEG also uses spill index to prevent generating regions which may
degrade performance.

6. Conclusion
We have identified and quantified the delinquent trace problem in
the popular Next-Executing-Tail (NET) trace selection algorithm.
Delinquent traces contain frequently taken early exits which cause
significant overhead. Motivated by this problem, we develop a
light-weight region formation strategy called Early-Exit Guided re-
gion selection (EEG) to improve the performance of NET by merg-
ing delinquent traces into larger code regions. The EEG algorithm

is implemented in two LLVM-based parallel dynamic binary trans-
lators (DBT), the IA32-to-x86 64 and ARM-to-x86 64 DBTs.

Experiment results show that EEG achieves performance im-
provement of up to 72% (27% on average), and up to 49% (23% on
average) in IA32 and ARM SPEC CINT2006 benchmarks respec-
tively. The profiling results show that EEG can reduce memory and
branches instructions by up to 53% and 37% respectively because
the transition overhead among traces is eliminated by merging
delinquent traces. It also reduces the L1 instruction cache misses
by up to 43.7% in CINT2006 benchmarks.

Acknowledgments
The authors would like to thank Dr. Filip Pizlo at Apple Inc.
and the anonymous reviewers for their valuable comments and
suggestions to improve the quality of this paper. This work is
supported by the National Science Council of Taiwan under grant
number NSC99-2221-E-001-003-MY3, NSC99-2221-E-001-004-
MY3, and by NSF grant CNS-0834599.

References
[1] Low Level Virtual Machine (LLVM). http://llvm.org.

[2] QEMU. http://qemu.org.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In PLDI ’00, pages 1–12. ACM, 2000.

[4] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach. Ia-32 execution layer: a two-phase dynamic translator
designed to support ia-32 applications on itanium-based systems. In
MICRO-36, pages 191–201, Dec. 2003.

[5] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. Spur: a trace-based jit compiler for cil.
SIGPLAN Not., 45:708–725, October 2010.

[6] I. Bohm, T. E. von Koch, S. Kyle, B. Franke, and N. Topham. Gen-
eralized just-in-time trace compilation using a parallel task farm in a
dynamic binary translator. In Proc. PLDI, 2011.

[7] D. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. Ph.d. thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, Sep 2004.

[8] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The transmeta code morphingTMsoftware:
using speculation, recovery, and adaptive retranslation to address real-
life challenges. In CGO ’03: Proceedings of the international sympo-
sium on Code generation and optimization, pages 15–24, Washington,
DC, USA, 2003. IEEE Computer Society.

[9] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic
binary translation and optimization. IEEE Trans. Comput., 50(6):529–
548, 2001.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In PLDI, pages 465–478, 2009.

[11] H. Hayashizaki, P. Wu, H. Inoue, M. J. Serrano, and T. Nakatani. Im-
proving the performance of trace-based systems by false loop filtering.
In ASPLOS, pages 405–418, 2011.

[12] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region
selection in dynamic optimization systems. In MICRO 38, pages 141–
154, Washington, DC, USA, 2005. IEEE Computer Society.

[13] D.-Y. Hong, C.-C. Hsu, P. Liu, C.-M. Wang, J.-J. Wu, , P.-C. Yew,
and W.-C. Hsu. Hqemu: A multi-threaded and retargetable dynamic
binary translator on multicores. In CGO ’12: Proceedings of the 10th
annual IEEE/ACM international symposium on Code generation and
optimization, 2012.

[14] C.-C. Hsu, P. Liu, C.-M. Wang, J.-J. Wu, D.-Y. Hong, P.-C. Yew,
and W.-C. Hsu. Lnq: Building high performance dynamic binary

31

translators with existing compiler backends. In ICPP, pages 226–234,
2011.

[15] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery. The superblock: an effective
technique for vliw and superscalar compilation. J. Supercomput., 7(1-
2):229–248, May 1993.

[16] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based java
jit compiler retrofitted from a method-based compiler. In CGO’11,
pages 246–256, 2011.

[17] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. Adaptive multi-
level compilation in a trace-based java jit compiler. In Proceedings
of the ACM international conference on Object oriented programming
systems languages and applications, OOPSLA ’12, pages 179–194,
New York, NY, USA, 2012. ACM.

[18] J. Lu, H. Chen, P.-C. Yew, and W. chung Hsu. Design and imple-
mentation of a lightweight dynamic optimization system. Journal of
Instruction-Level Parallelism, 6:2004, 2004.

[19] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In 15th Annual
ACM Symposium on Principles of Distributed Computing, 1996.

[20] M. Paleczny, C. Vick, and C. Click. The java hotspot(tm) server com-
piler. In In USENIX Java Virtual Machine Research and Technology
Symposium, pages 1–12, 2001.

[21] perfmon2. http://perfmon2.sourceforge.net.
[22] J. E. Smith and R. Nair. Virtual Machines: Versatile Platforms for

Systems and Processes. Morgan Kaufman, 2005.
[23] T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation

technique for a java just-in-time compiler. In PLDI ’03, pages 312–
323. ACM, 2003.

[24] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley. Experiences
with multi-threading and dynamic class loading in a java just-in-time
compiler. In CGO ’06, pages 87–97, Washington, DC, USA, 2006.
IEEE Computer Society.

[25] C. Wang, S. Hu, H.-S. Kim, S. R. Nair, M. B. Jr., Z. Ying, and
Y. Wu. Stardbt: An efficient multi-platform dynamic binary translation
system. In ACSAC’07, pages 4–15, 2007.

[26] P. Wu, H. Hayashizaki, H. Inoue, and T. Nakatani. Reducing trace se-
lection footprint for large-scale java applications without performance
loss. In OOPSLA ’11, pages 789–804, New York, NY, USA, 2011.
ACM.

[27] C. Zhao, Y. Wu, J. G. Steffan, and C. Amza. Lengthening traces
to improve opportunities for dynamic optimization. In Proceedings
of the Workshop on Interaction between Compilers and Computer
Architectures, 2008.

32

