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Abstract 

We show that there exist spontaneously broken symmetries for massive modes with transformation parameters 0 ~ab) ir~,  
0 i~b~ ~ etc. containing both Einstein and Es®E8 (or SO(32) ) Yang-Mills indices in the 10D Heterotic string. The corresponding 
on-shell Ward identities are also constructed. 

It was believed that the 10D fundamental string theory possesses an infinite space-time symmetry structure at 
high energy [ 1 ]. The recently developed toy 2D string model reveals that this is indeed the case [2]. This is also 
suggested from, for example, the string field theory formalism [3] although we still have no satisfactory nonper- 
turbative second quantized closed string formulation. In this paper, we would like to address this issue from thef irs t  
quantized supersymmetric massive o--model point of view. We choose to work on the 10D Heterotic string etc. [4] 
as it is still the one of most phenomenological interest. There have been very few articles in the literature discussing 
the bosonic massive o--model [5], not to mention the supersymmetric one. This is mainly because it contains 
nonrenormalizable terms, and thus makes the perturbative renormalization group/3-function calculation uncontrol- 
lable. In this short note, however, we will use the nonperturbative weak field approximation (WFA) [ 1 ] instead of 
the usual perturbative loop (ce') expansion scheme. This will avoid the difficulty of the nonrenormalizability of the 
massive o--model (at least, to the first order WFA). Moreover, the results we obtain from WFA are valid even at 
high energy ( o d ~  ~) ,  thus WFA is the appropriate approximation scheme to study the high energy behavior of 
string. We will first discuss symmetry of the massless mode in the Yang-Mills sector aiming to relate the E8 ® E8 or 
SO(32) gauge symmetry to the right-moving gauge state of the spectrum. This will include both the S-matrix 
approach and the modified weak f ie ld  o--model approach. We then generalize both approaches to the first (with 
appropriate GSO-like projection) massive case. After deriving the massive Ward identities corresponding to the 
massive right-moving gauge states of the spectrum, we will also construct the explicit form of the weak field 
symmetry transformation laws. We f ind  that the symmetry transformation parameters contain 0 ~ab) t ,~j,  0 ~ab~ 
etc. with mixed Einstein and Es ®E8 (or  SO (32))  Yang-Mills indices, which point f i eM theories wouM never have. 
This reveals the peculiar structure of Heterotic string theory at high energy in contrast to the renormalizable point 
field theories. 
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We first discuss the massless Ward identity in the Yang-Mills sector of the Heterotic string. The vertex operator 
for the massless gauge bosons in the (0) and ( - 1 ) ghost pictures are 

V o  = a t//, - - a  e u Vo ( z ) V  (z-) = e u a(OX~'+ik" qJqt~)]"(z-)e igx(z'z~ (1) 

V_l =~.aV ~l(Z)~'ra(z--)=El~a~IZe 4Jffa(Z-')eikX(z'z3 , (2) 

with k " e ,  a = 0, k 2 = 0. In Eqs. ( 1 ) and (2), J" form the adjoint representation of either SO(32) or E8®E8 Kac- 
Moody algebra and q~ is the bosonized superconformal ghost. The following Ward identity can be easily verified 
after calculating the four point correlator [ 6 ]: 

k g T a a ~ : ~ = k ,  f f i  d2xi(V~ A(Xl)~ra(Xl)V~)~Z(x2)gb(x2)VU_l(X3)~tC(x3)Va_l(X4)ga(x4) )=O. (3) 
i = l  

Note that we have chosen the ghost pictures for the vertex operators such that the total superconformal ghost charge 
adds up to - 2. The momentum k~, is arbitrary chosen to be the momentum of the second vertex operator. Eq. (3) 
can be interpreted as the result of a gauge state in the spectrum. In fact, there are two types of gauge states in the 
right-moving NS-sector of the spectrum, they are (we use the notation in [7] ) 

Type I: G-1/2 IX), where GI/2 IX) =G3/2 IX) =Lo IX) = 0 ,  (4) 

Type II: (G_  3/2 + 2G_ ~/2L_l) [ ~), where G,/2 [ ~ = G3/2 [ ~) = (Lo + 1) [~) = 0 .  (5) 

Note that type I states have zero-norm at any space-time dimension while type II states have zero-norm only at 
D = 10. The following massless gauge state solution of Eq. (4), 

kub~l /2Y"[O,  k ) ,  (6) 

is the origin of the Ward identity (3).  We now discuss the symmetry corresponding to the Ward identity in (3) 
from modified supersymmetric o--model point of view [ 1 ]. Instead of using the usual ~r-model approach starting 
from a worldsheet action, we will write down directly the weak field energy-momentum tensor Tand the supercurrent 
TF based on the consideration of vertex operators. Assume that T and TF have the following weak field expansion: 

T = T ( ° ) + T ( 1 ) +  ...; TF=T~°) +T(F ~) + ... (7) 

and the same for the left-moving pieces. In Eq. (7), each T (o) represents the corresponding free piece and each 
T ( 1 ) contains the weak background fields. An on-fixed-point superconformal deformation ( T ( ~ ), i" ( ~ ), --FT ( ~ ) , --F ~ ( 1 ) ) 
is defined to be a deformation such that after deforming, the superconformal charge algebra for T ' s  is kept the same 
as that of T (o), s [ 1 ]. It can be proved that a convenient choice to satisfy the above conditions are T (~) = T (~), 
7~ °) = 7~ ~) = 0  (for the gauge sector) and T~ ~) has conformal dimension (1/2, 1) w.r.t. T (°) and ~(o) [ 1]. Now 
the superconformal deformation constructed from Eq. (1) is [ 1 ] 

T (l) = A ~ O X ~ ' ~ + O ~ A ~  . ] ~b ~b~a v" , 

T(F 1) = 1  a a~b.ya, (8)  

with conditions 

U ] A ~ = 0 ,  O~'Au~=O. (9) 

Eq. (9) is the conditions of vanishing renormalization group/3-function of supersymmetric o'-model in the first 
order WFA and can be interpreted as the linearized Yang-Mills equation in the covariant gauge. On the other hand, 
the superconformal deformation constructed from gauge state (6) is 

6T=O u&OX~'J ~, 6Tv=½0 ~ , & ~ ' ]  ~, (lO) 
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with condition/-10 a =0 .  These induce the linearized form of the Es@Es or SO(32) gauge transformation in the 
covariant gauge 

~ A F z a = o  ~O a . (11) 

We have thus related the massless Yang-Mills gauge symmetry o f  the Heterotic string to the right-moving gauge 
state in the spectrum. One can get a similar result for  the gravitational sector. Note that the gauge conditions in 
Eq. (9) and 0 a in Eq. (10) are due to the on-shell formulation of the first quantized string. However, it was shown 
how to dispense with these gauge conditions in Ref. [8]. Eq. ( 1 l)  is valid to all orders in a '  in contrast to the usual 
a '  four-loop calculation [9]. It does not contain the usual homogeneous piece cabcA, bOc. However, this should 
not be thought of as a drawback of the formalism, as has been pointed out in [ 1 ]. In fact, there are infinitely many 
terms in string theory in contrast to the usual Yang-Mills theory if one wants to include them [ 10]. Moreover, the 
advantage of the WFA formalism above is that one can generalize the calculation to massive particles, as we now 
turn to discuss. 

We first discuss the massive on-shell Ward identities. We will arbitrarily choose two particles in the first massive 
Yang-Mills sector to illustrate the identities [7]. Its vertex operators in the (o) ghost picture read 

V(I) = [ e(ab) [u v.a] ( 30Xu+ i k~¢  u) ~P ~tP a - ie("b) tu~J ( - ~ O I p  ~+ iktp~puOX ~) ]ff(affb) eikX(z'z3 

e (ab) = kae  (~b) (12) [/zp] [ a.~ ~,] , 

Vo (2) = [e (~m (u,.) ( 3X uOX " -  ~p~O~ " + i k ~ u O X  ") - i / 2  e (ab) ~( 0 2X U + ik~bO~U') ]J(Ojb) e ikx(z'z3 

= e(ab) V(dZ")~.'(ab)--i/2 e (ab) V f f V ( a b ) .  

e (ab) = - k"e ('a') e(,,b) u _  k~k ~'e(,,b) u;  = O. (13) It. P lz , lz 

We have made the most general gauge choice for these two states. We are now ready to calculate the correlators. 
For simplicity, we choose to calculate three point correlators with two massless gauge vectors and one massive 
state. The correlator of state (12) decay into two vectors is defined by the doublet {S '~'t~'vAlb~'~, S ~'t"~b~'~a} 
where 

SC~a'[~va](bc)'l~d= 1--[ d 2 x i ( V ~ l ( Y l ) g a ( ' ~ l ) V [ ° l z ~ ' a ] ( x 2 ) g ( b c ) ( ' ~ 2 ) V ~ l ( x 3 ) ~ ' t d ( ' ~ 3 ) ) '  ( 1 4 )  
i=1 

S '~a'[u'l(bc)'c~t= - - i  H d 2 x i ( V ~ - ' ( x l ) V a ( ' ~ ' ) V [ ° ~ ' ] ( x e ) V ( b C ) ( ' ~ 2 ) V ~ ' ( x 3 ) g a ( ' ~ 3 ) ) "  ( 1 5 )  
i=1 

Similarly, the correlator of state (13) decay into two vectors is defined by the doublet {S ~a'(~'~)(b~)'~, S'~"'"(b~)'~}. 
The evaluation of Eqs. (14) and (15) is straightforward. One can, for example, use the fermionic representation of 
Heterotic string for the compatified left-moving sector 

J'~= I/2:,~)~J: (T~)°; Tr (T~T  b) = 2 6  ab , (16) 

where X;'s are 2D Majorana-Weyl Fermions and T" are the 496 generators of either Eg®Es or SO(32).  The final 
results for Eqs. (14) and (15) are 

S~'a,f~'~a](°c),~ = 24xlzxz~/xt.~ [Tr(T~{T b, T~} T a) + Tr( T~T (b) Tr( T~)Ta) ] 

× { TI-I ~rlal Bkt ~1/x~2 - ~7 ~ ~7 al ~k~ uj/X23 } , (17) 

S ~a'[~z~l(bc)'c~d= 16xs2x23/x~3 { l /x~z(~7"t~l~ '~+k2 ~k3 I~ lu~a-k2  ak~ t ~ l ~ ' )  

~_ 1/X23 (T~ a[,u,,y~ ~ ] , a + k  z ¢~k3 r~Tula_k2 ak3 l~,~]u]~) } 

× [ T r ( T a { T  b, T~}T d) +Tr (TOT(b)Tr (T~)Ta)]  (18) 
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where xu= Ixi-xjl. In deriving (17) and (18), we have done the SL(2, C) gauge fixing and have kept three 
positions of vertex operators at arbitrary but fixed values. Now one of the first massive even G-parity gauge state 
solution of Eq. (4) is 

b ~ , {ka O("c) ~ ba -1 /2  b ~  - t12  b -t/2 +20(at) u~ a ~  -1 _ l / 2 } J ( a j c )  lo,  k )  

O("C~ u ~ =  - 0 (~c~ ~ ,  k~'O (~c~ ~ = 0 .  (19) 

One can thus verify the following Ward identity after some algebra 

kza 0 (bd) ~ ~S c~a,[~ ua] (bd),~c + 20(bd) ~ uS aa,[~ul (bd),Bc = 0 . (20) 

We are now in a position to discuss the background field symmetry transformation as we did for the massless 
mode. The on-fixed-point superconformal deformations constructed from Eq. (12) are 

T ° )  = [ M(ab)  [izva] ( 3oX~+ 0 , ~ )  qJ ~ ba + E ( a b )  [,~e/( --  6 J z 0 ~  ~'q- S,~ ~baO~OX u) ] j ( a f f b )  , 

T~ 1) = {3/2 m (ab) [#ua] + 20~Oa M(ab) tu~m + 1 / 2 0 a E  (~b) tu~l }~bu~b"q ? ] ( a ] b )  

+ E(ab) - _ + ( 30aM(~b~ t~,~al +OaO ~ E~"b~ tau~ t~,~1)OXU~ ~J(~Jb) ; 

= 0 a M  (ab) E(ab) tu~l tau-l' (I-q--2) M(~b~ tag-I = 0 .  (21) 

T~ ~) in Eq. (21) is a (1/2, 1) superconformal deformation as in Eq. (8). The symbol ~ in Eq. (21) means that 
O~ acts backward on the background fields. Note that E (ab) tu~l is the gauge artifact of the propagating background 
field M (ab) Ea~,~l • If we compare Eq. (21) with the superconformal deformation constructed from Eq. (19), we get 
the following symmetry transformation: 

= 0 [Iz o(ab)  6M(~m ~ ~al , (22) 

-, U,~(aO) =0.  In deriving Eq. (22) we have used the gauge condition in Eq. with conditions (IS]- 2) 0 (ao~ ~ , ~  = o vtu~a 

(21). Eq. (22) is the symmetry transformation corresponding to the Ward identity in Eq. (20). It is valid to all 
orders in a ' .  Other symmetries and Ward identities can be similarly constructed. For example, there exists a type I 
in ter  par t i c l e  g a u g e  s tate  

{k iu  0 (a~) ~ a u _ ~ b ~ _ ~/2 - o(ac)" b - 3 / 2  } 37(affc) 10, k); k" 0 (~¢~ = 0.  (23) 

The inter particle Ward identity and symmetry constructed from (23) are 

kz t~  O(°a) ~1S cta,[izu](ba),flc - -  o(bd)  Iz S ota,/z(bd),flc= 0 (24) 

and 

3G (ab) = 0 0 (ab) (25) (~M(ab) [ ~ , a ]  ~--- 0 [,u0 ~ 0  (ab) A] , (kt.~) (At. ~,) 

where ([]  - 2) 0 u (~b) = 0 ~0 (a~) = 0, and G (ab~ is the physical propagating background field of state (13) /z (/z~) 

Another symmetry transformation containing a nonderivative piece is 

~G (ab) = 20 uO ~0  (ab) (26) (l~u) - -  ~ l ~ , O  (ab) , 

where ( [ ~ - 2 ) 0  (ab) =0.  We have used the appropriate gauge conditions similar to Eq. (21) to derive (25) and 
(26). Eq. (25) means that the decoupling of 0 (~) ~ gauge state induces simultaneously changes of both background 
fields, thus they form a large multiplet. Those symmetries which are generated by mass ive  gauge states, like Eqs. 
(22), (25) and (26), were shown to be broken spontaneously by the space-time metric (r/ ,~) 4:0 [ 10]. 

It is possible to exhaust all solutions of Eqs. (4) and (5) level by level. One then expects the existence of infinite 
number of mixed higher spin symmetry transformation parameters in the theory. Unfortunately, the algebraic 
structure of this symmetry is still difficult to identify. The situation is, however, much easier to handle in the case 
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of toy 2D string model where w~ symmetry [ 2 ] is believed to be related to the discrete gauge states in the spectrum. 
Works in this direction is in progress. 

This work was supported by the National Science Council of the R.O.C. under contract ~ NSC 82-0208-M-009- 
064. 
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