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A systematic study is carried out of a Lorentz lattice gas in order to model the growth dynamics of
order-disorder interfaces. In the model, a particle, initially at the origin, moves on the bonds of an ini-
tially ordered square lattice, with sites covered by periodically repeated square blocks of 1, 4, or 9 right
or left scattering rotators, whose orientations change after collisions with the particle. Depending then
on the initial conditions of the blocks and the particle, one observes the following: (a) the particle ran-
domizes the rotator orientations completely, in an ever growing disordered “liquid” phase inside the or-
dered ‘““solid” phase on the rest of the lattice; (b) the particle propagates suddenly after a transient ran-
domization period as in (a); or (c) the particle propagates through the ordered lattice immediately. A
simple picture for the growth of the randomized region, which proceeds via an interface of fractal di-
mension 0.75, is discussed. The nature of the propagation for the cases mentioned can be modified by

collisions with impurities.

PACS number(s): 05.50.+q, 68.35.Fx

The static and dynamical properties of an interface be-
tween ordered and disordered phases, e.g., solid and
liquid, have been studied by a wide variety of stochastic
models, where random noise in the interface growth pro-
cess is introduced to generate the rough and irregular
properties that the interface of a real physical system is
known to possess. Even though the microscopic dynami-
cal equations for particle motions are ultimately deter-
ministic, it seems inevitable to introduce a probabilistic
element, given the complicated nature of the interface dy-
namics. In this paper, however, we propose a determinis-
tic Lorentz lattice gas model to study the growth of the
order-disorder, or solid-liquid, interface. In particular,
we study how, by the motion of a single moving particle,
a drop of liquid inside an infinite solid grows and gradual-
ly melts the solid. It turns out that much of the desired
irregular nature is spontaneously generated by this simple
deterministic model. We also found that the outcome
will depend on the structure of the basic block that forms
the periodic solid phase by translations. For certain
blocks, a steady growth of the liquid region is observed
for the entire duration of our calculations. This
represents a model for interface growth. For others, an
abrupt onset of a wavelike propagation through the lat-
tice is found after a transient time. While we do not have
an immediate physical correspondence of the propagating
mode, we believe this is a combined consequence of the
periodicity of the lattice and the collective motion of the
particle and the flipping rotator medium in which it
moves. Thus it could have potential applications to phys-
ical systems that happen to satisfy these two conditions.
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In the usual Lorentz lattice gas, one considers the
motion of one particle in discrete time steps from site to
site on a lattice, randomly occupied by scatterers, which
scatter the particle, upon collision, according to certain
scattering rules. In a number of previous publicatiomns,
Lorentz lattice gases have been considered on a variety of
lattices for a number of deterministic scattering rules.
New types of diffusion, not found in a continuum system,
were discovered [1]. In this paper, we consider the
motion of one particle on a square lattice regularly occu-
pied by scatterers: flipping rotators (FR’s). Here the par-
ticle will scatter to its right (left) upon collision with a
right (left) rotator, which flips, i.e., changes orientation,
after the collision from a right (left) to a left (right) rota-
tor, respectively.

While in the case of a lattice randomly occupied by
scatterers an average can be carried out over all possible
random configurations consistent with a given number of
right and left scatterers, for a lattice regularly occupied
by scatterers, no such average occurs. Nevertheless, we
will see that certain random properties of the lattice gas,
i.e., a liquid, will result from the deterministic motion of
the particle on the lattice initially ordered. To be precise,
we will consider here, in particular, the case of a particle
moving from the origin on an infinite square lattice fully
covered by square blocks of right (R) and left (L) scatter-
ers of increasing size of n lattice units. In other words,
the types of scatterers on the lattice are obtained by
translating the n X n basic block of scatterers to cover the
whole lattice. Thus the lattice is invariant under vertical
or horizontal translations of n lattice units.

Although our main interests here are the ever growing
liquid regions, we will, for systematic reasons, discuss the
behavior of the Lorentz lattice gas as a function of in-
creasing block size. As indicated before, for certain basic
blocks, the particle could settle into a propagation mode.

2482 ©1994 The American Physical Society



50 GROWTH, SELF-RANDOMIZATION, AND PROPAGATION IN A ...

Once in this mode, the rotator configuration in a restrict-
ed neighborhood around the current position of the parti-
cle will repeat itself indefinitely after displacement of the
particle in a fixed direction in a fixed number of time
steps, which we call a period. This self-repetition pro-
vides the mechanism by which the particle propagates
indefinitely on the lattice in a certain direction. The
propagation is characterized by the displacement vector
of the particle during one period: the propagation dis-
tance is the length of the displacement vector, the propa-
gation direction is given by that of the displacement vec-
tor, and the propagation velocity is the ratio of the prop-
agation distance and the period.

Our model is discrete in both space and time and the
discrete space step from one lattice site to the next, as
well as the discrete time step, provide the units for dis-
tances and times, respectively. Thus no explicit labeling
of units is necessary for all the quantities and figures in
the following.

(1) The case of a lattice occupied by a R or L FR of
period 1, i.e., a lattice fully occupied by either R or L
FR’s [cf. Fig. 1(a)] has been discussed before [1(c)]. This
model is identical to that of an ant walking on a square
lattice considered earlier by Langton [2]. In this case one
finds that, after a transient motion of 9977 time steps, the
particle settles in a periodic propagation mode of period
104, a width of 5 lattice sites, and a propagation distance
of 2V'2. This is case (b) mentioned in the Abstract. Dur-
ing the propagation the particle moves forward and back-
ward, repeating 43 lattice sites per period. Here repeti-
tion is defined as the smallest number of common sites
visited by the particle in one period, which were also
visited in (a) previous period(s), for all choices of the
starting point of the period. The propagation is similar
to but more complicated than that discussed before on a
triangular lattice occupied by FR’s [1(a),(b)]. We note
that the direction of propagation is always along a diago-
nal and only depends on the type of scatterer covering
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FIG. 1. (a) Propagation on a lattice initially with only L rota-
tors. The particle starts at (100,100) due north and begins to
propagate after a transient of 9977 time steps. (b) The immedi-
ate propagation (meander) of a particle on a lattice with alter-
nating rows of R and L rotators initially.
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the lattice (R or L) and the initial direction of the parti-
cle velocity.

(2) In the case of a lattice occupied by (2X2) blocks of
period 2, only three cases have to be distinguished, with
patterns having only one L, two L’s in one row (column),
or two L’s in a diagonal, respectively. They all lead to
immediate propagations, with periods 8, 4, and 2, and
propagation velocities %, %, and 1/\/5, respectively, ei-
ther along the horizontal or vertical axes (meander) or a
diagonal (zigzag), depending on the arrangements of the
scatterers and the initial phase, i.e., initial position and
velocity of the particle [cf. Fig. 1(b)]. This corresponds to
case (c) mentioned in the Abstract.

(3) In the case of a lattice occupied by (3 X3) blocks of
period 3, there are 2° different scatterer arrangements,
nine initial particle positions with four different particle
velocities each. By symmetry, only 13 scatterer arrange-
ments have to be considered for 36 initial particle phases.
A given scatterer arrangement leads to the same asymp-
totic motion of the particle up to a rotation or transla-
tion, independent of the initial phase of the particle.
However, the way this motion is reached, i.e., the
particle’s transient behavior, depends strongly on the
particle’s initial phase. The results are summarized in
Table I.

For ten FR configurations, propagation occurs before
10° time steps, the maximum time we considered, while
for three FR configurations no propagation was found up
to that time. We first discuss these three nonpropagating
cases, which constitute case (a) mentioned in the
Abstract.

(A) The basic result of the motion of the particle from
the origin over the lattice in the course of time can then
be described as the progressing conversion of a regularly
occupied lattice to a randomly occupied lattice. Alterna-
tively, one can consider it as the gradual melting from the
inside of an ordered ‘“solid” into a steadily growing
“liquid” region, a description we will use here for con-
venience (cf. Fig. 2). In fact, if we define at time ¢ the
area A(t) of the liquid region as the number of distinct
sites visited by the particle and the boundary B (¢) of the
liquid region as the number of the sites inside the liquid
region which have at least one (solid) neighbor which has
not been visited, then for roughly z > 5000 one finds the
power laws

A(t)~t* with a=0.75, (1a)
B(t)~t? with B=0.50, (1b)

where a and B have been determined by least squares fits.
The fact that B ~ A#/* with B/a~ 271 suggests that the
boundary is a fractal with dimension 28/a=%. This is
confirmed by direct measurement. For ¢ larger than
roughly 5000, the liquid region is essentially a simply
connected region, with only a few nonvisited sites mainly
near the boundary.

That the rotator distribution inside the liquid region is
indeed random can be established by considering the two
point rotator orientation autocorrelation function

F(r,t)=3 ' f(r,0)f (r2)/ 3" 1.

I,y l‘l,l’z
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TABLE I. Top row lists the positions of L’s in 3 X3 blocks, by numbering the sites in a block from 1 to 9 and from left to right, re-
spectively, so that the sites in the first row are labeled 1,2,3, those in the second row 4,5,6, and those in the third row 7,8,9. We
characterize each block by the position(s) of the left rotators, the others all being right rotators. The nonpropagating patterns are in-

dicated by .

Positions of 1,2, 1,2, 1,2, 1,5, 1,2, 1,2, 1,2, 1,3, 1,4,
L rotators None 1 1,2 1,9 3 5 9 9 3,4 4,5 5,9 49 8,9
Period 104 164 © 598 4 68 14 2 4 © 2 414 o0
Repetition 43 4 o 1 0 1 1 0 0 o0 0 54 o
Average transient 9977 3677 o 128 0 54 62 0 0 £ 0 40049 o0
. V2 32 3v34 1 V2 W2 V2 1 V2 V1
Velocity — — — — — — — — — —_—
52 299 598 2 34 14 2 2 2 138

Here f(r,t)=-+1 or —1, if there is a R or L rotator, re-
spectively, on the site r at time ¢, and the prime on the
summation sign indicates that the summation is carried
out over r; and r, in the entire liquid region with the re-
striction that r=r,—r,. Figure 3 shows a typical F(r,?)
for r=(1,0) which vanishes after about 5000 time steps.
Also plotted is ¢/ A (t), the number of collisions per lat-
tice site, showing that at t =5000 each scatterer has been
visited about five times, which suffices to randomize
them. Similar results obtain for three and four point
correlation functions.

Not only the scatterer configuration in the liquid re-
gion is random after ¢ =~5000; the particle trajectory is
also. One way of seeing this is by cutting the trajectory
at time T into n large sections of 7 time steps, so that
T =n7. We consider then the distribution P(r,7) of dis-
placements r, —r,_;, in those sections for

FIG. 2. Liquid (inner region) and solid (outer region) for a
typical nonpropagating pattern [(1,2,4,5) in Table I] at
t =4660000. The square shown is a 720X 720 part of the lat-
tice. The rotator distribution inside the liquid is random with
no spatial correlations. The boundary between the liquid and
solid is a fractal with dimension 1.33. Black is R, white is L.

n=1,2,...,T /7. Using that P(r,7) in the liquid region
does not depend on the direction of r, we define a radial
distribution function ﬁ(r,7)=21rrP(r,T) for 7 larger than
roughly 1000; P corresponds to that of a Gaussian distri-
bution with a diffusion coefficient Dg; =0.35 (cf. Fig. 4),
where RL refers to random liquid. This value of D is
larger than that for the corresponding random walk
(RW), Dpw =0.25, but equal to that found before [1(a)]
for the diffusion of a particle in a random distribution of
an equal number of R and L flipping rotators on a fully
occupied square lattice. That Dg; > Dgrw can be under-
stood on the basis of the impossibility of the occurrence
of certain sequences of collisions in the FR model which
are permitted in the RW, e.g., the impossibility of five
successive R (or L) turns, leading to an effective “short-
range repulsive correlation” between sites visited by the
particle. The same results for P(r,7) are obtained for the
displacements of particles randomly put on the RL.
Another way of establishing the randomness of the
particle trajectory is to consider correlations instead of
displacements. Defining h;=+1 or —1 if the particle
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FIG. 3. The correlation function F(r,?) (solid line) with
r=(1,0) as a function of ¢ for nearest neighbor scatterers at dis-
tance 1 inside the growing liquid region. It reaches equilibrium
(zero) and fluctuates around it after about 5000 time steps, indi-
cating that the liquid is then truly random. The number of col-
lisions per site, i.e., 1/ A (t) (dashed line), shows that the liquid
is randomized after about five collisions per site; its ¢!/* asymp-
totic behavior is also plotted [cf. Eq. (1a)].
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FIG. 4. Radial probability distribution P(r,7) for the dis-
tance r the particle travels in an interval 7 of 10000 time steps
(diamonds). Total time T considered is around 100 million time
steps. The dashed line corresponds to a Gaussian distribution
with diffusion coefficient Dg; =0.35. Also shown is the proba-
bility distribution P, (g) (crosses) to have ¢ +1’s and (m —q)
—I’s in an interval of m binary numbers generated from a typi-
cal particle trajectory. Here m =500 and P,,(q) is determined
from 2000 such intervals. The dotted line is the binomial distri-
bution for an ideal random number generator. Note that r and
q are plotted on the same horizontal axis. The points were
determined from a single trajectory. The agreement between
points and curve can be improved by choosing larger trajec-
tories.
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FIG. 5. Particle turn autocorrelation function G(j). The
strong correlations for j <40 show the significant difference be-
tween a walk in a random distribution of our rotators and a true
random walk. The upper and lower envelopes of the correlation
function appear to approach zero exponentially, and can be
fitted by 0.25exp(—j/11) and —0.30exp(—j/11), respectively.
The results from two basic 3 X 3 block patterns [(1,2) (diamonds)
and (1,2,4,5) (pluses) of Table I] are shown. They are indistin-
guishable within statistical errors.
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TABLE II. Comparison of the properties of the particle tra-
jectories of a random walk (RW) and a walk in a liquid of ran-
domly distributed rotators (RL). 7 is the mean escape time of
a particle, starting at the origin, from a circle of radius R cen-
tered at the origin. Values of R between 100 and 1000 lattice
distances have been used. The average is taken over typically
5000 random distributions of rotators inside the circle.
t/ A log)ot is the inverse of the proportionality constant in the
relation number of visited sites 4 ~¢/Int (for a RW see [4]).
A(?) is the mean square displacement. The probability distribu-
tion of the displacements is Gaussian in both cases.

Walk Tese t/Alnt  A(p) D B(r,)
RW R? 2.80 4Dt 0.25 Gaussian
RL 0.75R? 3.15 4Dt 0.35 Gaussian

makes a R or a L turn, respectively, at time i, we
consider the particle turn autocorrelation function
G(j)=3T-\h;h;;;/T for all jand T— oo; T is about 10°
in practice. G(j) is plotted in Fig. 5. While there are
correlations for j <40 due to memory effects, these be-
come negligible for j =40, where G (j) becomes indistin-
guishable from an ideal random number generator. In
fact, Fig. 5 suggests that the randomness of the binary
number sequence h;,h;  40,h; 1 50, - - - Can be tested by di-
viding it into adjacent intervals of m numbers each and
looking for the probability P,,(q) to find ¢ +1’s and

: periodic solid : random liquid

~
~
~< 4
Py - >

~ -_—— -

FIG. 6. Pockets are idealized by rectangles with width w and
height h. The particle will escape from the pocket or collide
with its wall with probabilities P, and P;,, respectively.
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(m —gq) —1’s in these intervals, which is shown in Fig. 4.
We find that P, (q) approaches (7'), the binomial distri-
bution, as should be. Thus after about 5000 steps a self-
randomization of the particle-scatterer system has taken
place, since the particle then moves randomly in a ran-
dom medium of its own creation on the otherwise still or-
dered lattice. The motion of the particle in the RL is in
the same universality class as a RW, but with different
amplitude (cf. Table II).

We conclude our discussion of the RL by providing a
simple growth mechanism consistent with the power laws
Egs. 1(a) and 1(b). We first remark that the basic growth
process suggested by the computer simulations is the fol-
lowing: upon reaching the liquid boundary, the particle
will grow a small liquid pocket into the solid region, after
which the particle reenters the bulk liquid to grow anoth-
er such pocket on its next encounter with the boundary,
etc. We denote the average pocket area a and the aver-
age collision rate with the liquid boundary 1/7(R), where
R ~V A4 defines the size of the liquid region. We remark
that, in terms of R, Eq. (1b) becomes B(R)~R? with
a'=2B/a=1.33, so that the liquid boundary is a fractal,
while the liquid area 4 (R)~R? is not. To obtain (R)
we construct a smooth line through the boundary and
idealize the resulting pockets formed by the real bound-
ary around this line by rectangles of average height 4 and
width w, as illustrated in Fig. 6. Then the length of the
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boundary B(R)~hR/w~R?%, so that h/w~R*!
Next we note that a particle inside a pocket can either es-
cape into the bulk liquid with probability P, and aver-
age liquid boundary recollision time 7., or hit a wall of
the pocket, with corresponding P;, and 7;,, respectively
(cf. Fig. 6). Then

HR)=7,(R)P, (R)+71,,(R)P_(R) .

Since for sufficiently large R, 7., Py >>TinPin, because
P,, and rt,P;, stay finite for R—w,7(R)=
Toul R)Py (R). One would expect that for such
R, 7,,(R)~R*1/R) and P, (R)~w/h, which is
confirmed numerically. This leads to

R)~Rw/h~RR!"¥=R?™ <
Thus
dA(R)/dt~R dR /dt ~R*™?,

leading to R ~¢!/“~%) and finally B(t)~t*/“#"%) and
A (1)~1?/47%) which gives Eq. (1) for a'=%. There is
therefore only one independent exponent, because of the
scaling relation a=2/(4—a'), or equivalently 2a—f=1.

(B) We now turn to the ten propagating cases summa-
rized in Table I. The duration of the transients before

f(t)
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FIG. 7. Nearest-neighbor rotator orientation correlation function f () averaged over all visited sites in a box of 50X 50 sites and
moving with the particle as a function of time. The transition happens at ¢, =925 589. The propagation period is 1926 steps. Shown
in the inset is a quantity Q (¢) on an extended time scale and defined as follows. For propagation to start at z,, a certain (critical) rota-
tor configuration in a neighborhood around the particle is necessary. This holds in particular at the transition time ¢,. In order to
see how this critical neighborhood is reached in time, we define Q(¢) as the fraction of all those sites in the critical neighborhood at
time ¢ <t, which are occupied by the same type of rotator as the critical one has at t,, and plot it as a function of ¢. By definition,
Q(t,)=1. For comparison, we plot f(¢) with it on the same extended time scale. The arrows indicate the position of z,.
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propagation strongly depends on the initial phase of the
particle. In Table I, the average transient times for all 36
different initial particle phases for a given scatterer
configuration are given. For blocks smaller than (4X4),
the propagating mode is independent of the initial parti-
cle phase, however. We note that, if propagation occurs
after more than 5000 time steps, the transient regime will
be a random liquid as described above. Second, we re-
mark that the transition to propagation occurs suddenly
at a time 7,. That is, we have not been able to find any in-
dication of an approach to this transition: it seems that
the particle starts propagating from one instant of time to
the next without any warning signal. To illustrate the
sudden transition at ¢, from random to periodic propaga-
ting behavior, we define a function f(z), where f could
be, for example, the x or y coordinate of the particle, or
the R (L) turn the particle makes at time ¢, or a more
complicated property, such as that shown in Fig. 7. We
note that in Fig. 7 f(t) appears to be equally irregular
right up to 7,, after which the function suddenly becomes
periodic and exhibits regular patterns. Thus one could
say that it appears that the phase point representing the
particle-scatterer system moves in the phase space of the
system, unaware of the presence of (a) hole(s) in which it
can fall—which indicates that the particle starts
propagating —until actually falls into one.

We conclude with a number of open questions.

(1) In view of the above, we have not been able so far to
give a mechanism that leads to propagation. In particu-
lar, we do not know for which initial conditions of lattice
and particle liquid growth or propagation will occur on a
lattice periodically occupied by scatterers.

(2) The propagating modes found here from a given ini-
tial particle state are not the only ones that can occur on
a given regularly occupied lattice. Intercepting, for in-
stance, the propagation on a lattice regularly covered by
a 3X3 block, by inserting a 35X 10 block of R rotators,
leads after a transient period to a different propagating
mode in a different direction than before (cf. Fig. 8). We
do not know how many of such “excited” propagating
modes exist for a given regularly covered lattice. For a
(1X1) block only one propagating mode appears to
occur [1(b),2].

(3) In addition to the systematic study of the blocks
discussed above, we have studied a number of (4X4),
(5X5), and (6X6) blocks. In general, the behavior is
then similar to that of the smaller blocks, except that
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FIG. 8. Trajectory of a particle [pattern (1,9) in Table I, with
initial particle position 1 and velocity due east] starting from
lattice site (300,300) in the “ground state” propagating mode,
after a transient of 151 time steps. After seven periods, it is then
intercepted by a block of impurities of 35X 10 R rotators with
the lower left corner located at (400,210). An “excited state”
propagating mode with a different period (312) emerges after the
interception. Not all the sites in the impurity region are visited.

different propagating modes can occur ab initio by simply
changing the initial state of the particle.

(4) The motion of two particles simultaneously on a
periodically ordered lattice will depend on the initial
phases of the particles and can lead not only to liquid re-
gions, but also, if propagation occurs, to a scattering of
the two particles off each other, or to new joint collective
motions [3]. In fact, two propagating particles can form,
upon collision, a joint periodic orbit. A third particle, in-
tersecting this orbit, can effect a “dissociation” and lead
to three propagating particles again. Clearly, the results
reported here seem to indicate a very rich and complex
behavior of what appears to be a rather simple system.
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FIG. 1. (a) Propagation on a lattice initially with only L rota-
tors. The particle starts at (100,100) due north and begins to
propagate after a transient of 9977 time steps. (b) The immedi-
ate propagation (meander) of a particle on a lattice with alter-
nating rows of R and L rotators initially.



FIG. 2. Liquid (inner region) and solid (outer region) for a
typical nonpropagating pattern [(1,2,4,5) in Table I] at
t =4660000. The square shown is a 720X 720 part of the lat-
tice. The rotator distribution inside the liquid is random with
no spatial correlations. The boundary between the liquid and
solid is a fractal with dimension 1.33. Black is R, white is L.
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FIG. 6. Pockets are idealized by rectangles with width w and
height h. The particle will escape from the pocket or collide
with its wall with probabilities P, and P,,, respectively.
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FIG. 8. Trajectory of a particle [pattern (1,9) in Table I, with
initial particle position 1 and velocity due east] starting from
lattice site (300,300) in the “ground state” propagating mode,
after a transient of 151 time steps. After seven periods, it is then
intercepted by a block of impurities of 35X 10 R rotators with
the lower left corner located at (400,210). An “excited state”
propagating mode with a different period (312) emerges after the
interception. Not all the sites in the impurity region are visited.



