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ABSTRACT  

Magnetic ion-doped semiconductor nanocrystals (NCs) have recently drawn a great deal of interest because of the 
intriguing physical properties and the application potential in spintronics and magneto-electronics. In this work, we 
report on theoretical studies of magnetism in colloidal CdSe NCs doped with Mn2+ ions. Numerically, the exact 
diagonalization (ED) technique is employed to calculate the electronic structures and magnetizations of singly changed 
CdSe NCs doped with four Mn ions in various spatial distributions. The numerical results show that the magnetism in a 
few-Mn doped NC is not only determined by the total number of Mn ions, but also sensitively depends on the individual 
locations, which are however hardly considered by widely used mean field theory. Remarkably, the formation of Mn 
clusters in a NC leads to the significant deviation of the magnetization from the standard Brillouin function description 
for an ideal paramagnet. The quantum size effect is shown to enhance the magnetizations of magnetic NCs via the 
interactions between the quantum confined carriers and Mn-clusters. A solvable constant interaction model (CIM) with 
the consideration of individual Mn spins is presented for the explanation of the numerical data.  

Keywords: Nanocrystals, quantum dots, magnetic semiconductors, paramagnetism, spin physics 

 

1. INTRODUCTION  
Since Bhargava et al.[1] for the first time successfully incorporated magnetic ion (Mn2+) dopants into colloidal 
semiconductor (ZnS) nanocrystals in 1994, magnetic ion doped semiconductor nanostructures have persistently received 
the increasing attention from the investigators in both fields of applied and fundamental physics. To date, magnetic ion 
doped colloidal semiconductor nanocrystals have been successfully synthesized for a variety of semiconductor materials, 
including ZnO, ZnS, ZnSe, CdS, CdSe, and PbSe [2-5]. Besides the attractive application potential,[6-9] those magnetic 
semiconductor nanostructures with the hybrid nature of semiconducting, magnetic and quantum properties serve as an 
unique test bed for studying fundamental physics of magnetism [10-13].   

Perhaps one of the most intriguing physics in magnetic NCs is the competitive interplay between the spin interactions 
between magnetic ions and those between magnetic ions and quantum confined carriers. While the Mn-Mn spin 
interactions are anti-ferromagnetic (AFM) and short-ranged, the carrier-Mn interactions are ferromagnetic (FM) and 
depend on the carrier wave functions that basically spread over the interior of nanocrystals. The contrast between the two 
types of the existing spin interactions in charged or photon excited magnetic NCs makes the magnetic properties rich but 
also some complications hindering detailed theoretical investigations. [14-15].  

Theoretically, the magnetism of magnetic semiconductor bulk and thin film systems have been studied widely using the 
mean field theory (MFT).[16-18] In the MFT, the couplings of the total Mn spin to a carrier are modeled as a continuous 
field following the standard paramagnetic behavior described by the Brillouin function.[16] In a magnetic NC, the 
number of magnetic ions is however quite small (typically few or tens of magnetic ions only), and if whether the MFT is 
still valid for few-Mn doped NCs remains an open question. In this work, we employ the numerical exact diagonalization 
(ED) approach to study the magnetism in singly charged NC with the small number of Mn ions up to four. As presented 
in our previous works, the discreteness of the spatial distribution of few Mn ions in a NC leads to the significant 
deviation of the magnetization from the standard Brillouin function description and various magnetic anisotropies in 
symmetric NCs, both of which are beyond the expectation from the MFT. [19-21] 
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However, the restriction of using the exact diagonalization approach lies in the high demand of numerical cost. Since the 
total number of many-Mn configurations 6 MnN

cN ∝  rapidly increases with increasing number of Mn, the ED technique 
works well only for the system with small number of Mn ions. For more physical analysis and also the possible 
extension to the cases of more Mn ions, a simplified constant interaction model (CIM) is presented. Via the comparison 
between the model analysis and numerical results, the validity of the CIM is discussed.  

1.1 Theoretical model 

The Hamiltonian for a singly charged semiconductor NC coupled to magnetic ions subject to an external magnetic field 
is written as,  

 e e Mn Zeeman Mn MnH H H H H− −= + + + , (1) 

consisting of the Hamiltonians of the single electron, the electron-Mn interactions, the Mn-Mn interactions, and the spin 

Zeeman energies. Generally, the single-electron Hamiltonian is written as †
e i i i

i

H E c cσ σ
σ

= ∑ in a second quantized form, 

where the subscript i labels the single-electron orbital states, ( )σ =↑ ↓ denotes the up (down) spin of electron with the 

z-component, 
1 1 ( )
2 2z zs s= + = − , †  ( )i ic cσ σ is defined as the creation (annihilation) operator, and iE  the eigen-

energy of a single electron in state i . Within the hard wall spherical model, the eigen-energies and wave functions of a 

single-electron in a spherical NC are given by
2
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m d
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respectively, where ( , , )r r θ ϕ=r  is the position of electron in polar coordinate, d  the diameter of spherical NC, *m  

the effective mass of electron, ( )lJ r  the spherical Bessel function, nlα  the n-th zero of ( )lJ r , ( ),lmY θ ϕ  the spherical 

Harmonic function, and *
00.15 m m= is the effective mass of electron for CdSe. 

The contact ferromagnetic interaction between electrons and magnetic ions is expressed as 

 
( ) ( )' † † † †

' ' ' '
, , 2

eM
ii I z

e Mn I I Ii i i i i i i i
i i I

J R
H c c c c M c c M c c M+ −

− ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓
′

⎡ ⎤= − − + +⎣ ⎦∑
r

 (2) 

where the first term on the right-hand side (rhs) describes that the z components of electron spins act as an effective field 
acting on Mn spins z

IM , and the last two terms involving operators x y
I I IM M iM± = ±  describe the electron spin flip 

accompanied by the change of Mn spin. The strength of the e-Mn interaction is given by 

( ) ( ) ( ) ( )0 * 3
' '

eM
ii I eM i I i IJ R J R R dψ ψ −≡ ∝

r r r
with ( )0 10.8eMJ =  meV nm3, depending on the positions of Mn ions and the NC 

size.  The spin Zeeman term is written as 

 ( ) ( )†z z
Zeeman e B i i i Mn B I

i I
H g Bs c c g B Mσ σμ μ= − −∑ ∑  (3) 

for the external magnetic field B
r

in the z-direction, where 1.2eg =  ( 2.0Mng = ) is the g factor of electron (Mn) in CdSe 
NCs. 

The AFM interaction between magnetic ions Mn MnH −  is described by 
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 ( )1
2Mn Mn MM IJ I J

I J
H J R M M−

≠

= − ⋅∑
r r r

 (4) 

where IM
r

 is the spin of the I-th magnetic impurities Mn2+ at position IR
r

 and 

( ) ( ) ( ){ }0
0exp / 1 0MM IJ MM IJJ R J R aλ ⎡ ⎤= − − <⎣ ⎦  is the short ranged AFM coupling between Mn ions, rapidly decreasing 

with increasing the Mn-Mn distance IJ I JR R R= −
r r

. Following previous works in Refs.[15,20], we take ( )0 0.5MMJ = −  

meV, 0 0.55a =  nm, and 5.1λ = for CdSe:Mn.  

The second quantized forms of Eqs (1)-(3) allow for straightforward implementation of exact diagonalization and 
extension for more number of electrons. For nanocrystals, the energy quantization is so high (typically greater than 102 
meV, two order of magnitude higher than the spin interactions) that the electron scattering to the high orbitals are 
negligible, and the electron in the ground state can be reasonably assumed fixed onto the lowest s-orbital. Accordingly, 
one can reformulated Eq.(1) as, 

 ( ) ( )1
2

eM z
eff ss I I MM IJ I J e B z Mn B I

I I J I

H J R s M J R M M g s g M Bμ μ
≠

⎛ ⎞= ⋅ − ⋅ − +⎜ ⎟
⎝ ⎠

∑ ∑ ∑
r r r r rr

 (5) 

where the constant kinetic energy of electron as an energy offset is removed for brevity. Employing the ED technique the 
energy spectra of single-electron-few-Mn complexes in magnetic NCs can be numerically calculated at high accuracy. 
Firstly, we take the all possible electron-Mn configurations 1 1, , ,...,z z z

z Ns M M M  classified by the z component of 

electron spin zs , and the z component of the spin of the I-th Mn ion z
IM =−5/2, −3/2,...,5/2, as the basis for expanding 

the eigen states of the magnetic system. Accordingly, we build up the corresponding Hamiltonian matrix, carry out direct 
diagonalization for it, and finally find the eigen-energies and -states. Notably, the both of the e-Mn and Mn-Mn 
interactions depend on the locations { }IR

r
of the Mn ions in the NC, so does the resulting energy spectrum (see Fig.1). 

The magnetization of a magnetic NC at temperature T is calculated according to the definition, 
ln

B
T

Zk T
B

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
M , 

in terms of the partition function 
i

B

E
k T

i
i

Z d e
−

=∑ , where iE ( id ) is the energy (degeneracy) of the i-th energy level of the 

magnetic NC. The magnetic susceptibility 
B

χ ∂
=
∂
M  is defined as the partial derivative of magnetization with respect to 

the magnetic field.  

  

2. RESULTS AND ANALYSIS 
2.1 Numerical results 

 

Figure 1 shows the energy spectra, magnetizations, and magnetic susceptibilities of singly charged CdSe NCs of 
diameter 8d = nm doped with four Mn ions (distributed in three different ways in the NCs) with the magnetic fields up 
to 10 Tesla. For the NC with four distant Mn ions as considered in Fig.1(a)-(c), since the AFM interactions between the 
distant Mn ions are negligible, the magnetization and magnetic susceptibility as functions of B shows a typical behavior 
of paramagnetism that can be well described by the Brillouin function ( ) /J J B J J Bg J B g B kTμ μ=M  with the total 

angular momentum of single-electron-four-Mn complex, 5 1 14 10
2 2 2

J = × + =  [see Fig.1 (b) and (c)]. Figure 1 (d)-(f) 
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shows the numerical results for the singly changed NC with two distant Mn ions and one two-Mn cluster. In the presence 
of short-range AFM interaction in the Mn clusters, the magnetization of the NC is diminished at low magnetic field 
because of the anti-parallel spin of Mn’s in the cluster in the ground states. With further increasing the magnetic field, 
the Mn spins in the cluster turn out to be towards the direction of the magnetic field and the ground state transitions 
happen with the increment of spin at certain finite magnetic fields. As a result, the increasing magnetization shows a 
staircase feature and magnetic susceptibility oscillates with magnetic field. Those magnetic features deviated from the 
standard Brillouin function description could be varied significantly by changing the Mn-locations or the number of Mn 
ions in a cluster. Figure.1(g)-(i) shows the results for the same charged NC but with four Mn ions clustered together. 
With the four Mn ions all of which are AFM interacting with each other, the magnetization of the NC with a Mn-cluster 
is significantly suppressed at low magnetic field, and then increases with increasing the magnetic field. The diminished 
magnetization at the low magnetic field, say 1B T= , results from the strong AFM in the Mn-cluster that overwhelms the 
weak FM e-Mn interaction in the NC of diameter 8d = nm.  

 

2.2 A solvable model and analysis 

From the previous discussion, we realize that the magnetic behavior of a small NC doped with small number of Mn ions 
is not determined by the total number of Mn ions but also sensitively depends on their locations, which is however 
hardly considered appropriately using the MFT. On the other hand, the use of the ED technique to study magnetic ion 
doped NCs is however limited by the high demand of numerical resources, rapidly increasing with a slight increase of 
the number of Mn ions. Therefore, a valid simplified model that has no need of heavy numerical computation but still 
take into account the discreteness of Mn spin distribution would be very useful.  

For the purpose, a constant interaction model has been proposed. While in the MFT the spins of individual Mn ions are 
smeared out and modeled as continuous fields, one treats the e-Mn and Mn-Mn interactions as constant values but still 
preserve the individual spins of Mn’s in the CIM. Under the simplification, the effective Hamiltonian for a singly 
charged magnetic NC in the CIM reads 

 eff
1 ; , 1

ˆ
QN

c e I M I J z J B
I I J I J

H J s M J M M J g Bμ
= ≠ =

= − ⋅ + ⋅ +∑ ∑
r r rr

 (6) 

where ( ) ( ) ( ) ( )
( )

1 1
2 2 1

s Mn N N
J Mn s

g g M M s s
g g g

J J
+ + − +

= + −
+

, the effective FM coupling constant is estimated 

by ( )0 36 /c eMJ J dπ=  meV, and the effective AFM coupling constant MJ  is the average AFM Mn-Mn interaction over the 
all short range interacting Mn ions. Although the Mn-position dependences of the spin interactions in the CIM are 
neglected, the two types of the interactions, the FM ones between electron and all Mn ions and the AFM ones between 
Mn’s in clusters, are distinguished. One can show that the effective Hamiltonian of Eq.(6) commutes with the total spin 

NM  of all N  Mn ions and also the total spin QM  of the AFM interacting Q  Mn ions. It turns out that NM , QM can be 
used as good quantum numbers for the single-electron-many-Mn eigen states. In addition to the total spin and its 
magnetic quantum number of the entire charged magnetic NC, 1

2NJ M= ± and Jm , the eigen solutions for Eq.(6) are 

explicitly given by  

( )1 1 1 35, , , 1
2 2 2 2 2 4

c M
N N Q J N Q Q J J B

J JE J M M M m M M M Q m g Bμ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ± = − ± − + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7) 

According to Eq.(6), the spin of the ground state is given by  

( ) ( ) 1
2

GS GS
NJ M= + , (8a) 

with 
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( ) ( ) ( )5
2

GS GS
N QM M N Q= + −  (8b) 

and  

( ) ,
2

GS c B
Q

M M

J g BM c
J J

μ⎡ ⎤
= + +⎢ ⎥
⎣ ⎦

 (8c) 

 where ( )10 2c =  for even (odd) Q, and [ ]y  is the Gauss symbol which take the integer part of y . Apparently, one 

sees that the total spin of a magnetically doped NC explicitly depend on the numbers of the ( )P N Q= −  distant and the 
Q  short range interacting Mn ions and the strengths of the relevant FM and AFM interactions, cJ and MJ ,as well. An 
impressive feature revealed by the CIM is that a NC with AFM interacting Mn clusters might undergoes ground state 
transitions with the increment of spins ( )GS

QM , ( )GS
NM and J as the increasing magnetic field 

coincidences ( ) / 2n M c
c

B

nJ JB B
gμ
−

= =  for 1,2,3...n = . The magnetic state transitions result in the staircase feature of 

magnetization as shown in Fig.1 (e) and (h), and can be viewed as a direct signature of anti-ferromagnetic interactions in 
a NC with Mn-clusters. According to Eqs. (8a)-(8c), the total spins of the ground states of the NCs considered in Fig.1 
are predicted. For instance, with the coupling constants, 0.107 meVcJ = and ( )0 0.5 meVM MMJ J= = , the NC of 

diameter 8d nm=  with P=2 and Q=2 is predicted as  11
2J =  ( 15

2J = ) at 0B = ( 10B T= ), and a ground transition 

happens at 3.85 cB T=  , consistent with the numerical results. Figure 2 compares the numerical results calculated using 
ED method and those using the CIM. In general, the CIM yields the results in excellent agreement with the NCs 
containing P distant Mn ions and a single Q-Mn cluster. The CIM however underestimates the magnetization for the 
magnetic NCs containing more Mn-clusters, as shown for the NCs with two Mn-dimers in Fig.2(b), since the AFM 
couplings between distant dimmers are actually nearly vanishing but still taken into accounted by CIM. By reducing the 
size of NC, the FM e-Mn interaction might become competitive to the AFM interaction in the Mn-cluster and the 
magnetization becomes finite at the same low magnetic field. Fig. 3 (a) shows the magnetizations of the singly charged 
NCs of different sizes with the same four-Mn cluster as functions of magnetic field. As shown in Fig.3 (a) and (b), the 
low-field magnetization of a small NC is increased by reducing the NC size due to the increasing strength of the FM e-

Mn interaction which is inversely proportional to the volume of NC, ( ) ( ) ( ) 20 * 3
100

eM
ss I eM IJ R J R dψ −≡ ∝

r r
. 

3. CONCLUSION 
In summary, a numerical exact diagonalization study of the magnetic properties of singly charged II-VI CdSe 
nanocrystal doped with four Mn2+ ions is presented. The numerical results show that the magnetism in a few-Mn doped 
NC sensitively depends on the locations of individual distant Mn ions, the number of Mn-clusters. With increasing 
magnetic fields, the formation of AFM interacting Mn clusters lead to intriguing staircase-like increasing magnetization 
significantly deviated from an ideal described by the Brillouin-function description, resulting from the competitive 
interplay between the AFM Mn-Mn interactions and the FM carrier-Mn ones. The quantum size effect is shown to 
enhance the magnetizations of magnetic NCs via the interactions between the quantum confined carriers and Mn-clusters. 
By contrast to the widely used mean field theory, a solvable constant interaction model that allows us to take into 
account the individual Mn spins in a magnetically doped NC is employed for physical explanations.  
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Figure 1. The calculated energy spectra, magnetizations, and magnetic susceptibilities of singly charged CdSe NCs doped 
with four Mn ions in different distributions with the magnetic fields up to 10 Tesla using the exact diagonalization approach. 
In (b), (e) and (h), the dash lines show the magnetizations for ideal paramagnets of angular momenta J , which are explicitly 
described by the Brillouin function, ( ) /J J B J J BM g J B g B kTμ μ= . 

 
Figure 2. The magnetism for singly charged CdSe NCs of diameter 8d = nm,  doped with four Mn ions in different spatial 
distributions. The left panel (a) shows the numerical results of ED and CIM for the cases with two distant Mn ions (P=2) and 
two clustered ones (Q=2).The right panel (b) shows the numerical result of ED with different Mn ion distributions and CIM 
for different P=0 and Q=4 cases.  
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Figure 3. (a) The magnetizations of singly charged NCs of different sizes, containing a four-Mn cluster, as functions of the 
magnetic field. (b) The increasing total spin of four clustered Mn ion in the ground state of a magnetic NC with reducing the 
size of the NC. 
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