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Robust Joint Position Feedbhack
Control of Robot Manipulators

Most manipulator motion controllers require joint velocity feedback. Whenever joint
velocities are not measurable, they are estimated from the joint positions. However, ve-
locity estimates tend to be inaccurate under low-speed motion or low sensor resolution
conditions. Moreover, velocity estimators may either be susceptible to model uncertain-
ties or introduce additional dynamics (e.g., phase lag) to the control loop. Consequently,
direct substitution of velocity estimates into the controller results in the deterioration of
the control performance and robustness margin. Therefore, this paper proposes a robust
position-feedback motion controller which gets rid of the problems of uncompensated dy-
namics and model uncertainties introduced by velocity estimators. Furthermore, a glob-
ally asymptotically stable system, which is robust with respective to model parameter
variations, is guaranteed. Theoretical analysis and experimental verifications are carried
out. The results demonstrate that the proposed controller is robust and outperforms the
conventional computed torque plus proportional integral differential (PID) controller.
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1 Introduction

Motion control of robot manipulators has been an active research
topic for the past two decades [1,2]. It concerns accurate and robust
tracking of the desired trajectories in the task space or the joint
space under the adverse influence of model uncertainties and lim-
ited feedback information. Model uncertainties are inevitable and
may come from various sources. For example, it is found to be dif-
ficult to accurately model friction forces; the payload of the manip-
ulator may change from time to time. On the contrary, joint
velocity feedback is required by most modern control laws; some
control algorithms even require joint acceleration feedback. How-
ever, the measurements of joint velocities and accelerations are ei-
ther contaminated by substantial noise or not available in many
robotic systems due to cost and weight reduction. In this paper, we
investigate the robust trajectory tracking problem, with respect to
model parameter variations, and the feedback information is re-
stricted to joint positions only. The proposed controller guarantees
global robust stability and zero asymptotic tracking errors. Then
experiments are conducted to verify the robust performance.

We briefly review the previous work in the area of manipulator
motion control. Because the manipulator’s dynamics is nonlinear,
it is a common practice to implement feedback linearization, also
known as the computed torque approach, as the first step of con-
troller design [3]. Then linear control laws, such as the
proportional-derivative (PD) controller [4], are applied to the
feedback-linearized system. The simplification and modification
of the computed torque controller for highly geared manipulators
were investigated in Refs. [5,6]. Similarly, a proportional-integral
(PI)-type controller was implemented in the joint velocity inner
loop with reference signals coming from the kinematic outer loop
[7]. Since cancellation of the nonlinear dynamics is imperfect in
the presence of model uncertainties, more advanced controllers
have been explored to enhance robustness [8,9].

For example, adaptive control and sliding mode control have
been extensively studied in the area of manipulator trajectory track-
ing. Craig et al. [10] proposed an adaptive control algorithm with
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guaranteed global asymptotic stability. However, the assumptions
that the estimated inertia matrix remains positive definite all the
time and the joint accelerations are available may not always be sat-
isfied [11]. Spong and Ortega [12] removed the first assumption in
their adaptive control law while Slotine and Li [13,14] proposed an
adaptive controller without joint acceleration feedback. Besides,
adaptive algorithms for the simultaneous motion and force tracking
control of manipulators have been investigated in Ref. [15].

Early work on the sliding mode control of manipulators can be
found in Ref. [16]. Subsequent modifications eliminated the need
to calculate the inverse inertia matrix [17,18]. Recent research has
addressed alleviating the chattering phenomenon and achieving
the sliding surface in finite time. Zhihong et al. [19] designed a ro-
bust multi-input multi-output sliding mode controller which drives
the output tracking error to zero in finite time in the presence of
model uncertainties. Moura et al. [20] proposed a frequency-
shaped sliding mode controller with good tracking ability and
reduced chattering. Yu and Chen [21] proposed a sliding mode
controller with sequentially operated sliding surfaces. The upper
bound of the traveling time for each sliding surface was comput-
able and the robustness was enhanced.

All aforementioned controllers require joint velocity feedback;
some also require acceleration feedback. However in many indus-
trial robot manipulators, the measurements of joint velocities are ei-
ther unavailable or contaminated by substantial noise. Therefore, the
need for velocity estimation arises. The backward difference of posi-
tions is commonly used as a velocity estimate because of its simple
form, however, it tends to be inaccurate under low-speed motion or
low sensor resolution conditions. Besides, backward difference esti-
mation suffers from high-frequency measurement noise. Filtering
techniques [22,23] are also widely used to estimate velocities; how-
ever the additional phase lag introduced by the filter may be harmful
to the closed-loop system. The undesirable vibration of the manipu-
lators caused by replacing the velocity feedback terms with filtered
positions has been reported in Ref. [24]. Velocity estimators based
on robot dynamic models [25], kinematic relations along with accel-
eration measurements [26,27], and numerical integration [28] have
been studied. Although these velocity estimators have been shown
to be effective in velocity estimation, their cooperation with control-
lers in closed-loop systems requires further investigation.

On the contrary, a variety of observer-based controllers with
only joint position feedback were proposed, including sliding
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mode observers [29], nonlinear high-gain observers [30], and lin-
ear observers with adaptive controllers [31,32] or with variable
structure controllers [33]. Due to the nonlinearity of the manipula-
tor and model uncertainties, these controllers can only guarantee
local exponential stability or uniform ultimate boundedness of the
closed-loop system.

In this paper, we propose a robust controller with only joint
position feedback. Unlike the aforementioned methods, the pro-
posed controller implicitly incorporates the velocity estimator;
thus eliminating the problem of uncompensated dynamics and
model uncertainties introduced by the velocity estimator or ob-
server. Consequently, a globally asymptotically stable system,
which is robust with respect to model parameter variations, is
guaranteed. A theoretical analysis and experimental verifications
will be carried out in subsequent sections.

This paper is organized as follows: Sec. 2 introduces the dynamic
model of the manipulator. Section 3 presents the design procedure
of the proposed controller and proves its robust stability. Experimen-
tal results are presented in Sec. 4. Section 5 concludes this paper.

2 Dynamic Model of the Manipulator

The dynamic equation of an n-joint manipulator is given as follows:

M(q(1))a(r) + C(q(1),
q(1))a() + G(a(®) +Ba(1) + F(q(1) = (1) M

M;; = M, + AM,,

G*(q) = G(q) + AG(q) B" =B+ AB,

where an asterisk in the superscript denotes the nominal value.
The notations with a A on the left side denote uncertain matrices
or vectors. We made the following assumption about their upper
bounds.

Assumption 1. The manipulator is assumed to be equipped with
revolute joints only and there exist known positive constants Ay,
Ay, Ac, Ag, A, and Ar such that for all q, ¢ € R", we have

[AMo| < Ay, [[AMi(@)[| < Ay, [[AC(q, @) < Acllq]
[AG(q)ll < A, [|AB|| < Ag, [AF(@)[| < Ar
The notation ||-|| denotes the Euclidian norm of a vector, or the

induced 2-norm of a matrix.

Remark. If the manipulator is equipped with revolute joints
only, the Coriolis and centrifugal matrix satisfies [34]: (i) C*(q,
)y =C*(q, y)x, (i) C*(q, x+y)z=C*(q, x)z + C*(q, y)z, and
(iii) 3 kcy > 0 such that ||C*(q, x)y|| < kc1]|x]]]]y]| for any q, X, y,
z € R". These properties are useful for determining a tighter upper
bound of the residual term (17). However, a more conservative
upper bound can also be found without applying these properties.
Therefore the assumption of revolute joints is not restrictive and
the proposed control law is still applicable to manipulators with
prismatic joints.

3 Controller Design and Robust Stability Analysis

We suppose that the task of the manipulator has been defined
such that the manipulator must follow a desired joint position
qu(t), velocity q,(7), and acceleration q,(¢). The tracking position
error, velocity error, and acceleration error are defined, respec-
tively, as

d=q4-9q;, q=q4-4; q=§—d,
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Mi(q) = M;(q) + AM,(q),

where q(7), q(¢), and q(r) € R" are the vectors of the joint posi-
tions, velocities, and accelerations at time ¢, respectively. Here,
M(q(?)), C(q(7),q(r)), amd B € R"*" denote the inertia matrix,
the Coriolis and the centrifugal matrix, and the viscous friction
coefficient matrix, respectively. In Eq. (1), G(q(?)), F(q(¢)), and
7(f) € R" are the gravitational torque vector, the Coulomb friction
vector, and the control torque vector, respectively. For clarity, we
will drop the notational dependence of all variables on 7 as long as
it leads to no confusion.

Note that the inertia matrix M(q) is positive definite for
all q [34]. If we decompose M(q) as a sum of a constant
positive definite matrix My and a time varying matrix M;(q),
i.e., M(q)=Mo+M;(q), then Eq. (1) can be rearranged as
follows:

where

h(q,q,d) = Mi(q)q + C(q,9)q + G(q) + F(q)

In the remainder of this paper, we will use h(#) or h, instead of
h(q, q, q) to simplify the notation.

To take into account model parameter variations, we assume
that

C (q7 q) = C(qv q) + AC("]» q)
F*(q) =F(q) + AF(q)

The proposed control law consists of the following three terms:
(1) = tLin (1) + tLc(?) + TN () 3)

where 71, is the linearization torque, which uses nominal models
and the desired trajectory to cancel the manipulator’s nominal non-
linear part, 7y c is the linear control torque, which stabilizes the
manipulator’s linear part (i.e., the left hand side of Eq. (2)) and
reduces tracking errors, and Tync is the nonlinear control torque,
which guarantees global robust asymptotic stability of the closed-
loop system. Since we are designing a position feedback controller,
each term of Eq. (3) should depend on q, but not on q or q.

3.1 Linearization Torque. The linearization torque ty;, is
used to cancel the nominal nonlinear part of the manipulator.
Namely

Lin = Mi(q)4, + C(q,40)4, + G (@) + F'(q)) 4

Cancellation of the nonlinear part of the manipulator is imper-
fect in the presence of model uncertainties, which must be com-
pensated by additional control efforts.

3.2 Linear Control Torque. The linear control torque t ¢ is
designed to stabilize the linear part of the manipulator and to reduce
the tracking error. The reasons for applying linear control laws are:
(1) it has been reported that the dynamics of the manipulator with
high gear ratios can be approximated by a linear system [2,34], (ii)
if the linearization torque works perfectly, then the manipulator
behaves like an linear time-invariant system: Moq + Bq = 71¢
(see Eq. (2)), (iii) in spite of the imperfect cancellation of the
nonlinear dynamics, small discrepancies between 7y;, and h are
tolerable by a robust linear controller, and (iv) there exist many
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well-established design methods and software tools to facilitate the
task of linear controller design.

Since only the joint positions are measurable, the linear control-
ler under consideration must follow an output feedback law. How-
ever, it is generally true that an output feedback controller can be
decomposed into a state feedback controller and a (reduced order)
observer [35,36]. Moreover, it has been shown that a static state
feedback controller is able to achieve the same performance as
that which can be achieved by a dynamic state feedback controller
[37]. Therefore, it suffices to design a static state feedback con-
troller to accomplish the control objectives provided that all state
variables are available.

Observers are incorporated into the control loop whenever
some state variables are unavailable. Introducing stable observers
into the loop does not ruin the stability established by the state
feedback controller; however, the robustness margin is no longer
guaranteed [38]. This is because the observer’s dynamics is not
taken into account in the design of the state feedback controller.
To solve this problem, we propose an output-feedback controller
design procedure which consists of two steps: first, a state feed-
back control law is derived based on the “augmented system” as if
all state variables were available. Second, the state feedback con-
trol law is converted into an output feedback control law. During
the conversion, neither observers nor any other dynamic systems
are introduced; hence, the closed-loop system remains unaltered.

Step 1: State Feedback Control Law. The manipulator (2) is
augmented with an n X n transfer matrix A(s) cascaded in the
input side. The augmented system is shown inside the dashed-line
box of Fig. 1. We are going to find a state feedback control law v
such that the augmented system is stabilized and the tracking error
is reduced. First, let

1
As) =di —_— e 5
(5) 1ag(s+/11’ ’s+A",,) )
where diag(...) denotes a (block) diagonal matrix with diagonal
elements enclosed by the parentheses. Here, 4;, i=1,...,n are

design parameters to be determined later. Suppose that A(s) has
the following state space representation:

n=An+v
! (6)
e =1
where A, =diag(—4;,—/,...,—4,). Next, we define the desired
linear torque as
74 = Mpdy +B*q, @)

In other words, we assume that the desired trajectory is gener-
ated by applying 7, to the nominal linear part of the manipulator.
Accordingly the desired input to the augmented system is defined
as V4(s) = A" (s)24(s), where the notation &(s) refers to the Lap-
lace transform of e(¢). Therefore

K1 <

Fig.1 The augmented system and the linear controller
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g = Agllg + Va
Ta = MNq

®)

We would like to find a state feedback control law such that the
augmented system (i.e., Eqs. (2) and (6)) “behaves like” the
desired augmented system (i.e., Eqgs. (7) and (8)). To do this, let
7 =1n—n,and vV = v — v,; then from Egs. (6) and (8) we obtain

n=Aq+v )
On the contrary, we can derive from Eqgs. (2), (3), and (7) that
=1tc— 1= Mjq+B'q— (tne +TLn —h) —Azg  (10)

where Aty = AMyd + ABq. If we define x= (g’ ¢ 7',
then rearranging Eqgs. (9) and (10) yields

X = AX + BV 4+ Bao(tne + tin —h +Azy) (1)
where
0 I 0 0 0
Ag= 10 —(M;)'B* (M) |, Bau= 0|, Buo=| (M)
0 0 A, I 0

Suppose that the nominal linear part of the manipulator is con-
trollable from 1 c; then it is easy to show that (A,, B,) is also
controllable by the Popov—Belevitch—-Hautus test. Thus, we can
find a state feedback law v(r) = —KXx(¢), such that A, — B, K is
Hurwitz. Note that h and Az, in Eq. (11) cannot be treated as
external disturbances since they are functions of the state. How-
ever, the residual 7p;, —h+ At; will be small if the nominal
model is accurate enough. In such a case, we may wonder whether
a robust linear controller along with the linearization torque is
able to achieve a satisfactory performance. Nevertheless, it is
expected that the performance will deteriorate severely when the
residual becomes large. The experimental results in Sec. 4 verify
this point of view.

Step I1: Output Feedback Control Law. The state feedback law
of Step I can be expressed as

V(1) = —Kid(1) — K2q(1) — Ksp(0) (12)

where K=[K; K, K;] and K; € R"™" for i=1,2,3. Because

7(s) = tLc(s) — a(s) = A(s)v(s), taking Laplace transforms on
both sides of Eq. (12) leads to

¥(s) = = (Kid(s) + Kad(s) + Kai(s) ) = A~ ()1(s)
Hence, 11(s) = —[A~'(s) + K3TI[K1 + 5K5]q(s), and the output
feedback control law is

te(s) = 2als) +1i(s) = 2als) — [A(s) + Ks] ' [K; + sKaJa(s)
(13)

Upon designing the state feedback controller, A(s) is regarded
as a part of the plant, i.e., the augmented system. We choose state
feedback gains K, K,, and Kj to stabilize the augmented system
and to establish a desired robustness margin. In Fig. 1, the blocks
inside the dashed-line box constitute the augmented plant while
the blocks outside the dashed-line box belong to the state feed-
back controller. When the state feedback controller is converted
into the output feedback controller, A(s) becomes a part of the
controller. Namely, the output feedback controller comprises all
shaded blocks in Fig. 1. It is clear from Fig. 1 that no additional
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dynamic systems (e.g., observers, filters, or velocity estimators)
are added to the loop during the conversion; hence, the closed-
loop systems of the state feedback controller (with respect to the
augmented plant) and the output feedback controller (with respect
to the original plant) are identical. Consequently, the output feed-
back controller preserves the stability and robustness properties of
the state feedback controller. Note that the state feedback control-
ler (12) must accomplish the control objectives. If the state feed-
back controller cannot achieve the goal, neither can the output
feedback controller (13). This is because these two controllers end
up with the same closed-loop system.
Remarks.

(1) Since  A(s) has a relative degree of 1,
Crc(s) 4 [A~'(s) + K] '[K; + sKy] is proper and realiz-
able. Therefore, Eq. (13) is indeed an output feedback con-
troller, which is the difference between t, and the filtered
position error Crc(s)q(s).

(2) Here, Crc(s) has the form of the “filtered PD controller;”
however, its design procedure is more delicate than that of
the conventional PD controller, which directly replaces the
velocities with their estimates. As will be illustrated in the
rest of this subsection, the coefficients of A(s) can be
regarded as weightings of some cost function and the feed-
back gain K is the optimal solution that minimizes the cost
function.

Robustness of the state feedback control system can be
achieved by various modern control methods such as pole place-
ment, linear quadratic regulation (LQR) control [39], H., state
feedback control [40], and mixed H,/H., state feedback control
[41], etc. In this paper, we use the LQR method because of its sa-
lient robustness property. It is well known that the LQR controller
has an infinite gain margin, at least 60 deg phase margin, and
guaranteed stability in the event of 50% gain reduction [39]. The
LQR controller (of the augmented system) minimizes the follow-
ing cost function:

|

J = ro X' (1)Qx (1) + V' ()RV(r)dt
0

The weighting matrix Q is positive semidefinite and R is positive
definite. The LQR controller is

v=-Kx=-R'B/ Px (14)

where P is the symmetric positive definite solution to the Riccati

equation

AP +PA, —PB,R'BP+Q =0 (15)

If we choose R =diag(ry,...,;,) and Q=diag(Q,,Q,), where

r; > 0 for all i, Q€ R**" is positive semi- definite, and Q, € R™"

is positive definite, then according to Eq. (9), the cost function
becomes

= ([ﬁTﬁT}QI

where 7}; denotes the ith element of the vector #§ = t;.¢c — 7,. From
Eq. (16) we can see that /; can be regarded as the weighting of 7;,
while the first derivative of 7; is weighted by r;. Therefore, the
larger r; is, the smoother the ith linear control torque is. On the
contrary, if r; — 0 for all i, then the cost function approaches the
LQR cost function of the original plant (with states q and q, input
7, and weighting matrices Q; and Q,). In such a case, the effects
of A(s) diminish.

Upon designing the linear control torque, the effects of the re-
sidual 71 ;, —h+ Az, are not explicitly taken into account.
Although the residual 7y ;, — h + Az, contains model uncertainties
and cannot be known exactly, the upper bound of its size can be
found as follows:

Qi+ Y ri(ili + 2,-;7,)2) dr (16)
i=1

etin — b+ Atal| = ||~ M; (@)d+ (AMi (@) + AMo)d + ABG + C*(a,,)d, — € (a.0)d-+ AC(d, @)+ AG(q) + AF(@) + F* (d,) ~ F* (@)
< v ) -1+ (Ao, + ) (11 + il ) + A (] + Nl )+ Gker +Ac) - (11a]| 200

+ Acllayl*+Ac + Ap +2||F|

Suppose that there exist U;(7), U,(f) € R such that

la@)| <Uie), lla®)|| < U2(r), forall t>0  (18)

Then
[[tLin —h+ Aty || < M (Q) || - Uz + (Ayg, + A, ) (U2 + Nl )

+Ap(Ur +[1q,l)) + (ker +Ac)Us - (Ur +2{|q41)
Al P+ A+ Ar 2| F[| 2 5(r)

Section 3.4 will illustrate how to find U,(¢) and U,(¢). The upper
bound of the residual will be used in the design of the nonlinear
control torque.

3.3 Nonlinear Control Torque. The nonlinear control tor-
que is designed to guarantee the robust asymptotic stability of the
closed-loop system. We also want to keep the total control torque
as small as possible in order to not saturate the actuator. To
achieve this goal, we first consider the following Lyapunov func-
tion candidate:

031010-4 / Vol. 135, MAY 2013

a7

Vi(%) = XTPX

where P=P” > 0 is the solution to Eq. (15). Let P=[P; P, P;]
and P; € R¥" for i=1,2,3. By using Egs. (11), (14), and (15),
the time derivative of V| is

Vi =x"Px + X' Px
=x"(AIP + PA, - 2PB,,R'B,P)x
—+ 2iTPBa2(TNC —+ TLin — h —+ A‘L'd)
=—x'(Q+PB,R'B,P)x
+2%'P, (MSY1 (tne + TLin —h + A1y)

The LQR controller guarantees that the first term of the last
equation is negative for all nonzero X; thus Tyc will be designed
to counteract the 2nd term iTPQ(M;;)”(er —h + Az,), such
that V; is negative definite. If all elements of X are measurable,
the robust stability can be ensured by techniques such as
saturation-type control [42]. To overcome the problem of the lack

of velocity feedback, we apply a strictly positive real (SPR) sys-
tem to generate the nonlinear control torque.
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Le& H(s) be an nxn SPR system with input
2(r) = (M) "PIX(r) and output ¢(r). Then, the nonlinear control
torque is chosen to be

Ne(t) = —(1) (1) (19)
where the time-varying gain a(%) is to be determined.

At first glance, it seems that the implementation of Tyc still
requires the full state information X. However, the difficulty can
be bypassed by carefully manipulating the equations. Let
(MS)fTPg =[E; E, E;], where E;e R"" fori=1,2,3. Then

= H(s) (E1d(s) + Easd(s) + Exi(s))

= (H(s)E1 + sH(s)E2)q(s) + H(s)Esn(s)  (20)

If H(s) is the SPR with a relative degree of 1, then ¢ can be
obtained by filtering q and # through two proper filters
H(s)E| + sH(s)E, and H(s)E;, respectively. Furthermore, suppose
that H(s) has the following minimal realization:

. . . d
V=Vi+ @ T+ 2 UTE + K, (@)

L(t) = AL(t) + Brz(r)
(1) = CL(r)

By using the Kalman—Yakubovich-Popov theorem [43], if all
eigenvalues of A, lie in the left half plane of Re(s) < —7 for some
positive constant y, then there exists an n X n symmetric positive
definite matrix I'" and a matrix Q; such that

AT +TA; = -QQf — T
I'B; =C!
Let «* and K, be two positive constants selected by the de-

signer. Define a(t) = o(f) — o* and choose the following Lyapunov
function:

V(X(t),8(0),8(t)) = Vi(X(t)) + o T (6)TL(e) + K, 02 (1)

For clarity, we use the notation V() instead of V(X(¢), {(¢), a(r))
if it leads to no confusion. Clearly, V(#)>0 for all +>0 and
V(1) =0 if and only if X(¢) =0, {() =0, and a(r) = 0. The time de-
rivative of V(¢) is

sTOv * 3 *) * d .
— %Qx +oa°LT (Agr n rAg>§ + 2% Py (M)~ (~Cel + Tuin — b+ Aty) +20'2 BITL + K, (#)

s ~ . ~ ) d
- KQx— '’ (Q,;Qg n 2yF>C + 2% Py (M) ! (—aCel + toin — b+ Aty) + 20K Py (M) Col + K, o (52)

dt

— KQx—a'l" (Q,;Qg n 2yr>§ + 2% P, (M) (11 — h + Aty) — 26T PL (M) CL + Ka%(o?)

where Q =Q+PB,R™'B[,P and Q,Q] +2)I' are positive
definite.
If Eq. (18) holds, then

%1 = /NGl 117 < \laP+0% + 1P 2 v
In addition, we have
XPy(Mp) " (tLin — h + Aty) < U.|[P2(Mp) ' ||6
and
3% Py (M) ™' €L < Ua|[Pa(MG) [ lIC:¢
If we define |6 = a2, then d/di(é%) = d/dt|a;| = asgn(dy),

where sgn(e) is the sign function. Let

5, = —2UlIP2M) (O + lI€ctll I D)sen(z) _ &
K, K,

o=o" — /||

Clearly, g >0 if and only if a; < 0. Therefore &; will con-
verge to zero and, consequently, o will converge to o*. Substitut-
ing Eq. (21) into V yields

@n

V= -%Qx - ¢ (QQ! + 2Tt
i [23’;TP2(M3)’1(1:L1“ —h+ Aty) — 20 ||[Po (M) ! ||5]
+ [~ Py (M) €L — 20l [P vg) it ] -

< —%Qx - 2" (QQ! + 2T - 2 (22)

Journal of Dynamic Systems, Measurement, and Control

Therefore, V is negative definite for all initial conditions, which
implies that the closed-loop system is globally asymptotically stable
and X—0, a(f) — «* as r — oo, i.e., the tracking error asymptoti-
cally approaches zero and the nonlinear control torque gain o(f)
approaches a steady state gain «*, which is selected by the designer.

Remarks.

(1) The design parameters of the nonlinear control torque
include H(s), K,, and o*. There are no restrictions on
selecting these parameters except that o* and K, are
positive, and H(s) is the SPR with a relative degree of 1.
Therefore, the design procedure can be easily
accomplished.  For example, we can choose
H(s) = diag(y, /(s +71); -, 70/ (5 +74))s Where 3, > 0,
i=1,...,n, is larger than the bandwidth of ¢;,(f), which is
the ith element of q,. In addition, note that K, is canceled
out in V and thus has no influence on the stability of the
closed-loop system. However a larger K, makes the differ-
ential Eq. (21) less stiff and hence improves the numerical
accuracy in implementing Eq. (21). On the contrary, o* is
the steady state gain of the nonlinear control torque. A
small gain prevents the nonlinear control torque from satu-
rating the actuator, but results in the slow convergence of
the Lyapunov function (see Eq. (22)).

(2) The proposed controller (3) can be interpreted as follows:
TLin 1S the feedback linearization term, ¢ is the “filtered
PD” term, and Ty is the “filtered state feedback” term with
time-varying gain. Although filters are introduced in calcu-
lating 71 ¢ and Tnc, the dynamics of these filters are explic-
itly compensated in the controller design and, therefore,
robust stability is guaranteed. Moreover, the filtering proc-
esses are accomplished by first order systems for each joint
(i.e., A(s) and H(s)). Hence, the complexity of the proposed
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controller (3) is moderate. The experiments in Sec. 4 dem-
onstrate that Eq. (3) can easily be implemented on modern
microcontroller chips.

3.4 Upper Bounds of the Tracking Errors. Upper bounds
of the velocity and acceleration tracking errors, i.e., U;(f) and
U,() in Eq. (18), are required in calculating the nonlinear control
torque gain (21). This subsection illustrates how to find these
upper bounds based on the position tracking error q. .

Let G(s) =a/(s+a), a > 0, and define p;(s) = G(s)g;(s)
= (sG(s))g;(s), i=1,....n, i.e., p; is the filtered velocity tracking
error of the ith joint, which can be obtained from ¢; because sG(s)
is proper. Let G4(z) = (1 —a)/(1 —az ") be the discrete-time
approximation to G(s) [44] with the impulse response
gr=(1—a)a, ke Z", where @ = e T < 1 and T is the sam-
pling time. If p;(0) = 0, then

k

Z gkfm‘?i (mT&)

m=0

pi(KT)| = |gi * G:(KT,)| =~

k
< <0r§n’g§k!éf(mn)]) ;\gk_m\ < il el @3

where “*” denotes the discrete-time convolution, ||e||, is the
[;-norm, and ||e||, is the /..-norm of e truncated up to time k7

[45], i.e., Hé,||kOo émaxogmgk |§,(mTY)| Note that the last in-
equality of Eq. (23) also holds for all p,(mTy), 0 <m <k; hence,

we have [|pif[ < |1l l]]-
On the contrary, let J be the discrete-time impulse signal. Then

16l = 1oille < 1 = pill,oo= 1106 = &) il
<|o—-zgl, ”ét”m

where [[0 —gl|; = |1 — go| + 300 || =2a. If a<1/2, or
equivalently, a > In2/T, then

. . 1
|4 KT)] < [[dill e < ZIPiliee (24)

where ¢ =1—10 —g||, =1 —2a. Equation (24) provides an
upper bound to the velocity tracking error at ¢t = k7. For small T,
we can assume that |g;(¢)] < (1/¢)||pil|;e for T <t < k+ DT.

Similarly, we define pl(s) = G(s)g;(s) and p;(s) = G(s)p.(s)

= G%(5);(s) = s*G2(s)q;(s). Then, following the same arguments,
we have

) I .
kT3] < = 1Pl < 2 1Pilees @

Given the inequalities (24) and (25), the upper bounds U, and U,
in Eq. (18) become

1 n 1 n B
U0 = |2 Inlhe and a0 =[Pl
i—1 i=1

for kT,<t < (k+ 1)T,

Remark. The robust asymptotic stability of the proposed control
system does not rely on precise estimates of joint velocities;
instead, only the upper bounds of the velocity and acceleration
tracking errors are required. Therefore a simple filter G(s) suffices
for this purpose. There is no need to implement complicated (non-
linear) state observers to estimate the velocities, nor to use filtered
positions as imprecise substitutes for the velocities. In addition,
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the upper bounds in Eqgs. (24) and (25) are immune to model
uncertainties; hence, they do not degrade the robustness margin of
the control system.

4 Experiments

4.1 Experimental Setting. A two-joint planar manipulator
was set up for experimental verifications. The schema and the
photograph of the manipulator are shown in the left and right sides
of Fig. 2, respectively.

Each link of the manipulator is driven by a dc motor with an
optical encoder mounted on the shaft. The controller is imple-
mented on a DSP chip (TMS320F28335) and the sampling time is
0.01s. The dynamics of the dc motors and the manipulator can be
lumped together as follows [2,34]:

|:01+02+203005q2 02+03C08q2:| |:q|:|

07+ 0gcosqs 07409 G2
N [—9342Siﬂ6h —93(41+42)Sin42] |:qu|
0sq1singa 0 92

0sq1 + 06 sgng,

04cosq1+l§03cos(q1 +q2) "
g e venti)~ i)
01042 +0115gn(¢2) U

[598 cos(q1 +q2)
1

where the control inputs #; and u, are armature voltages of the dc
motors in the range of +24 V. Here, 0;, i =1,2,...,11, are model
parameters, as explained in Table 1. Their values are determined
by the system identification techniques [46] and are also given in
Table 1. The SI unit system is adopted for all physical quantities.
Table 2 lists the nomenclature for the model parameters.

4.2 Experimental Results. The desired trajectory is speci-
fied as

LT o2y LT L a2
2—1—4(1 e )+9(1 e ") sin(4r)

T _ T
qu(t) = 3(1 - ) + (1

qia(t) =

— ¢ Y sin(31)

The corresponding path of the tip of the 2nd link in the task
space is shown in Fig. 3. This trajectory consists of both a steady-
state periodic motion (sinusoidal term) and a transient part (expo-
nential term); therefore, it is suitable for exploring the abilities
and limitations of motion controllers. We implement the proposed
controller (3) and other types of controllers to compare their per-
formance; however, a comprehensive experimental evaluation of
all controllers is beyond the scope of this paper. Instead, we
choose the computed torque plus PID controller for comparison.
The reasons are twofold: (i) the computed torque plus PID

Fig. 2 Schema of the two-joint planar manipulator (left).
Photograph of the manipulator (right).
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Table 1

Model parameters and their nominal values

1 1 0.3339 1 0.0048
00 = [(Ih +m I +mzl%)r—2+11 = 0, = (I +m2132)ﬁ
1 1 1K1
0.0054 11 2.1450 1 2.8219
03 = malylo—— 0y = (myl, h)g—— 0s = by—
3 = maly 2"%]{1 4 = (Ml +my l)gr% i 5 1k1
11 1.5177 1 0.0240 0.0280
Os :fclgg 07 = (I + mzlfg)% Os = ’712111(-2’_%7/{2
0.00002 1 1.2211 11 1.6282
Oy = Jr—— 010 = by— O = foos—
9 21‘%/(2 10 = b 11 fzr%k2
Table2 Nomenclature of the model parameters o = M ()[4, + Kiq + K,q+K, J(Idﬂ +C*(q,9)q
1, (I) Moment of inertia of the 1st (2nd) link +G” (q) + B*('] +F (q) (26)
my, (my) Mass of the 1st (2nd) joint
b, (b) Length of the 1st (2nd) joint ) Because there is no velocity feedback, the joint velocity term in
le1, Ue2) Distance from the Jomnt to the CG of the Ist (2nd) link Tpip 1 replaced by the backward difference of the joint position.
J1, (J2) Inertia of the motor’s rotor of the 1st (2nd) joint . . )
5 . e After an extensive manual tuning process, we found that the fol
ri, () Gear ratio of the 1st (2nd) joint lowine PID gai hi he b ki f .
Ky, (ko) Lumped constants of motors in the 1st (2nd) joint owing gains achieve the best tracking performance (in terms
Fo1s (F2) Coulomb friction coefficients of the 1st (2nd) joint of root mean squared errors):
by, (by) Combined viscous friction coefficients
g Gravity acceleration

ol ( 1

g
E 02k B
-
03 stop b
04 E
i / _
start
-01 DI 0‘1 D‘? 0‘3 D‘A 0‘5 06
X (meter)
Fig. 3 The desired path of the tip of the 2nd link in the task
space

controller has been extensively studied and practically imple-
mented. Its properties are well known, and (ii) it is relatively easy
to tune the PID gains, such that the adverse impact caused by the
velocity estimator can be alleviated; therefore, we can compare
the performance on a fair basis. We also implement a controller
consisting of the linearization torque (4) and the linear control tor-
que (13) in order to demonstrate the effectiveness of the nonlinear
control torque (19).

The computed torque plus PID controller has the following
form:

Journal of Dynamic Systems, Measurement, and Control

K, = diag(800,500), K, =diag(30,15), K;=diag(1.411,0.3)

The second controller is 7y ;, + Tt c. The design parameters are
chosen to be

Q, = diag(32,000, 12,000, 10, 10), Q, = diag(0.001,0.001),
R = diag(0.0005,0.0015), A, =/, =10

According to Sec. 3.2, Q; emphasizes the performance of the
position tracking errors while Q, puts smaller weightings on
the linear control torque. Here, 4; and 4, are also weightings for
the linear control torque, however, we choose a tiny R to diminish
their effects. In the preceding equation, R also serves as the
weighting of the 1st derivative of the linear control torque.

The last controller is Eq. (3). The following parameters are
used for the nonlinear control torque (19):

o =4, K,=20, A, =diag(—10,-10),

100
G(s) =
) =100

B. = diag(10,10), C.=1I,

In other words, the SPR system H(s) is chosen to be
diag(10/(s + 10),10/(s + 10)). The selection of H(s), o.* and K,
follows the rules mentioned in Sec. 3.3.1, while the constraints on
G(s) have been discussed in Sec. 3.4.

The experimental results are shown in Figs. 4 and 5. Figures 4(a)
and 4(b) give the trajectories. The corresponding armature voltages
of each joint are presented in Figs. 4(c) and 4(d). Figures 5(a) and
5(b) show the tracking errors of both joints. A close-up of a 4 s pe-
riod is given in Figs. 5(c) and 5(d).

Because the behavior of the friction is more complicated [47]
than can be predicted by the simple friction model in Eq. (1), the
tracking errors do not converge to zero. Besides, the model pa-
rameters 0,’s estimated from experimental data are inaccurate.
Nevertheless, the proposed controller (3) has the best performance
(in the sense of RMS errors) among all of the controllers tested in
this paper. Its superiority is more evident for the 2nd joint. This is
because the model parameters of the 2nd joint are less accurate
and the controller (3) is the most robust. Note that all controllers
exert a similar amount of control inputs, which means that the
nonlinear control torque (19) works efficiently. Because of the
model uncertainties, the residual ;, —h + Az, is not negligible
and makes the performance of the 2nd controller less satisfactory;
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Fig. 4 Experimental results. Solid line (—): tpip; dashed line (- - -): 7, + 7. c; dotted line (.): t in + TLc + Tnes
dash-dotted line (- - -): desired trajectory. (a), (b) Positions of the 1st and 2nd joints. (¢), (d) Armature voltages
of the 1st and 2nd joints.
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Fig. 5 Position tracking errors. Solid line (—): tp|p; dashed line (- - -): 7y ;, + 7. c; dotted line (- - -): tin + e + TN
(a) 1st joint: = 0-20s, (b) 2nd joint: t=0-20s, (¢) 1st joint: 1= 8-12s, and (d) 2nd joint: = 8-12s.

Table 3 Summary of the experimental results

RMS(q1) RMS(3>) RMS(u;) RMS(15)
TpiD 0.0026 0.0060 4.6392 2.8659
TLin+TLC 0.0037 0.0059 4.5017 2.8639
TLin+TLe + Tne 0.0021 0.0032 4.5251 2.8373
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Fig. 6 Experimental results when m, increases 33%. Solid line (—): tpp; dashed line (- - -): 7in + 7. c; dotted
line (- - -): tLin + TLc + Tne; dash dotted line (- - -): desired trajectory. (a),(b) Positions of the 1st and 2nd joints. (c),
(d) Armature voltages of the 1st and 2nd joints.
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Fig. 7 Position tracking errors when m, increases 33%. Solid line (—): tpip; dashed line (- - -): 7 ;, + 7. c; dotted
line (.): TLin + e + tne; (@) 1st joint: t=0-20s, (b) 2nd joint: t=0-20s, (c¢) 1st joint: t=8-12s, and (d) 2nd joint:
t=8-12s.
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Table4 Summary of the robustness test

RMS(G)  RMS(G)  RMS(u)  RMS(ua)
- 0.0028 0.0076 4.6457 3.3094
Tein+ Tre 0.0045 0.0129 4.5621 3.2736
TLin+ TLe + Tne 0.0025 0.0058 4.6574 3.4224

however, it is noticeable that the corresponding tracking error is
the smoothest. This is because the cost function (16) includes a
penalizing term #, which is related to the first derivative of the lin-
ear control torque.

Table 3 summarizes the experimental results

is the root mean square value of g;, where N, is the number of
data points. Similar definitions apply to RMS(g,), RMS(u,), and
RMS(u,). Note that the RMS(g,) of the proposed controller is
only about half of that of the PID controller. This result verifies
the effectiveness of the proposed controller.

4.3 Robustness Test. The estimated parameters 6’s are
uncertain themselves; therefore, the experiment in the previous
subsection has already demonstrated the robustness of the tested
controllers. In order to further evaluate the robustness of these
controllers, we add a payload of 0.288 Kg (about 33% of m;,) to
the tip of the 2nd link. Hence, the mass, the moment of inertia,
and the position of the center of gravity of the 2nd link change
accordingly. The results are exhibited in Figs. 6 and 7. Figures
6(a) and 6(b) illustrate the trajectories of both joints. Figures 6(c)
and 6(d) are the armature voltages of the 1st and the 2nd joint,
respectively. Figure 7 illustrates the position tracking errors of
both joints. A clear view of the tracking errors in a 4 period is
given in Figs. 7(c) and 7(d). The results of the robustness test are
summarized in Table 4.

The increase in the payload simultaneously changes My,
Mi(q), C(q, q), and G(q). Although the linear control torque (13)
is robust with respect to variations of My, it is not designed to
resist changes in M(q), C(q, q), and G(q). Moreover, the lack of
velocity information results in a severe performance degeneration
of the linearization torque (4) whenever the model uncertainties
are significant. Therefore, the 2nd controller 7y ;, + 7y c has the
largest tracking errors. On the contrary, the proposed controller
(3) is able to deal with the model uncertainties with its nonlinear
control torque (19). Hence, it has the best performance. Table 4
shows that the RMS(g») of the proposed controller is about 3/4 of
that of the PID controller while the RMS(u,) is almost identical.
These experimental results indicate that the proposed controller is
robust and does outperform the conventional computed torque
plus PID controller.

5 Conclusion

In this paper, we proposed a nonlinear motion control law for
manipulators. The proposed controller needs only the joint position
feedback and incorporates velocity estimators implicitly into the
controller. It consists of three terms: a linearization torque to com-
pensate the manipulator’s nominal nonlinear dynamics, a linear
control torque to stabilize the linear part of the manipulator, and a
nonlinear control torque to ensure asymptotic zero tracking errors
and to enhance robustness. A theoretical analysis and experiments
were carried out. The results showed that the proposed controller
outperforms the conventional computed torque plus PID controller.

During the experiments it was found that the achievable track-
ing errors are limited by the unmodeled friction forces. Therefore,

031010-10 / Vol. 135, MAY 2013

a better compensation for the friction forces, especially at the low-
speed range, will be the topic of future research.
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