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Abstract 
Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a 

biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, 

facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the 

individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is 

one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density 

and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too 

many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is 

acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled 

illumination conditions and so on.  

There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of 

view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical 

conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of 

working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system 

with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye 

tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to 

implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition 

accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as 

experiment validates the proposed code apertured imaging system, where the imaging volume was 2.57 times extended 

over the traditional optics, while keeping sufficient recognition accuracy. 
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2.2. Depth of field 

Depth of Field (DoF) of an optical system is the distance between the nearest and farthest position that an object appears 

as a sharp image on the photo sensor. DoF is dependent on the objective distance, focal length, entrance pupil and 

circle-of-confusion (CoC). Figure 3 schematically illustrates the concept of DoF (orange slash area), where so , si and f 

represent the object distance, image distance, and focal length, respectively. When the subject is located in front or 

behind the object plane, it causes blur spot on the image plane. Here we use variable c to represent the size of CoC as the 

maximally allowable blurred spot in the recognition process. Let Dn and Df represent the near and far limits of DoF 

respectively. The subject located in front or behind the object plane can be described by equation (1) and (2), where a 

denotes the entrance pupil diameter. 
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Dn and Df can be defined by equation (1) and (2): 
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It should be noted the CoC can be defined differently according to the purpose of the designed optical system. 

Traditional CoC depends on visual acuity, but in this paper CoC is defined as the size of the Gaussian which is used to 

convolve with the original iris image. As long as the iris image, after convolved with the Gaussian, can be successfully 

matched to its clear version, such level of CoC is acceptable in terms of the required accuracy of iris recognition. 

Through the simulation, the allowable size of CoC is 0.136mm. 

Here we set our CoC as 0.136 mm, the focal length as 400 mm and subject distance as 3000 mm of the iris capturing 

system. The pupil size approximates 86 mm of caliber diameter. The corresponding DoF, after calculation, is about 60 

mm. The range is really tight for typical iris acquisition, especially for long-range system. The purpose of our work is to 

provide an optical method for extending the DoF of long distance iris recognition system. 
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Figure 3. The schematic diagram for depth-of-field formulas. 

 

2.3. Optical phase modulation 

In order to extend the DoF, we utilized an optical phase modulation technique called wavefront coding technology. 

Unlike the conventional imaging system whose point spread function deteriorates due to the defocus, we place a coded 

phase mask on the pupil plane to engineer the point spread function insensitive to the defocus. The modified point spread 

function exhibits a triangle distribution over a certain working distance. With appropriate image post-processing 

technique such as Wiener filter, we can restore the intermediate image to adequate fidelity. The restored iris images can 

be used for recognition purpose in later stages. The phase profile is given by [6] 

 

( ) ( )[ ]33exp, yxiyxP += α  (5) 

 

where P(x, y) is the pupil function and the indices x and y are normalized coordinates in the pupil plane. Furthermore, the 

choice of α governs the overall strength of the mask. In other words, larger α causes high invariance but decreases 

modulation transfer function values. In order to design the profile with appropriate α value, we should carefully balance 

the tradeoff between modulation transfer function of the coded image and desired extended DoF range. The optimal α 

value obtained in our system is approximately 42 . 

2.4. Illumination 

In order to validate the proposed methodology, we setup a near-IR iris acquisition system with extended DoF technology. 

As shown in Figure 4, the subject is walking through a gate, and both sides of the gate are equipped with near-IR LED 

arrays for environmental illumination. The iris images captured under near-IR wavelength reveal the most discriminative 

details of iris patterns for the purpose of iris recognition. With wavefront coding and optimized filter design, we can 

extend the original DoF from about 60 mm to 200 mm, which is around three times larger than the original one. This is a 
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Figure 7. (a) HD histogram distribution of authentic/impostor iris matching without cubic phase mask on focus. (b) HD histogram 

distribution of authentic/impostor iris matching without cubic phase mask at different defocus distance. 

3.2. Performance of iris recognition with cubic phase mask 

Figure 8 (a) shows the authentic and impostor HD histogram distribution with cubic phase mask when onfocus. Fisher 

ratio is 2.124; FRR=0.083% when FAR=0.1%; FRR=0.104% when FAR=0%; and EER=0.083%. Under onfocus 

condition, we found that HD=0.403 when FAR=0.1%. We use such HD as adapted threshold for later experiments. 

Figure 8 (b) shows authentic and impostor HD distribution versus various defocus range when HD is set to 0.403. HDs 

of authentic comparison are slowly increasing when the iris is positioned further defocus. Black circle dot markers 

represent the FRR value. Comparing to the case without cubic phase mask, FRRs are increasing less rapidly when 

increasing defocus range. According to the tolerant boundary defined from section 3.1, the acceptable FRR is 18.75%. 

Therefore, we take the value FRR=18.75% as a threshold. We claim that iris images are clear enough if FRR does not 

exceed such threshold. Under such condition, the DoF is extended to 2.57 times compared to the original system 

(without cubic phase mask). 

   
Figure 8. (a) HD histogram distribution of authentic/impostor iris matching with cubic phase mask on focus. (b) HD histogram 

distribution of authentic/impostor iris matching with cubic phase mask on different defocus. 
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In this sub-section, we would like to incorporate image super-resolution (SR) technique into our framework. SR is an 

image processing technique to estimate high resolution images from low resolution ones. It was also widely used as 

means to restore blur and noisy image back to its clear version. We propose to use SR technique in the proposed EDoF 

system to enhance the quality of the iris image acquired by our system. There are many existing image SR algorithms. 

The one we used in the experiment was proposed by Nguyen et al. [15], which is particularly designed for restoring the 

iris images for less constrained environment and on the move. 

In order to fairly measure the performance of the SR, we perform SR on (1) original system (without cubic phase mask) 

and (2) the proposed EDoF system (with cubic phase mask). The results are presented as plots of HD distribution of both 

authentic and imposter comparison. They are shown in Figure 9 (a) (for original system) and (b) (for EDoF system). 

From Figure 9 (a), we can see that without using cubic phase mask (the original system), SR does not bring advantages 

to the original system. The two distribution intersects with each other, meaning that the iris images after performing SR 

are still very blur. The image quality is not improved to a recognizable level. On the other hand, in Figure 9 (b) we see a 

completely different result. The two distribution separate from each other, meaning SR technique did enhance the quality 

of iris images and improve the overall recognition rate. Therefore, we conclude the proposed cubic phase mask system 

combined with image SR technique works pretty well as a long-range iris acquisition system. Such design greatly 

extends the depth-of-field of the original system, at the same time, it also maintains the recognition performance. 

 
Figure 9. HD histogram distribution of authentic/impostor iris matching after performing image super-resolution (a) in the original 

system. The two distribution intersects, which means the SR technique does not work well for the original system (b) in the EDoF 

system. The two distribution separate from each other, which means SR technique improves system accuracy for the proposed system. 

 

Conclusions 
Extending DoF with optical phase modulation is a very useful technique to enhance the usability for image acquisition 

devices. In this study, we implemented a telephoto imaging system to acquire iris images from three meters away, which 

is practically useful for many applications which require high turnover rate. The computational imaging scheme can 

greatly increases the DoF to be approximately three times the conventional imaging system, while keeping sufficient 
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recognition accuracy. Future work includes synchronizing the camera system with continuous shooting function for 

better convenience for long-range iris image acquisition. 
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