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A parallelized 2D/2D-axisymmetric pressure-based, extended SIMPLE finite-volume Navier–Stokes equa-
tion solver using Cartesians grids has been developed for simulating compressible, viscous, heat conduc-
tive and rarefied gas flows at all speeds with conjugate heat transfer. The discretized equations are solved
by the parallel Krylov–Schwarz (KS) algorithm, in which the ILU and BiCGStab or GMRES scheme are used
as the preconditioner and linear matrix equation solver, respectively. Developed code was validated by
comparing previous published simulations wherever available for both low- and high-speed gas flows.
Parallel performance for a typical 2D driven cavity problem is tested on the IBM-1350 at NCHC of Taiwan
up to 32 processors. Future applications of this code are discussed briefly at the end.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications of numerical flow modeling [1–6] use den-
sity as a main dependent variable and extract the static pressure
from the equation of state. However, in incompressible or low
Mach number compressible flows without special treatment, such
methods cannot even lead to converged solutions. Because in low
compressibility limit, the density changes are very small and the
pressure–density coupling becomes very weak. Some methods,
such as pressure correction methods, use pressure as the primary
variable [7] for solving the continuity equation, are mostly utilized
for incompressible flow. However, there are several physical prob-
lems require the consideration of a compressible flow at low Mach
number. Examples may include a mixed convection problem with
the large buoyancy effect [8] and neutral thermal flow problem in
low-temperature plasma jet [9].

There are several popular methods for solving pressure–velocity
coupled flows: SIMPLE algorithm by Partankar and Spalding [7],
SIMPLER by Patankar [10], SIMPLEC by Van Doormaal and Raithby
[11], SIMPLEX by Van Doormaal and Raithby [12], and SIMPLEST by
Sha [13]. Based on a pressure–density coupled correction scheme,
the SIMPLE methods can be further extended to calculate the
compressible flow problems at all speed. It is thus the major
ll rights reserved.
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objective of this paper to present the development of a parallelized
Navier–Stokes equation solver at all speeds.

The work described in this paper represents a parallel, com-
pressible, pressure-based, collocated cell-centered finite volume
method applicable at all speeds of flow, in which the primary vari-
ables are the Cartesian velocity components, pressure, and total
enthalpy [14].
2. Numerical methods

2.1. Governing equations

The general form of mass conservation, Navier–Stokes equation,
and energy conservation equations can be recast in the Cartesian
tensor form as follows:
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where t is the time, x is the coordinate, V is the velocity, and the
subscript j can take the value 1, 2, 3, denoting the three space coor-
dinates. l/ is an effective diffusion coefficient, S/ is the source term,
q is the fluid density and / = (1, u, v, ht) stands for the variables for
the mass, momentum, and energy equations, respectively. ht

ht ¼ CpT þ V2
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is the total enthalpy, where Cp is the specific heat

capacity at constant pressure and T is the temperature.
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Fig. 1. Two-dimensional control volume.
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2.2. Numerical scheme

2.2.1. Spatial discretization
The transport equations using the cell-centered finite-volume

scheme can be written generally in integral form as
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~F �~ndC ¼
Z

X
S/ dX ð2Þ

where X is the domain of interest, C is the surrounding surface, and
~n is the unit normal in outward direction. The time derivative is cal-
culated using the first-order forward difference scheme, and the
source term is treated using last time step value. The flux function
~F consists of the inviscid and the viscous parts:

~F ¼ q~V/� l/r/ ð3Þ

The finite volume formulation of flux integral can be evaluated
by the summation of the flux vectors over each face,
Δ
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Fig. 2. Flowchart of the exte
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where k(i) is a list of faces of cell i, Fi,j represents convection and dif-
fusion fluxes through the interface between cell i and j, DCj is the
cell-face area. The viscous flux for the face e between control vol-
umes P an E as shown in Fig. 1 can be approximated as:

r/e ¼
/E � /P

j~xE �~xPj
¼ /E � /P

DxP;E
ð5Þ
2.2.2. Upwind scheme
The inviscid flux is evaluated through the values at the upwind

cell and a linear reconstruction procedure to achieve second order
accuracy as

/e ¼ /u þWer/u � ð~xe �~xuÞ ð6Þ

where the subscript e and u represents interface and the upwind
cell, respectively, and We is a flux limiter used to prevent from local
extrema introduced by the data reconstruction. Defining /max = -
max(/u, /j) and /min = min(/u, /j), where /j is the neighbor cell of
upwind cell, the We associated with the gradient at cell u due to
edge e is

We ¼

min 1; /max�/u
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where /0
e is computed without the limiting condition (i.e. We = 1).

2.2.3. Pressure smoothing
The cell face velocity ue is usually obtained by linear interpola-

tion as

ue ¼
1
2
ðuE þ uPÞ ð8Þ

To avoid the pressure oscillations due to simulation on a collo-
cation grid, the face velocity can be modified as [15]
**

nded SIMPLE algorithm.
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where A is the coefficient in the discretized momentum equation.
The first pressure gradient term is calculated as the mean value

of cell P and E,
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Fig. 3. Streamlines for driven cavity flow with Reynolds numbers of 100, 1000,
3200, 5000 and 10,000 (top to bottom). Note: Ghia et al. [19] (left); present (right).
The second one is calculated on the edge,
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Set dxP,EE = dxW,E = 2dxP,E and
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ðuE þ uPÞ þ
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which is used to calculate the convection flux through the control
volume faces. The first term is treated as a weighted average, and
the second one is kept as it is to deal with non-equidistant grids.

2.2.4. Velocity-slip and temperature-jump boundary conditions
The velocity-slip boundary condition is given as:

vs � vw ¼ f
@v
@n

����
s

ð13Þ

where vs is the velocity of gas at the solid wall surface, vw is the
velocity of wall, f = 1.1466 � Knlocal = 1.1466 � Kn/qlocal, Knlocal is the
local Knudsen number, qlocal in the local density, and @v

@n

��
s is the

derivative of velocity normal to the wall surface [16]. The tempera-
ture-jump is treated in a similar way:

Ts � Tw ¼ s@T
@n

����
s

ð14Þ

where Ts is the temperature of gas at the solid wall surface, Tw is the
temperature of wall, s = 2.1904 � Knlocal = 2.1904 � Kn/qlocal, and @T

@n

��
s

is the derivative of temperature normal to the wall surface [16].

2.2.5. Solution procedure
A general implicit discretized time-marching scheme for the

transport equations is employed to solve the discretized equations.
It can be written as:

qn
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where the superscripts n and n + 1 mean old value (at time t) and
new value (at time t + dt) of the variables, respectively. The high or-
der differencing terms and cross diffusion terms are treated using
Fig. 4. Schematic of the flow in a square cavity with a square block.
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known quantities and retained in the source term and updated
explicitly.

In an extended SIMPLE [17,18] family pressure-correction algo-
rithm, the pressure-correction equation for all-speed flows is for-
mulated using the perturbed equation of state, momentum and
continuity equations. The simplified formulations can be written as

q0 ¼ p0

RT
ð16aÞ

u0m ¼ �Durp0 ð16bÞ

ukþ1 ¼ uk þ u0 ð16cÞ

pkþ1 ¼ pk þ p0 ð16dÞ

@q
@t
þrðumq0Þ þ rðqu0mÞ ¼ �rðqumÞk ð17Þ

where R is the ideal gas constant, um is the mth Cartesian compo-
nent of the velocity, and Du is the pressure–velocity coupling
coefficient. Substituting Eq. (16) into Eq. (17), and considering
Dq = qk+1 � qn = (qk+1 � qk) + (qk � qn) = q0 + (qk � qn), the follow-
ing all-speed pressure-correction equation is obtained,

1
RT
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RT
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Dt
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where the superscript k represents the last iterative value.
For the cell-centered scheme, the flux integration is conducted

along each face and its contribution is sent to the two cells on
either side of the interface. Once the integration loop is performed
along the face index, the discretization of the governing equations
Fig. 5. Streamlines (top) and isotherms (bottom) at Ri =
is completed. First, the momentum equation is solved implicitly at
the predictor step. Once the solution of pressure-correction equa-
tion is obtained, the velocity, pressure and density fields are up-
dated. The predictor–corrector step is repeated two and three
times so that the mass conservation is enforced. Then, the solution
procedure marches to the next time level for transient calculations
or global iteration for steady-state calculations. A basic description
of the simulation processes is available in Fig. 2. In addition, paral-
lel computing is implemented and tested on distributed-memory
machines using spatial domain decomposition.
3. Results and discussion

3.1. Lid-driven cavity flows

The weakly compressible flow in a square lid-driven cavity is
used as the benchmark problem for validation. Solutions are ob-
tained for configurations with meshes consisting of 128 � 128
grids. The streamlines for the cavity flow with increasing Reynolds
number (Re) from 100 to 10,000 along with those by Ghia et al. [19]
are shown in Fig. 3. As is well known, the center of primary vortex
is offset near the top right corner at Re = 100. It moves towards the
geometric center of the cavity with increasing Re. It is clearly that
the current NS equation solver is capable of reproducing the flow
fields as Ghia et al. [19] at near-incompressible flow limit in the
wide range Reynolds numbers.
3.2. Low speed flow with conjugate heat transfer

To demonstrate the capability of the solver to simulate gas flow
with conjugate heat transfer, we have chosen the conjugate heat
1.0. Note: Rahman et al. [8] (left); present (right).
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transfer problem simulated by Rahman et al. [8], as shown in Fig. 4.
The Richardson number (Ri ¼ gbðTh � TiÞL=u2

i ) for this investigation
is set as 0 to 5, where g is the gravitational acceleration, b is the ther-
mal expansion coefficient, L is the length of the cavity, ui is the inlet
velocity, and Th and Ti are the temperature of heated wall and inlet,
respectively. Simulation conditions in the case are keeping
Re = 100, inlet width w = 1/10L, square block width d = 0.2L and solid
fluid thermal conductivity ratioK = ks/k = 5.0, where ks and k are the
heat conductivities of the solid and gas, respectively. 100 � 100 uni-
form grid points are used for simulations throughout the study,
which is the same as Rahman et al. Conjugate heat transfer is con-
sidered by solving a steady-state heat conduction equation within
the square block and by enforcing the heat flux continuity at the
interfaces between gas and solid. Results of predicted streamlines
and isotherms at Ri = 1 and Ri = 5 along with the data of Rahman
et al. [8] are shown in Figs. 5 and 6. At smaller Ri (Ri = 1), the stream-
lines and isotherms are almost the same as those obtained by Rah-
man et al.; however, at higher Ri (Ri = 5), the flow and thermal
Fig. 6. Streamlines (top) and isotherms (bottom) at Ri =

Fig. 7. Schematic of the mic
patterns deviate greatly from those by Rahman et al. [8]. The results
indicate that the Boussinesq approximation as often assumed by
most of the simulations for mixed convection problems; especially
at high Richardson number is highly questionable. For this type of
flow, a compressible viscous NS equation solver is necessary.
3.3. Microscale high speed flow with slip boundary conditions

A 2D compressible laminar flow around a square cylinder with
size a (a = 1.4 lm) confined in a micro-channel (height Hch, length
Lch) is simulated to demonstrate the capability of handling super-
sonic flow with slip boundary conditions as shown in Fig. 7. The
blockage ratio is B = a/Hch = 0.1 and the inflow length is La. The ref-
erence parameters for this problem are: P0 = Pin, T0 = Tin, q0 ¼ P0

RT0,

V0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2RT0

p
, where the subscript in represents the inlet state.

The simulation conditions in the supersonic case are Mach number
Ma = 2.4261, Knudsen number Kn = 0.05, Lch = 50a and La = 5.5a.
5.0. Note: Rahman et al. [8] (left); present (right).

roscale supersonic flow.
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Velocity-slip and temperature-jump boundary conditions are
implemented in the solver following the standard approach.
500 � 100 grid points and 16 processors are used for the simula-
tion. The distribution of flow properties in the channel are shown
in Fig. 8. Figs. 9 and 10 show typical comparisons between the
Fig. 8. Normalization distribution of flow propertie
present results and those by Shterev and Stefanov using SIMPLE-
TS [16] using much higher resolution (1600 � 400–8000 � 1600
grids). Results show that our simulation with much lower resolu-
tion is compatible with that obtained by much higher resolution,
which can reduce the simulation greatly.
s in the channel at Ma = 2.4261 and Kn = 0.05.



Fig. 9. Profiles of the horizontal velocity along the centre line of the channel (y = Hch/2) for different spatial steps behind of the square.

Fig. 10. Temperature profiles along the centre line of the channel (y = Hch/2) for different spatial steps behind of the square.

Fig. 11. Parallel performance of 2D square driven cavity with 512 � 512 grids.
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3.4. Parallel performance study

The same test problem, the lid-driven cavity flow as shown
earlier, is used for parallel performance study. We have used
512 � 512 grids on a PC cluster system (IBM-1350 at National
Center for High-performance Computing of Taiwan) up to 32
processors using different combination of linear equation solvers
(GMRES and BiCGStab). Fig. 11 shows the parallel speedups by
using ILU–GMRES and ILU–BiCGStab is nearly linear up to 24
processors and begins to level off at 32 processors. We attribute
this to the small grain size of the test grid size. Although the par-
allel speedup using ILU–BiCGStab is slightly better than using
ILU–GMRES, the absolute runtime using ILU–BiCGStab is slightly
longer.

4. Conclusions

In this study, the development of a parallelized 2D/2D-axisym-
metric NS equation solver is presented and validated by excellent
agreement with several benchmark problems, including a lid-dri-
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ven cavity flow, a square block within a cavity with conjugate heat
transfer and a supersonic microchannel gas flow. Results of parallel
performance study shows that the developed code is scaled almost
linearly up to 24 processors using 512 � 512 grid points. Combina-
tion of this parallelized NS equation solver with a parallelized fluid
modeling for gas discharge is currently in progress and will be re-
ported elsewhere in the near future.
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