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ABSTRACT 
We investigate the influence of passivation structure on the optical mode distribution and LI characteristics for the 

edge emitting AlGaInP-GaInP visible laser diode (LD). For traditional single-layer Si3N4 or SiO2 passivation designs, the 
modification of dielectric layer thickness can determinate the lateral near-field confinement and change the horizontal 
far-field (FF) divergence. By increasing the film thickness, the non-radiation absorption come from Au-Ti can be 
improved and it leads to a narrow FF divergence beam. As continue to increasing the thickness, thicker passivation 
provides a better confinement factor and then the far-field pattern turn to be wider. For LI characteristics, it is necessary 
to deposit a thick enough passivation to reduce metal absorption. However, it cause much thermal energy accumulated in 
the ridge waveguide and deteriorate the quantum efficiency as adopting a too thick dielectric layer. Finally, we 
demonstrate a high power AlGaInP-GaInP multi quantum wells (MQWs) LD adopted a high-reflectivity passivation to 
enhance the LI characteristics and keep a suitable far-field divergence angle simultaneously. Under the design of three-
pair optical thin films, it cannot only avoid the metal absorption but also enhance emitting efficiency and heat dissipation 
by using a high reflective and good thermal conductive Al2O3/Ta2O5 multilayer. The measured room-temperature 
threshold current (Ith) and characteristic temperature (T0) can be arrived 44.5mA and 104.2K at 16.4 ∘ far-field 
divergence.  
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1. INTRODUCTION 
High efficiency AlGaInP-GaInP visible laser diodes (LDs) are critical components for applications such as laser 

display, distance measurement instrument, and photodynamic therapy for the therapy of cancer. In order to achieve high 
performance single mode operation, typical AlGaInP LD structure utilized GaAs regrowth or narrow ridge strip design for 
lateral carrier and optical confinement [1]. However, these designs often lead to a low quantum efficiency or too high facet 
power density due to optical absorption loss in the GaAs second-growth layers. Hence, it is hard to achieve high-power 
operation in the AlGaInP-based laser diodes. This can be addressed by use of wider bandgap regrown materials, such as 
AlInP or AlGaInP, to construct an index guided laser structure [2]. Nevertheless, this design results in more complex 
crystal regrowth procedures and there are more defects occurring around the interface between these heterostructures. It 
leads to raising the proportion of non-radiation absorption and scattering loss, which also deteriorating the quantum 
efficiency. On the other hand, buried AlAs native oxides are adopted for carrier and optical confinement [3], [4], [5]. 
Although the design can improve scattering loss and absorption around the edge of ridge waveguide, the high temperature 
treatment leads to the variation of doping profile in the epitaxial layers during lateral wet oxidation and it affects the 
operation stability of laser characteristics directly. 

 In the investigation, we demonstrated a high-power AlGaInP-GaInP multi quantum wells (MQWs) LD adopted multi-
layer thin films as passivation layers to modify the lateral optical mode distribution, which can be operated with a low 
threshold current density and high conversion efficiency under a single mode operation. For a traditional ridge waveguide 
structure of the AlGaInP-GaInP red laser diodes, the single-layer dielectric thin film is often chose as passivation layers, 
such as SiO2 or Si3N4 [6], [7]. For the single-layer passivation processing, most researches focuse on the adhesion around 
the interface and suppression of current leakage. There are few articles discussing about their influence on the power-
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