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a b s t r a c t

Presented is a general method for conservation equations called SHLL (split HLL) applied using Graphics
Processing Unit (GPU) acceleration. The SHLL method is a purely vector-split approximation of the clas-
sical HLL method (Harten et al., 1983 [1]) which assumes the presence of local wave propagation in the
algebraic derivation of fluxes across cell surfaces. The conventional HLL flux expression terms are inter-
face-split and wave propagation velocities estimated (where required) based on local conditions. Due to
the highly local nature of the SHLL fluxes, the scheme is very efficiently applied to GPU computation since
the flux, initialisation and update phases of the computation are all vectorized processes. The SHLL
scheme is applied to GPU computating using Nvidia’s CUDA package. Numerical schemes are presented
for solutions to the general transport (convection–diffusion) equation, Euler Equations and Shallow
Water Equations with results presented for several benchmark gas and shallow water flow engineering
problems. Computational times are compared between high-end GPU (Nvidia C1060) and CPU (Intel
Xeon 3.0 GHz, 32 MB cache) systems with reported speedups of over 67 times when applied to two
dimensional simulations with multi-million cell numbers.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional application of numerical algorithms to the high-
performance simulation of scientific or engineering related prob-
lems has conventionally relied upon the Multiple Instruction
stream, Multiple Data stream (MIMD). In this approach, a machine
has a large number of processors which operate asynchronously
and independently on varying sets of information as supplied by
the programmer. While this approach permits a large degree of
flexibility on the user, in many instances, the algorithm applied
to parallel computation is almost identical to that employed in se-
rial (single CPU) computation – a clear indication that this flexibil-
ity is typically not well exploited by the programmer. Very little
modification of the original algorithms themselves are typically
performed in order to optimize the parallel computation.

The recent rise (or one might say, return) to vectorized compu-
tation in the form of acceleration by Graphics Processing Units
ll rights reserved.

.
), msmith@nchc.org.tw (M.R.
u@nchc.org.tw (C.-Y. Chou),
(GPUs) has prompted a rethink in computational strategy. The re-
cent rise in computer gaming and demand for high performance
graphics on commonly available PC’s has lead to the development
of relatively cheap, though highly efficient, computation platforms
(video, or graphics, cards). These cards are designed to perform a
large number of relatively simple computations in support of their
primary purpose – drawing an image on the computer monitor.
These computations, most typically performed on vectorized sets
of data, more closely follows the Single Instruction stream, Multi-
ple Data stream (SIMD) approach. Each set of data (and its instruc-
tions) are typically independent of other data streams, reducing
communication between computational ‘‘threads” and allowing
very rapid computation.

Applications of these powerful devices to scientific computation
has recently risen in popularity amount the scientific community.
This rise in popularity has not gone unnoticed by video accelerator
manufacturers (such as Nvidia and ATI) and now a large number of
devices are available which are dedicated to computation. These
devices, an example being the Nvidia TESLA C1060, are similar to
their gaming cousins in that computation should be approached
from an SIMD perspective. This has made the porting of traditional
numerical schemes, which are heavily reliant on the MIMD
approach, to GPU computation very difficult. Due to the large
amounts of communications between threads, communications
between the host and device and heavy reliance upon globally
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available variables, reported speedups on early GPU based codes
have been quite low. As scientists continue to invest in GPU based
computation, there is an emerging realisation that conventional
parallelisation approaches are insufficient and new perspectives
must be embraced.

Presented is the SHLL (split HLL) method, a numerical method
which embraces the above perspective. The conventional HLL ap-
proach, developed by Harten et al. [1], is an algebraic method
which computes fluxes across cell interfaces by assuming the pres-
ence of two propagating waves and integration of the governing
Partial Differential Equation (PDE) over space–time. The original
HLL scheme is ideal for serial computation and a traditional MIMD
philosophy: however, the scheme is not ideal for vectorized com-
putation. The presented SHLL scheme is the simple and straight-
forward modification of the HLL fluxes to vector-split form. The
resulting expressions posses a higher degree of locality than the
original HLL expressions at the expense of the conventional esti-
mate of wave speeds used in the flux computation. The SHLL
scheme is derived and applied to various conservation equations
and finally employed for the simulation of several non-trivial engi-
neering problems. The resulting speed-ups based on comparison
Fig. 1. [Left] Control Volume (CV) centered between left and right cell centres showing b
across star region F�.

Fig. 2. Implementation of SHLL using GPU. The kernels FLUXES() and STATE() are device-
that multiple GPU devices are employed.
between several high-end GPU and CPU architectures (Nvidia TE-
SLA C1060 and the Intel Xeon 8� core systems respectively) are
shown to be on the order of 55� (and higher) for simulations
employing upwards of a million cells.

2. Harten, Lax and Van Leer (HLL) method

The fluxes developed by Harten et al. [1] are presented here in
their complete integral form. Fig. 1 shows a control volume in x � t
space covering the region between cells i and i + 1 centered on the
interface separating the cells at x = 0. The region is temporally
bound by the limits t = 0 and t = T. At t = 0, waves moving at veloc-
ities SL (<0) and SR (>0) move away from the discontinuity between
the cell interface. The conditions inside the control volume in the
region between [0, T] and [xL, xR] can be described by the integral:
Z SRT

SLT
UT
� dx ¼

Z 0

xL

U0
L dxþ

Z xR

0
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R dxþ
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0
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oth propagating waves SL and SR [Right] CV centered on left-hand cell showing flux

based, leaving the CPU free to manage communications between nodes in the event



Fig. 3. Problem configuration for the 2D shock-bubble interaction problem. The top and bottom surfaces are reflective. The left and right hand boundaries are inflow and
outflow surfaces respectively.
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where the subscripts L and R represent conditions in the left and
right cells respectively, while the superscript 0 and T represents
conditions at time t = 0 and t = T respectively. The subscript � repre-
sents conditions in the star region between the propagating waves.
This equation assumes nothing regarding variation of fluxes F or
conserved quantities U within space and time. The only assump-
tions made are in the presence of the two propagating waves sur-
rounding a single intermediate region at x = 0. Fig. 1 shows the
revised x � t diagram focusing on the left cell only. Using the same
method of integrating conserved quantities over space and fluxed
quantities over time obtains:

Z 0

xL

U0
L dxþ

Z T

0
FL dt �

Z T

0
F� ¼

Z SLT

xL

UT
L dxþ

Z 0

SLT
UT
� dx ð2Þ

By assuming that the average state over the region between x = SLT
and x = SRT is the same as the average between the region x = SLT
and x = 0, we can substitute the equations together to obtain the
expression for the interface flux:
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By assuming that the quantities U remain spatially constant (i.e.
monotonic in nature) and the fluxes are temporally constant we re-
cover the original HLL flux expressions:
F� �
FðULÞSR � FðURÞSL � SRSLðUR � ULÞ

SR � SL
ð4Þ
3. SHLL (split HLL) method

The mathematical vector splitting of the HLL expressions is a
trivial exercise: the HLL flux expressions are separated into LHS
and RHS components:
F ¼ Fþ þ F� ¼ FL � SLUL

1� SL
SR

� � þ FR � SRUR

1� SR
SL

� � ð5Þ

where superscripts + and – indicate forward and backward moving
fluxes across the interface under investigation. However, these
expressions require computation involving conditions on opposite
sides of the interface – a luxury we cannot afford if we are to suc-
cessfully split the equations. Instead, were required, we will replace
the correct wave speeds with an approximate value:

F ¼ FL � SLUL

1� SL

SA
R

� � þ FR � SRUR

1� SR

SA
L

� � ð6Þ

where superscript A indicates an approximate estimate of the cor-
rect value. The simplest approximate estimate of the correct wave
speeds might be SA

R � VL þ aL and SA
L � VR � aR. After substitution,

the complete split fluxes are of the form:
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where vL and vR are the critical speeds (i.e. Mach number for Eule-
rian gas flow, Froude number for Shallow Water flow) on the left
and right hand sides respectively. These fluxes posses a desirable
feature: when vR = vL = 1, the net flux is FL and likewise, when
vR = vL = �1, the net flux is FR. It should be clear that this scheme
is applicable to any set conservative partial differential equations
(i.e. conservation equations) where the solutions permit flow mov-
ing with bulk velocities V and characteristic disturbances (waves)
propagating with speeds a. The resulting net flux equation can also
be written in terms of the central difference flux:

F ¼ 1
2
ðFL þ FRÞ �

1
2
fFRvR � FLvL þ URaRð1� v2

RÞ � ULaLð1� v2
L Þg

ð8Þ

which demonstrates the schemes reductions to the Rusanov flux [2]
when the critical numbers reduce to 0. The latter term may be re-
gard as an artificial diffusion term – the addition of a dissipation
coefficient D applied to the latter term would allow one to reduce
the numerical dissipation. The scheme can now be demonstrated



Fig. 4. Results from [Left] SHLL and [Right] HLL for the first order accurate simulation of the 2D shock-bubble interaction problem. Results are shown after flow time t = 0.1
[Top], t = 0.15 [Middle] and 0.2 [Bottom].
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to be a central difference scheme with artificial dissipation con-
trolled by the value of D:
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2
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ð9Þ
4. Application to GPU computation

The SHLL method is accelerated through application of GPU
computation as shown in Fig. 2. Prior to GPU kernel execution,
all of the relevant data must be transferred from the host PC to
the GPU device. Due to the limited bandwidth between the two
and the large amount of data transferred, this process has the po-
tential to severely limit performance and thus should be avoided as
much as possible. To increase performance, data transfer is re-
duced by running the entire simulation on the GPU device without
Fig. 5. Solutions to the 2D shock-bubble interaction problem using SHLL with D = 1
[Top] and D = 0.5 [Bottom]. Results are shown at flow time t = 0.2. Note the clearly
reflected wave from the top boundary and its increased resolution with reduced
dissipation coefficient.
interacting with the host PC. The three main functions present on
the GPU device in vectorized form are:

� Initialization kernel – the computational grid is generated and
the initial density, velocity and temperature assigned. This pro-
cess is made simpler through application of Cartesian grids.
� Flux kernel – The split fluxes to the adjacent neighbouring cells

are computed.
� State kernel – each cell receives/donates each respective incom-

ing/outgoing split flux and then updates the values of conserved
properties (i.e. mass, momentum and energy). Following this,
the primitives (density, velocity and temperature) along with
gradients of conserved properties are computed.

In the situation of a two dimensions problem, we create m blocks
and n threads for parallel computation in a CUDA kernel where m is
equal to the number of cells in the y-dimension and n is equal to the
number of cells in the x-dimension. Due to the limited number of
threads, if the number of x-dimension is more than 512 then n is
set to 512 and one (or more) of these threads have to handle multiple
data. Cacheable texture memory is used in our CUDA implementa-
tion: an efficient form of memory which is capable of reading source
split flux data from global memory. Texture memory is accessed
within multiple kernels through using such device functions as
‘tex1Dfetch’, called texture fetches. A texture fetch only counts as a
device memory read in the instance of a cache memory miss. During
the flux kernel execution primitive variables (which are constant
during kernel execution) are read through texture fetching. Threads
of like warp which read these texture addresses (which are close to-
gether) have been observed as achieving excellent performance.
Such fetches are also designed for streaming with constant latency.
5. Results

5.1. Euler Equations – 2D shock/bubble interaction problem

The two dimensional Euler Equations are applied to the simula-
tion of a shock wave passing through an artificial ‘‘bubble” [3] as
shown in Fig. 3. The two dimensional Euler Equations are:
Fig. 6. Problem geometry for the 2D shallow-water dam break benchmark. The
finite thickness of the dam walls are w = 1/8L.
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Fig. 7. Contours of geopotential taken from [Left] SHLL and [Right] SHLL for the 2D invisc
[Bottom]. All simulations have used 2048 � 2048 cells with a constant maximum CFL o
where q is the gas density, u and v are velocities in the x and y direc-
tions respectively and p is the pressure computed from the ideal gas
law (p = qRT). The energy E is given by E = q(0.5 V2 + CvT) where Cv

is the specific heat constant at constant volume and T is the temper-
ature. The characteristic propagation speed is the local speed of
id shallow-water dam break problem after flow time t = 6 [Top], 12 [Middle] and 18
f 0.25.



Table 2
Computational expense (in seconds) for the solution of the 2D shallow-water dam
break problem solved using SHLL on both a single CPU and a single Nvidia C1060 GPU
computing device for problems of varying computational complexity (i.e. size).

256 � 256 512 � 512 1024 � 1024 2048 � 2048

CPU time (s) 18.948 155.08 1247.76 9951.15
Intel Xeon X5472
3 GHz, 12 MB L2

Cache
GPU time (s) 0.41 2.68 19.95 158.32
Nvidia Tesla C1060
240 � cores

(1.44 GHz)
Speedup (CPU/GPU) 46.56 57.84 62.55 62.85
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sound a = (cRT)0.5. The flow is advanced until flow time t = 0.2. All
simulations employed a constant CFL number of 0.5. The simula-
tions are fixed at first order accuracy in both space and time to
clearly demonstrate the influence of the splitting and of the dissipa-
tion coefficient D.

Presented in Fig. 4 are numerical schlierens (indicative of gradi-
ents of density) demonstrating the difference between the conven-
tional HLL and SHLL results. It is worth noting that these significant
differences arise only due to the difference in estimated wave
speeds SL and SR, which affect numerical dissipation. The influence
of the value of dissipation coefficient D on the results for the two
dimensional shock-bubble interaction problem is demonstrated
in Fig. 5. Reduction of the dissipation coefficient to D = 0.5 reveals
flow features previously unseen using conventional SHLL or first
order accurate HLL flux expressions. The clearer depiction of the
high-pressure circulation located at �(x, y) = (0.65, 0.15), in addi-
tion to numerous other flow features, clearly demonstrates the re-
duced dissipation.

5.2. Inviscid Shallow Water Equations – 2D dam break problem

An ideal two dimensional dam break problem is considered as
shown in Fig. 6. The governing equations employed are the Shallow
Water Equations, defined as:

@

@t

/

/u

/v

2
64

3
75þ @

@x

/u

/u2 þ /2

2

/uv

2
64

3
75þ @

@y

/v
/uv

/v2 þ /2

2

2
64

3
75 ¼ 0 ð11Þ

where U = gh , g is gravitation acceleration (�9.81) and h is the
water level. The values u and v are the velocity in the x and y direc-
tions respectively. At t = 0, the invisible barrier separating the high
and low water levels is removed and the flow allowed to develop
until t = 20 s. The resulting contours of U at times t = 10 and
t = 18 s is shown in Fig. 7. The comparison between solutions shows
almost identical results due to the lack of a contact surface in the
star region, lowering the scheme’s consequent dependence on esti-
mations of SL and SR. All solutions are deliberately fixed at first order
accuracy in time and space for comparison between the split and
unsplit form of HLL.
6. Parallel performance

The efficiency of the scheme is only slightly dependent on the
numerical equations being solved, while being much more depen-
dent on the problem size. This is demonstrated in Tables 1 and 2
upon examination of performance characteristics for solutions of
the Euler and Shallow Water Equations by SHLL. Additional com-
parison can be found in Fig. 8. For low numbers of cells (i.e.
Table 1
Computational expense (in seconds) for the solution of a 2D shock-bubble interaction
problem solved using SHLL on both a single CPU and a single Nvidia C1060 GPU
computing device for problems of varying computational complexity (i.e. size).

512 � 256 1024 � 512 2048 � 1024 3072 � 1536

CPU time (s) 184.52 1568.69 13066.183 91,180
Intel Xeon X5472
3 GHz, 12 MB L2

cache
GPU time (s) 3.32 24.07 194.12 1322.9
Nvidia Tesla

C1060
240 � cores

(1.44 GHz)
Speedup

(CPU/GPU)
55.55 65.16 67.31 68.923
100 � 100 cell simulations), the initialization time and communi-
cation times associated with GPU computation reduce the speedup
(defined as the ratio of computational time required by a single
CPU and a GPU computation) to approximately unity. However,
for larger problems (i.e. 1000 � 1000 cells), the speedup was mea-
Fig. 8. Computational expense log10(time in seconds) for [Top] 2D Euler Equations
and [Bottom] 2D Shallow Water Equation benchmarks of varying problem size (i.e.
computational cells). Results compare a single thread of an Intel Xeon X5472
3.0 GHz processor against the computational time required by an Nvidia Tesla
C1060 GPU computing device for an identical problem configuration. A difference of
two (2) between logarithmic times represents a speedup ratio of 100 times (i.e.
10^2 = 100).
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sured to be >62�. This speedup could be improved by moving a
fraction of the workload from the GPU back to the CPU (host), how-
ever, the exact fraction and tasks to be performed by the host fall
outside the scope of this investigation, focussing on pure GPU com-
putation only.

7. Conclusion

The Harten, Lax and van Leer (HLL) flux has been recast as a split
flux method (SHLL) for the efficient application to GPU computa-
tion. The increased locality of the resulting split scheme results
in more efficient computation owing to the reduction in communi-
cations required for flux computation. The investigation of an addi-
tional ‘‘dissipation coefficient” is entered after comparison of the
SHLL fluxes to the Rusanov flux, showing a slight improvement
in the numerical dissipation present. Solutions are presented for
both inviscid gas flow (Euler Equations) and inviscid shallow water
flows. When accelerated using a single Nvidia C1060 GPU comput-
ing device, the performance increases over 60-fold when compared
to the performance on a single thread of an Intel X5472 Xeon CPU
(3.0 GHz, 12 MB cache). The best specific time (i.e. time per cell per
time step) of the implementation is approximately 3.5 � 10�9 s per
cell per time step for the two dimensional benchmarks investi-
gated here.
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