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Abstract
We study the performance of optimal mass transport-based methods applied to point-set matching
problems. The present study, which is based on the L2 mass transport cost, states that perfect
matches always occur when the product of the point-set cardinality and the norm of the curl of the
non-rigid deformation field does not exceed some constant. This analytic result is justified by a
numerical study of matching two sets of pulmonary vascular tree branch points whose
displacement is caused by the lung volume changes in the same human subject. The nearly perfect
match performance verifies the effectiveness of this mass transport-based approach.
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1. Introduction
1.1. Literature reviews

Registration concerns matching two or more sets of image data taken at different times or
from different sensors. Depending on the type of image data, registration methods can be
classified into two groups: intensity-based methods and feature-based methods.
Comprehensive surveys of general registration methods can be found, for instance, in [29]
and [60]. Here, we are only concerned with the feature-based methods, where the features
are special points in images, such as corners or salient boundary points. The associated
point-set matching (registration) problem is to establish a consistent point-to-point
correspondence between two point-sets. The most well-known approach is the iterative
closest point (ICP) algorithm [4][58]. The advantage of ICP is the simplicity of its
implementation. One limitation of ICP is its local convergence restriction (su cient overlap
between the point-sets is required for initialization). Another drawback is the algorithm's
sensitivity to outliers. To alleviate these challenges, a variety of robust methods have been
developed[15][48]. For instance, in [15], Chui and Rangarjan proposed a robust point-
matching method (TPS-RPM) that simultaneously estimates non-rigid transformations using
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splines and correspondence. A type of matrix balancing technique called soft assignment is
employed to establish symmetric correspondence and detect outliers.

The classic Monge-Kantorovich (MK) mass transport problem1 [24] is to move piles of soil
at a minimal cost; the solution is called the optimal mass transport. This approach has been
applied to intensity-based image registration, retrieval, and morphing [52], [23], [40], [59],
[20], [35], [33]. The optimal cost function is the Wasserstein distance, which measures the
dissimilarity of two distributions. One advantage of the MK mass transport approach is that
the global minimizer can always be reached because of the inherent convexity of the
problem. However, intensity-based methods are sensitive to intensity changes, which can be
caused by noise or variations in illumination[60]. Experiments demonstrate that the
morphing e effect of mass transport approaches seems unavoidable and may lead to
misregistration of medical images[33]. Recently, the mass transport approach has also been
incorporated with kernel correlation[48] into feature-based methods[12]. When a finite
kernel scale is used, the estimated correspondence is robust against distant outliers. Notice
that the proposed model is an approximation of the MK problem, when the kernel scale
tends to infinity.

1.2. The present study
We apply two mass transport-based methods to register two large sets (hundreds of point-
pairs) of landmark data acquired from a pair of lung CT images (acquired during breath-
holds) and establish their correspondence. These methods are tested on the lung CT datasets
of several human subjects measured at total lung capacity (TLC) and functional residual
capacity (FRC); see Fig. 1.1. Nearly perfect match results are obtained, which demonstrates
the effectiveness of the mass transport methods. The results motivate us to further
investigate under what conditions the optimal scheme transporting these points coincides
with the ground truth correspondence.

Below are our analytic findings:

(a) We establish one sufficient condition (see Prop. 2.3, Cor.2.4) for perfect
matches, which states that perfect matches always occur when the product of the
point-set cardinality and the norm of the curl2 of the non-rigid deformation field
does not exceed some constant.

(b) We find that using the L2 mass transport cost yields a better performance than
using other mass transport costs because of the existence of some
correspondence invariants for the L2 mass transport cost (section 2.2).

(c) In lung experiments, perfect matches are likely to occur at landmarks at lower
generations (Fig. 4.2). This result supports the proposed sufficient condition
when the linear elastic theory predicts the large curls occurring near the lung
periphery (in Appendix B).

(d) We demonstrate that the Hellinger distances-based point-set matching
model[12] possesses cyclical monotonicity in the optimal transport(Remark 3.4).
Experiments (section 4.3) demonstrate that (1) mass transport-based methods
outperform TPS-RPM, which does not possess cyclical monotonicity; (2) the
HD model is more robust against outliers than the mass transport model.

1A survey of theoretical studies of this problem can be found in [16] or [49].
2Using the Helmholtz decomposition, a vector field on Rd can be expressed as a sum of a divergence-free vector field and a curl-free
vector field. Additionally, according to Brenier's polar factorization theorem [8], Theorem 3.8[49], a L2 vector-valued mapping can be
expressed as a composition of the gradient of a convex function and a measure-preserving mapping.
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To the best of our knowledge, this is the first study to demonstrate the outstanding matching
performance of mass transport methods.

This paper is organized as follows: In sections 2 and 3, we present several theoretical studies
of the mass transport-based point-matching models, including the curl-cardinality relation
and the cyclical monotonicity property. In section 4, we present various matching
experiments performed on lung branch points to support the theoretical analysis. Lengthy
proofs, including those for the curl-cardinality relations, the curl distribution of lung
deformations, the asymptotic behavior of the rigid motion estimator and the kernel scale
selection in the HD model, are listed in the appendix,

2. Mass transport-based point-set matching models
In this paper, let δ be the Dirac delta function and || · ||2 = || · || be the 2-norm. We denote the
trace and the transpose of a matrix X by Tr(X) and X˕, respectively.

2.1. Mass transport problems and point-set matching problems
One central problem in elasticity theory concerns the determination of the deformation T on
a bounded open connected subset Ω of R3 subjected to some applied force. The deformation
T must be injective and orientation-preserving (i.e., the deformation gradient det(▽T) is
positive) to be physically acceptable.

The primary focus of this paper is the inverse problem, which is to determine the

correspondence between two unlabeled point-sets ,  sampled from Ω and
T(Ω). Here, the correspondence is described by a permutation τ on {1 , … , n} such that yi =
T(xτ(i)). To proceed, we require a stronger assumption about the transforms: T is twice
continuously differentiable and has the Helmholtz decomposition T(x) = ▽ϕ + ▽ × ψ, where
ϕ is strongly convex and ▽ · ψ = 0. Note that ϕ, ψ can be determined by solving Poisson's
equation (see pages 238–242 in [41]):

Suppose that the corresponding point-pairs {xi, yτ(i)} are nearby. Then, τ can be estimated
by solving the minimization problem:

(2.1)

This is a combinatorial optimization problem because n! possibilities must be evaluated.
This difficulty can be alleviated if we instead consider a relaxed problem,

(2.2)

subject to the unit mass constraint, , μi, j ≥ 0. This problem is
known as the Lα Monge-Kantorovich mass transport problem. Here, the original
permutation τ is relaxed to a correspondence matrix characterized by the doubly stochastic

matrix {μi, j : i, j = 1 , … , n} or the measure . More
precisely, τ(i) = j if μi,j = 1.
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The relaxed problem described by Eq. (2.2) is a convex (in fact, linear) minimization
problem, which has an optimal permutation matrix (the existence of this is guaranteed by
Birkhoff's theorem) and can be solved by interior point methods[7] or primal-dual
algorithms [23] (see chapter 4 in [9] also). Finally, we say that a perfect match occurs if the

underlying correspondence between two point-sets coincides with a minimizer  of
Eq. (2.2).

2.2. Two special properties of the L2 cost
In this paper, the MK method is defined by correspondence estimation using Eq. (2.2) with α
= 2. This method has two special properties.

The first special property is the optimality condition, called cyclically monotonicity. A

nonempty subset  in Rd, d ≥ 1 is said to be cyclically monotone (p. 79 [49]) if

for all m ≥ 2 and for all subsets ,

In this context,  is optimal in the L2 mass transport problem when

the correspondence  is cyclically monotone. One key characterization the
optimality condition is that if the support of μ satisfies cyclical monotonicity, then μ is
supported in the sub-differential of a proper lower semi-continuous convex function ϕ
(Theorem 2.27[49]), i.e., yi ∈ ∂ϕ(xi), where ∂ refers to sub-gradients[37].3

Consider a transform T : Rd → Rd between two point-sets ,  in Rd with yi =
T(xi). When T is the gradient of some convex function, then the correspondence can be
recovered correctly by solving mass transport problems. This special class of the transforms
include scalings, translations, positive definite affine transforms (T(x) := Ax + t, where A is
positive definite) and other curl-free maps. Note that when ϕ is strongly convex and
differentiable, the Hessian of ϕ is positive definite, which implies that ▽ϕ is orientation-
preserving and injective.

The second special property of the L2 cost is that the correspondence is invariant under an
additional transform S. Here, we discuss two correspondence invariants: (i) between

 and  and (ii) between  and .

In R1, for one-dimensional point-sets, a cyclically monotone correspondence μ is monotone
rearrangement (in which the spatial ordering of points is preserved); see page 75[49]. Thus,

cyclical monotonicity of  implies that , and 
are cyclical monotonic if S is an increasing function. We have both invariants (i) and (ii).

In Rd, d > 1, a cyclically monotone correspondence  does not imply cyclical

monotonicity of (i)  or (ii) . Instead, for type (i), the
correspondence in Lα cost is invariant under rigid motions and scalings (S(x) = Qx + t, S(x) =
ax + t, with a > 0, t ∈ Rd and Q an orthogonal matrix).4 For invariant (ii), we will first
demonstrate that the L2 cost possesses one additional (forward-backward) invariant:

3Regard two point-sets as finite realizations of two random variables. According to Theorem 2.32[49] or [30], for two probability
measures μ, ν, where μ is absolutely continuous with respect to the Lebesgue measure, there exists a unique measurable map T such
that the push-forward measure T#μ = ν and T = ▽ϕ for some convex function ϕ.
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PROPOSITION 2.1 (Forward-backward). Suppose that a matrix μ minimizes the L2 mass transport

cost between  and . Let S(x) = Ax + t be an affine transform with a
nonsingular symmetric matrix A and a vector t. Then, the matrix μ also minimizes the L2
mass transport cost between {S(xi)} and {S−1(yj)}:

In particular, the result holds for positive definite matrices A.

Proof. Because , any minimizer μi,j for the cost

 constant terms w.r.t. μi,j also

minimizes .

Combining the first invariant with the optimal correspondence  yields the

optimal correspondence , where a is a positive scalar, which is invariant (ii).
In practical applications, the invariant of the L2 cost eliminates the difficulty of estimating
the parameters a, t.

2.3. Curl-cardinality relations
Typically, the match error of the mass transport approach is caused by two factors, nonzero
curls and outliers. We first examine the effect of curl on the occurrence of mismatch. A
discussion regarding outliers will be presented in the following section.

According to the Helmholtz decompositions, a three-dimensional smooth vector field can be
expressed as a sum of a gradient function and a curl function. Regarding mass transport
methods, point correspondence can be estimated correctly if the transform is the gradient of
some convex function. However, these special transforms form a very small class, and they
rarely occur in practical applications. Consider any point-set with finite cardinality n
sampled from Ω. The following analysis demonstrates that if the curl magnitude ωmax (Def.
2.1) of the transform T is less than some upper bound C/n, then a perfect match can still be
obtained; here, C is a positive constant that is related to the constant in the isoperimetric
inequality[10]. Empirical experiments demonstrate that the upper bound can be significantly
improved if the point-set is scattered uniformly over some region of a high-dimensional
space rather than concentrated in a circle.

DEFINITION 2.1. For each d × d matrix B, let Λ(B, k) be the kth largest singular value of B. Let T
be a transform on Rd, d ≥ 2. Let TS and TA be the symmetric and skew symmetric parts of
▽T at each x in the domain Ω, i.e., ▽T(x) = TS(x)+TA(x). Define the maximum curl ωmax of
T on Ω as

4In general, the correspondence in the mass transport cost ||x − y||α is not invariant under affine transforms. Here is one example: Let

 and . Consider two affinely
transformed point-sets {Axi}, {Ayi}, where A is a diagonal matrix with diagonal entries [a, 1]. For a ∈ (0, 1) and close to zero, x1 is

matched with y2 (consider  and  as {x1, x2}⋃{x3, x4} and {y1, y2}⋃{y3, y4}). However, x1 is matched with y4 for

a sufficiently greater than 1 (consider  and  as {x1}⋃{x2, x3}⋃{x4} and {y1}⋃{y2, y3}⋃{y4}).
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(2.3)

In the case where Ω ⊂ R3 and T = ▽ϕ+▽×ψ with ϕ strongly convex, we obtain

Thus, tan(ωmax/2) is proportional to the maximum curl, maxx ||▽ × T (x)||.

To better understand ωmax, we first examine the upper bound on rotation angles for perfect
matches.

EXAMPLE 2.2. Consider one point-set consisting of n points {xi ∈ R2 : i = 1, …, n ≥ 2} in a
circle (centered at the origin) with radius r and with polar angle {θi = 2iπ/n : i = 1, …, n}
and another point-set consisting of {yi : i = 1, …, n} in the circle with polar angle θi + ω.
Use the conventions xn+1 = x1 and x0 = xn. The perfect match condition is forfeited under ω
if

which implies tan |ω| ≥ (1 − cos(2π/n))/ sin(2π/n) = tan(π/n), i.e., |ω| ≥ π/n. One can easily
verify that Λ(TA; 1)/Λ(TS, 2) = tan |ω| and ωmax in Def. 2.1 is exactly 2|ω|. Hence, a perfect
match can be obtained if the rotation angle ω lies in (ω−, ω+) := (−π/n, π/n) or ωmax ≤ 2π/n.
Here, we term the range (ω−, ω+) the perfect match range. Note that this upper bound (which
does not depend on the spatial size 2r) can be regarded as the angular resolution of the point-

set (i.e., the average angle between points for n points  evenly spaced in the angular
range 2π).

In the following proposition and corollary, we present the curl-cardinality relation for

rotations and general transforms. Consider a point-set  in Rd and generate another

point-set  by rotating  by angle ω. A rotation can be described by an
orthogonal matrix R, so let T(x) = Rx. Perform the decomposition ▽T = R = RS + RA, where
RS, RA are the symmetric and skew symmetric parts of R. The magnitude of the rotation can
then be measured by the ratio Λ(RA, 1)/Λ(RS, d).

PROPOSITION 2.3 (Curl-cardinality for rotations). Suppose that the transform T is a rotation.

(i) A perfect match can be obtained for a set of n points in Rd if ωmax(T, Rd) ≤ 2π/
n.

(ii) Among all of the possible point-sets consisting of n points, the point-set that
consists of the vertices of the n-sided regular polygon has the smallest perfect
match range, (ω−, ω+) := (−π/n, π/n).

The proof can be found in the appendix.

COROLLARY 2.4 (Curl-cardinality for general deformations). Decompose the gradient of a
general transform T as a sum of the symmetric and skew symmetric parts,
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(i) For a general transform T on Rd, the above curl-cardinality relation still holds
with the constant C not necessarily equal to 2π (the difference is due to the
Riemann sum approximation).

(ii) Suppose that TS is constant, positive definite and can be factored as .
The curl-cardinality relation can be improved, i.e., perfect matches occur if ωmax
≤ 2π/n, where

(2.4)

The proof can be found in the appendix. From the proof of the Corollary 2.4, according to
the isoperimetric inequality and lemma A, one can easily verify that the upper bounds occur
only when the points are exactly the vertices of the regular polygon5.

2.4. Curl-cardinality relations
ωmax ≤ C/n−1/d. At first glance, Prop. 2.3(or Cor. 2.4) might take one pessimistic about the
occurrence of perfect matches. However, usually the value ω+ − ω− for rotating a high-
dimensional point-set is far greater than 2π/n (when the points are not concentrated in a
planar circle). In fact, from the proof of the proposition, n can be reduced to a maximum
length of disjoint cycles of the corresponding permutation τ. Let us examine one special

case: In 2D, suppose the points are located at rectangular grid points xi,j = ( , )
for i, j = 1, …,  ε N. Along the rectangular boundary, there are 4  points. The angular
resolution is approximately 2π/4  = π/2 . Thus, ω+ − ω− ≈ 1.57n−1/2.6 Similar
arguments demonstrate that ω+ − ω− ≈ 1.57n−1/3 for the cases of 3D rectangular grids.

Here, one simulation of the curl-cardinality relation in which the coefficient is greater than
π/2 ≈ 1.57 is presented. Consider a point-set randomly generated from the unit square [0, 1]
×[0, 1] uniformly. Rotate the point-set along the z-axis by an angle ω. Each perfect match
range (ω−, ω+) is measured under various point cardinalities, n = 50, …, 200. The result is
reported in Table 2.2 and Fig. 2.1. In the figure, the green solid line reveals a linear
relationship between n−1/2 and ω+ − ω−, where (approximately) ω+ − ω− = C2n−1/2, with C2
= 2.90. Similarly, we measure the perfect match range for 3D point-sets (randomly
generated from [0, 1] × [0, 1] × [0, 1]) with different point cardinalities. The result is shown
by the red dashed line,which is (approximately) ω+ − ω− = C3n−1/3, with C3 = 2.86.

Consequently, under the same magnitude of curls, the difficulty matching 1000 (randomly
sampled) 3D points in mass transport models is similar to the difficulty of matching 100 2D
points and the difficulty of matching 40 points on the four sides of a square. Hence, it is not
surprising that perfect matches occur when matching 3D lung point-sets containing 1000
points. See the experimental results for details.

5In (ii), points  are the vertices  of the regular polygon under affine transforms, 
6To see the origin of the factor n1/2, consider a polygon  with constant side lengths ||xi − xi−1|| = h for i = 1, …, m and x0 =
xm. Fix Area (the area of the enclosed region). Since Tr(S) = mh2, an upper bound for tan |θ| is mh2/4Area (see Eq. (??)). Hence, the
tightest bound for ωmax is given by the polygon with the minimum cardinality m.
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3. Outliers in matching problems
In this section, we impose the same (small curl) assumption on transforms as in the previous
section. Hence, the mass transport method yields the correct correspondence in this ideal
case. We will study the outlier effect in mass transport models. In our experiment, outliers
refer to the points that appear in one point-set but that are missing correspondences in the
other point-set. From a mathematical viewpoint, because the points are unlabeled, it is
impossible to distinguish outliers from the “inliers”. Hence, perfect matches are unattainable
when outliers exist. In fact, the matching result can be much worse. Sometimes, even a small
number of distant outliers can cause large mismatches in the aforementioned mass transport
model (see the experimental results).7

One possible solution is the HD model [12], in which correspondences are estimated by
maximizing

(3.1)

with respect to nonnegative unknowns , , subject to the unit mass constraint,

 for all i, j. Here, the correspondence is characterized by two

matrices , . This model yields the same correspondence result as the mass transport
model, when σ tends to infinity (B.3 in [12]).

In this section, we will demonstrate that the optimal correspondence in the HD model is
indeed cyclically monotone (see Remark 3.4). Hence, the HD model can be viewed as a re-
weighted mass transport model in which the weight function is related to the spatial distance
of each corresponding point-pair. When a finite kernel scale σ is used, this model is robust to
distant outliers (see the experimental results presented in section 4). Indeed, for some
sufficiently large σ, the correspondence determined by the majority rule(Eq. 4.2) is identical
to the correspondence generated using the MK mass transport model. Thus, robustness
against outliers is obtained from the use of finite kernel scales.

3.1. Duality
We will examine the optimality condition in the HD model by analyzing the duality
structure between the maximization problem Eq. (3.1) and its dual problem Eq. (3.3). Let S

= {(Γ+, Γ−) : Γ+, Γ− are m × n matrices with entries ,  satisfying

, . Let

(3.2)

Let T = {(ϕ, ψ) : Vectors ϕ, ψ have positive entries ϕi; ψj with ϕi;ψj ≥ K(xi, yj)2}. Here, the
dual problem max E is presented:

7For example, consider one-dimensional point-sets {xi}, {yi} on the x-axis with perfect matches. Add one outlier x to {xi} and add
one outlier y to {yi}, where x > xi and y < yi for all i. Then, we obtain a 100% mismatch rate.
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(3.3)

Indeed, these two problems are connected by the weak duality:

(3.4)

We say that (Γ+, Γ−, ϕ, ψ) is a saddle point if

(3.5)

The weak and strong dualities have been studied in [12], and the strong duality can be
established using the strong duality theorem (Prop. 5.2.1[3]). The following proposition
summarizes the optimality conditions.

PROPOSITION 3.1. Assume Ki,j > 0 for all i, j. Then

This result indicates the absence of the duality gap. That is, if the matrices (Γ+, Γ−) and the
vectors (ϕ, ψ) are optimal, then from Eq. (3.4), the following conditions hold:

1.
For all i, j, . Then,  for each pair (i, j) with

.

2.  for all i, j.

Conversely, when these two conditions are fulfilled, (Γ+, Γ−, ϕ, ψ) is a saddle point.

From Prop. 3.1, the (i, j) entries  should coincide with those in the product of the two

vectors ϕ, ψ if . Thus, given a matrix {Ki,j : i = 1, …, m, j = 1, …, n} with nonzero
minors8, the correspondence matrices (Γ+, Γ−) are highly sparse. Here, a block coordinate
descent method to compute Γ+, Γ− is presented.

ALGORITHM 3.2 (Correspondence estimation[12]).

1. Initialize matrix Γ− with entries  and matrix K with entries

. Let σ be some kernel scale.

2. Repeat the iterations till they converge,

(3.6)

8All square sub-matrices have a nonzero determinant.
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In Theorem 4.5 [13], any limit of the sequences is a global maximizer independent of the
initial positive matrices Γ+ and Γ−. Empirically, the convergence speed is typically
acceptable for point-sets with hundreds of points and small kernel scales.

3.2. Cyclical monotonicity in the HD model
Rearrange and partition each pair of discrete masses ν+, ν− properly, such that the matching
is “bijective”, i.e.,

Then, the maximizer (Γ+, Γ−) of E can be expressed as a pair of square diagonal matrices

with diagonal entries  and . The next proposition characterizes the optimal

bijective matching described by {( ) : i = 1, …, n}.

PROPOSITION 3.3. The above bijective matching is optimal if and only if

(3.7)

Note that for either yi = yj or xi = xj we have

(3.8)

Proof. (The only-if part) Let (ϕ, ψ) be a minimizer of the dual problem J. Then, we have

,  and , which implies

where we also used . Thus, we proved the first inequality. The second inequality
is obtained by exchanging i and j.

(The if part) Suppose that Γ+, Γ− and Ki,j satisfy the inequality. Let

One can then easily verify , . From Prop. 3.1, (Γ+, Γ−, ϕ, ψ) is a
saddle point. Thus, the diagonal matrices (Γ+, Γ−) are an optimal pair.

This proposition yields two consequences.

REMARK 3.4 (Cyclical monotonicity). The inequality in Eq. (3.7) yields the following “c”-
cyclical monotonicity [50], where the cost function “c” defined as −log K. For any natural
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number N and any subset {(x1, y1), …, (xN, yN)} of two point-sets, the following inequality
holds:

i.e., we obtain the c-cyclical monotonicity

When , cyclical monotonicity implies that {(xi, yi) : i = 1,
…, N} is included in the sub-differential of a proper lower semi-continuous convex

function. From Eq. (3.8), both the upper and lower bounds of the ratio  tend
to 1 as σ2 → ∞. Hence, the pair of limit correspondences in the HD model converge to the
same limit, which is exactly the correspondence matrix in the mass transport model.

REMARK 3.5 (Closest point property[12]). Consider , α ≥ 1.
Consider two point-sets {xi : i = 1, …, n}, yi : i = 1, …, n} with |xi − yi| < mini {∥xj − yi∥,
∥xi − yj∥ : j ≠ i} for all i, i.e., xi is the closest point to yi among the first point-set and vice

versa (see Fig. 3.1).  has a lower bound 1. Then, the bijective matching {(xi,

yi) : i = 1, …, n} is optimal if  is constant for each i. Hence in this case, the HD
model produces the same result as the ICP method[58]. The conclusion does not depend on
σ.

Remark 3.4 demonstrates that in the case of no outliers, there exists a minimum kernel scale
σmin such that the correspondence produced by the HD model with the kernel scale σ ≥ σmin
is the same as the correspondence μ produced by the MK method and modified by the
majority rule, Eq. (4.2). To suppress the outlier effect, we should use small kernel scales if
possible. According to one example in appendix D, the value of the minimum kernel scale
σmin is approximately proportional to the spatial size of the point-set, the largest
displacement and the point cardinality (see Eq. (D.4)). In practice, because the displacement
is unknown, we simply select σ to be a value between |Δ|/2 and 2|Δ|, where |Δ| is the spatial
size of point-sets.

3.3. Pre-processing for HD methods
One can use the moment method[44] to shorten the distance between the corresponding

point pairs: Let  and , where , . Let

,  with singular value decompositions
 and . Let

(3.9)

Then,  and  have the same first two moments. Here, tx, MX are called the

first and second (central) moments of .
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One naive approach is the following: employ the HD model on the point-sets  and

 instead of the original point-sets. However, in some cases, this approach could lead
to poor performance because of the instability of the orthogonal matrices (in particular, the
second moment has close eigenvalues9).

Instead, we consider the positive definite affine transform T1(x) = Ax + t as the

preprocessing transform, where , and t refers to a translation vector.
Point-sets are preprocessed in the manner, {A(xi−tx)}, {yi−ty}, where tx, ty ∂ Rd are chosen to
match their first moments of the point-sets. We have empirically found that this
preprocessing can shorten the distance between each desired point-pair and thus decrease the
kernel scale requirement in the HD model. Hereafter, the HD method refers to the HD model
applied to the preprocessed point-sets.

Two sets of experimental results are provided to demonstrate the method's performance (see
Fig. 3.2 and Fig. 3.4): (i) Fig. 3.2 shows a comparison of the performance of the HD method
with and without the preprocessing at matching two shapes10 ii) Fig. 3.4 shows the
matching result for the lung (TLC /FRC) branch points (shown in the left of Fig. 3.3)
obtained using the mass transport-based methods (the MK and HD methods). The details of
the experimental setup can be found in section 4.4. Clearly, the use of preprocessing
improves both matching results.

3.4. General transforms
In applications, we often must the task of matching point-sets with large curl and large
cardinality. To overcome the restriction of the curl-cardinality relation, we can incorporate
other methods into the mass transport methods.

In the following, we consider the following smoothness assumption about T : Express T as

the composition of two smooth transforms, T = T2 ◯ T1. We assume T1 and ,
where  is the reproducing kernel Hilbert space generated by a positive semi-definite
kernel Φ with norm || · || Φ(Ω). For simplicity, let Φ be a Gaussian kernel with kernel scales
σS and let the domain Ω be a ball.11

Here, we discuss two approaches for estimating T1 (note that the transform T2 is handled by
the correspondence in the HD models).

3.4.1. HD-RBF—In section 3.3 [12], the following model is proposed to estimate the point-
to-point correspondence and the transform T1:

(3.10)

where λ is some positive parameter and the basis functions for T1 consist of Gaussian
kernels and affine transforms. We will call this the HD-RBF model (Hellinger distances-
radial basis functions). Our experimental results indicate that this model performs well at
matching the lung point-sets even though the model is a non-convex minimization problem.
The introduction of the transform T1 has two advantages. First, it provides one possible

9For instance, one point-set is a set of rectangular grid points. See the experimental results presented in Table 3.1.
10The point-set is provided by courtesy of Prof. Washington Mio of Florida State University.
11The domain Ω is required to satisfy an interior cone condition (see Definition 3.6[51]). Every ball satisfies the condition (see
Lemma 3.10[51]).
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method for handling large curls. In fact, when T1 is restricted to rigid motions, the optimal
rigid motion will match the first two moments of the two point-sets (see Appendix C).
Second, the displacement between each desired point pair can be greatly reduced. Because
the optimal selection σ depends on the largest displacement, a smaller kernel scale can be
used, and we can obtain more robustness against outliers.

3.4.2. Hierarchical approaches—The second approach is a hierarchical method (coarse-
fine) approach to reduce the curl of deformations. The matching challenge in mass transport
models is caused by the curl of the displacement and the point cardinality. Reducing one of
these factors can improve the matching performance. The hierarchical approach attempts to
split the original matching problem with large cardinality and large curl into two (or more)
subproblems, each of which has either small cardinality or small curl. When the curl-
cardinality relation is fulfilled, perfect matches can be obtained for both subproblems.

Point-sets are selected from prominent geometric image features in images using differential
operators (edge and corner operators, for instance[39]) or local descriptors (for instance,
SIFT[28]). Several pairs of point-sets with different point cardinality can be generated from
one pair of images. Here, we demonstrate a coarse-fine approach to compute the
correspondence between (fine) point-sets X2 and Y2.

• Select a pair of coarse point-sets X1, Y1 and a pair of fine point-sets X2, Y2 from a
pair of images. The fine point-sets have larger point cardinality than the coarse
point-sets.

• Use the mass transport methods to obtain the correspondence τ from X1, Y1.

• Estimate the transform T1 from the problem

• Compute the correspondence via the mass transport methods on the pair of point-
sets T1(X2), Y2. Then, the transform T2 can be estimated in a similar manner, if
necessary.

Because of the following approximation theorem, the deformation between {yi}i and
{T1(xi)}i usually has a smaller curl than the deformation between {yi}i and {xi}i. According
to the curl-cardinality relation, the matching performance between two updated point-sets
{yi}, {T1(xi)} can be greatly improved compared with the one between the point-sets {yi}
and {xi}.

THEOREM 3.1 (Theorem 11.14[51]). Let  be the reproducing-kernel Hilbert space generated
by a positive semi-definite kernel Φ with norm ∥·∥Φ(Ω). For simplicity, let Φ be a Gaussian

and let the domain Ω be a ball. Let sT,X be the radial basis function interpolant to 
based on T and X = {x1, x2, …, xn}. Then, for every l ≥ 2, l ∈ N, there exist constants hl, Cl
< 0 such that

for all x ∈ Ω, provided that hX,Ω ≔ supx∈Ω minxj∈X ∥x − xj∥2 ≤ hl. Here, DT and DsT,X
refer to the first derivatives of T and sT,X, respectively.

Hence, the curl magnitude of the difference T − sT,X is bounded by the norm of T and the fill
distance hX,Ω. In the hierarchical approach, sT,X is the transform T1. Suppose that the rate of
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increase of the point cardinality does not exceed the rate of decrease of the curl magnitude.
As a consequence of the curl-cardinality relation, a perfect match can still occur in matching
the fine point-sets.

Here, one simulation result is presented. Let X be the uniform grid points in the square and Y
be the deformed point-set

Because the deformation is not curl-free, some mismatches are expected. We generate two
pairs of point-sets, (X1, Y1) with cardinality n = 52 and (X2, Y2) with cardinality n = 102, …,
302. The transform T1 is approximated by a linear combination of Gaussian basis functions
exp(−∥x−y∥2/0.12) and affine transforms. The experimental result is shown in Fig. 3.5 and
Table 3.1. Note that perfect matches occur when the hierarchical approach is used. Another
simulation experiment can be found in Fig. 4.2.

4. Experiments
4.1. Experimental setup

Points located at the bifurcations of the major vascular trees were manually selected and
assigned correspondences from a pair of 3D CT images. First, the vascular trees from both
images are automatically extracted using the segmentation software package PW2:VIDA
Diagnostics (Coralville, IA, USA). The major vessel trees are then obtained by applying a
morphology opening with a structure element of 3 × 3 × 3 voxels, and then a connected
component process is performed on the segmented vessel trees to remove small branches. A
set of points located at the major vascular trees in one image is then generated by 3D
skeletonization and post-analysis. Next, a semi-automatic system [32] was adopted to guide
the observer in finding the corresponding points in the other image. With the semi-automatic
tool, each point pair manually annotated by the observer is added to a thin-plate-spline as a
warping function for the two images. The warping function is then utilized to predict its
location when a new landmark point is presented to the observer. As more matching points
are added to the system, the warping function becomes more accurate, and the task of the
observer becomes easier, providing that there are increasingly accurate starting points.

REMARK 4.1. There are several research studies related to lung registration. The intensity-based
lung registration method matches the intensity patterns of the images retrieved at different
lung volumes by minimizing a similarity measure [42][14][36][55][56]. The sum of the
squared tissue volume difference (SSTVD) is a new similarity criterion based on preserving
tissue mass of the lung at different volumes[56]. SSTVD has been demonstrated to yield an
improved registration for large deformations in the lower lobes. However, such methods
incur high computational costs12, and a possible mismatch of important anatomical
landmarks may occur when registration optimization falls into a local minima. In addition to
intensity data, anatomical features have also been used to derive the transformation from one
lung dataset to another[17][5][26][11]. To further improve the accuracy of registering intra-
subject datasets across large lung volume changes, hybrid methods that utilize both
anatomical landmark and intensity information have been proposed [34] [27] [54] [21]. The

12Computational time varies from several minutes to several hours depending on the input image size and the implementation method
(e.g., sampling points, GPU, multi-threading).
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correspondences between anatomical points, such as the bifurcation points of airways and/or
vascular trees and vertebrae were manually designated by experts.13

In this work, we use two types of point-sets: (i) six pairs of CT images are used; they have
subject IDs 5972, 5974, 5978, 5983, 6012 and 6019. Approximately 100–200 landmark
pairs extracted from the branch points of the vessel trees are generated for each image pair.
Figure 1.1 shows an example of the landmark locations; segmentations of the lungs and the
vascular and airway trees are also shown for reference. (ii) One large lung point-set (subject
ID H8756) consists of approximately 62500 points, which are the branch points of
approximately 20 generations of airway trees in the five lung lobes generated by the volume
filling technique [47] [46] (see Fig. 4.1).

Consider two sets of branch points  and . Because the correspondence
matrices Γ+ and Γ− are generally different matrices, we assign the correspondence by the
following majority rule,14

(4.2)

That is, . The matching performance of each method is
evaluated using the match error, i.e., the total number of mismatched pairs from the second
point-set not including outliers15.

4.2. Lung point-sets without outliers
4.2.1. Lα mass transport costs—The following two experiments demonstrate that the
correspondence of lung point-sets (under volume change) can be estimated using the mass
transport model, specifically the L2 mass transport model (the MK method). Here, the lung
point-set is extracted from subject ID H8756.

First, experiments are conducted on 6 pairs of point-sets (TLC/FRC), each of which contains
1000 points. In the first five experiments, a pair of point-sets is selected from one of the 5
lung lobes with a point ID from 1 to 1000, i.e., 1000 point-pairs at the lowest generation.
The datasets of data 1, data 2, …, data 5 refer to the ith lobe, where i = 1, 2, …, 5. Their
spatial location is shown in Fig. 4.1. In the sixth experiment, a collection of 1000 point pairs
is assembled from these five lobes (we take the first 200 point-pairs from each lobe). The
correspondence is obtained by minimizing the Lα mass transport cost

The computation is performed using the matlab function linprog, which is based on the
standard interior point method[57][7].16 Several different powers α are used, and their

13Some recently published work has shown that it is possible to generate large numbers of corresponding landmarks (more than
1,000) from a pair of lung CT datasets with semi-automatic tools [32] [11]. Although semi-automatic tools [32] [11] were developed
to accelerate the process, the task of designating the correspondences between the points remains a labor-intensive task.
14If one is concerned about the symmetry, the following majority rule is suggested:

(4.1)

15Because points have no label, we generally cannot distinguish between outliers (the points with missing correspondence) and
inliers. Hence, for all experimental results, we do not consider the cases in which outliers are accidentally detected.
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corresponding match errors are reported in Table 4.1. The cost with α = 2 yields the lowest
match error. Hence in the following experiments, we will focus on the L2 mass transport
cost.

When α ≠ 2, the correspondence is not translationally invariant. One question arises: can the
match result be improved if an extra translation t is applied to one point-set? Typically it
can, but this is not for all cases. Consider the translation t that matches the mass center of

two point-sets, . The result is reported in Table 4.2. By
comparing this table with Table 4.1, we see that the results are better than the results for the
case without translations.

Next, the mass transport model is tested on all of the 62,500 point-pairs for subject H8756.
Unfortunately, this is a very difficult linear programming problem because of dense
constraints. The total number of (primal and dual) unknowns is at least 62500 + 625002.
Because of the significant computation cost, we will match a small subset of all of the point-
pairs each time (we use 500 point-pairs each trial and a total of 125 matching trials).17 In the
ith experiment, we match a pair of point-sets consisting of 500 point pairs with ID numbers
from 500(i − 1) + 1 to 500i, where i ranges from 1 to 125. The number of mismatches is
reported in the left side of Fig. 4.2. Note that perfect matches occur in the first 20 pairs of
point-sets, as shown in the stars with an x-coordinate not exceeding 10, 000. Mismatches
occur for the branch points with higher point IDs, i.e., those located at higher generations
(generations greater than 12; see the right subfigure of Fig. 4.2). This result is consistent
with our theoretical analysis: a large curl exists on the branch points close to the boundary
(Appendix B). For a fixed point cardinality, a mismatch error is more likely to occur, when
the applied deformation has a larger curl (this follows from the curl-cardinality relation).

Finally, we report results of an experiment in which a hierarchical approach is used. We
estimate the transform T using a pair of coarse point-sets, which are each composed of 50
points selected from each 500–point point-set. The total number of mismatches in the above
experiment is 2, 671 out of 62, 500, which is 4.3%. When a coarse point set (50 points
selected from each set of 500 points) is used, the number of mismatches is reduces to 282,
which is 0.45%. See the right subfigure of Fig. 4.2. (The mismatch error is zero for each pair
of coarse point-sets with a cardinality of 50).

4.3. Comparisons to other methods
Matching lung point-sets is not an easy task for other methods. Here, we provide several
comparisons to other methods. One naive approach is to simply assign the correspondence
of each point as the closest point in the other point-set; this approach is known as the closest
point method (CP). In general, the result is not symmetric, i.e., when x1 is assigned to y1, the
assignment can change if the roles of the two point-sets are exchanged. To fix this
inconsistency, the Sinkhorn matrix balancing (SB) [43] is introduced in the well-known
TPS-RPM method. This method assigns a unit mass to each point, and a doubly stochastic
matrix is generated to represent the matching result symmetrically. In the TPS-RPM
method, one extra row and one extra column are added to address the outliers (this is called
the soft assignment). Moreover, the TPS-RPM method includes the following appealing
procedure: a sequence of transforms T can be estimated, when the kernel scale σ is gradually

16The matlab code to setup the input arguments of linprog will be available at http://www.math.ntu.edu.tw/~pengwen and other
source code will be provided upon request.
17The experiment with 500 × 125 point-pairs took approximately 4 hours (to complete the 125 matching trials; each trial required
approximately 2 minutes) using the interior point method on a server with 60 G of memory. We also conducted several experiments
where we matched a point-set with a size of 1, 000. However, it converged too slowly. For matching 2,000 point-pairs, 60 GB of
memory is also not sufficient to execute the interior point method.
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decreased from a large value to a small positive value. The TPS-RPM method is a state-of-
the-art method for medical imaging analysis (see [19] [6]). To clarify the performance, no
outliers are added to the point-sets.

Table 4.3 shows a comparison of the results obtained using the closest point (CP) method,
the Sinkhorn balancing (SB) method, the TPS-RPM, the MK method and the HD-RBF
method (σK = 100, σS = 50). Clearly, the HD-RBF method gives the best correspondence
result.18 In comparison with the MK method, T1 (H6019) with a nonzero curl is estimated in

the HD-RBF model such that the transform from  to  has a smaller curl.
When the HD method was applied to the six subjects preprocessed by affine transforms
given by Eq. (3.9), the same matching result was generated. Finally, note that there is little
difference between the matching performance of the SB and TPS-RPM methods, even
though the latter method makes some effort to estimate the transformations.19

To illustrate the differences between TPS-RPM and the mass transport methods (MK and
HD), we select two small point-sets from the two point-sets (see Fig. 4.3(e)). The two point-
sets are separately matched by the SB method, the CP method, the HD model and the MK
method.20 Each correspondence is represented by a matrix, in which the (i, j) entry is some
“likelihood” of assigning the ith point in the first point-set to the jth point in the second
point-set (see Fig. 4.3). Clearly, the mass transport methods (HD, MK) outperform the other
two methods. The HD model in Fig. 4.3(c) provides an approximate solution for the mass
transport problem (see Fig. 4.3(d)). Moreover, the performance of the SB method is worse
than that of the CP method.

Lastly, we like to highlight that the correspondence generated using the TPS-RPM method is
essentially different from the one from the mass transport method, despite their similar
appearance. In TPS-RPM, the kernel matrix {Ki,j := exp(−∥xi−yj∥

2/σ2)}i,j is always dense,
because the Sinkhorn matrix balancing does not change the ratio Ki1,j1Ki2,j2/Ki1,j2Ki2,j1. The
dense stochastic matrix is irrelevant to the permutation matrix obtained in the mass transport
methods (except for the case in which these points are the closest point pairs). Determination
of the correct correspondence using the TPS-RPM method relies on the correct estimation of
the transforms. However, even for two 1D point-sets without outliers, the doubly stochastic
matrix produced by SB is generally not the permutation that places both point-sets in order.
In these cases, the TPS-RPM method could fail to produce a transform T based on thin-plate
splines such that the desired point-pairs form the closest point pairs. The soft assignment is
forced to remove several “extra” points and label them as “outliers” to generate a
permutation matrix at the end of the deterministic appealing.

4.4. Lung point-sets with outliers
4.4.1. Five lung lobes of subject H8756—In the following section, we compare the
MK method with the HD method for a pair of point-sets, selected from the five lung lobes

18In fact, in subject ID H6012, the points with ID 6 and ID 8 in one point-set are incorrectly assigned to the points with ID 8 and ID 6
in the other point-set. The points are quite close to each other (they are at approximately a 1.9mm apart). Here, the results of using the
HD-RBF method with different λ values are presented:

• For the cases where λ = 1 and 10, in the six subjects, the errors were 0, 0, 0, 0, 2(H6012), 2(H6019); in the five lobes, there
were zero errors.

• For the case where λ = 0.02, in the six subjects, the errors were 0, 3, 8, 0, 2(H6012), 15(H6019); in the five lobes, the
errors were 0, 0, 0, 0, 2, 2.

19The computational cost of matching a pair of two point-sets is very high. For subject H6012, the time spent was 235 seconds (200
inner iterations for SB and 20 outer iterations for the spline estimation) for the TPS-RPM; in comparison, the time required for the HD
method was less than 2 seconds.
20The kernel scale is σ = 100 for both the SB and HD methods.
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and to which randomly generated outliers have been added. The spatial size of the point-sets
is approximately 200 mm, and thus we choose multiples of 100 for kernel scales.

Two point-sets X, Y with the same cardinality are assembled from two parts: (i) 200 point
pairs of one lung lobe in the TLC and FRC phases and (ii) outliers with the same cardinality.
Both the point-sets X, Y include outliers (with the same cardinality) generated using a

normal distribution Normal(μi,σ), with means  and

.21 We choose multiples of the identity matrices s2I for covariances
σ, with s2 = 302, 602, 1202 and 1802. Figure 3.3 shows the point-set (TLC) of the first lobe
with a set of 25 outliers added.

We perform matching experiments with the outlier cardinality from 0 to 25 (chosen from the
aforementioned 25 outliers). The HD method is applied on the point-sets pre-processed by
the positive definite affine transforms. The result of each lung lobe is reported separately in
the five figures (Fig. 4.4). For visual clarification, we only report the average mismatches of
the four s2 values. The y-axis represents the number of mismatches (not including outliers).
The HD method, with σK ranging from 12.5 to 400, outperforms the MK method.

4.4.2. Six subjects—We repeat the same outlier generation rule and experimental
procedure on the vessel branch points of six subjects (see the right subfigure of Fig. 3.3).
The result is reported in Fig. 4.5. The HD method with σK = 100, 200 outperforms the MK
method (σK = inf). Hence, the HD method with the proper kernel scale is more robust
against the existence of outliers than the MK method.

4.5. Conclusion
In this work, we consider the lung deformation between TLC and FRC as one example.
Nearly perfect matching results validate the effectiveness of the mass transport model,
especially when the L2 mass transport cost is used. This result motivates our theoretical
analysis. Generally, the performance of a point-set matching method depends on the
assumed transforms. In this work, the deformation is assumed to be a vector field with a
small curl (with respect to the point cardinality). The mechanics of perfect matches are
studied from the viewpoints of the curl-cardinality relation and an L2-invariant property.
The theoretical analysis and experimental results suggest that the mass transport method is a
suitable tool for handling point-set registration problems subject to elastic deformations.
One potential application is to cluster analysis of both airway and vessel tree branching
patterns and classification of normal and abnormal lungs based on lung deformation.

REMARK 4.2. The correspondence estimation problem also arises in shape analysis, e.g., [1]
[38], where shapes are modeled as compact smooth Riemannian manifolds equipped with an
intrinsic metric. One stable intrinsic metric is the diffusion metric, which is based on the
solution of the heat equation. Gromov-Wasserstein distances are introduced for shape
matching[31] [38]. These distances are also defined based on the idea of optimal mass
transport and the heat kernel signature[45]. In [38], the authors propose a game-theoretic
approach to recover sparse correspondences between shapes. Gromov-Wasserstein distances
measure the overall distortion of the pairwise distances within point-sets, whereas
Wasserstein distances measure the transporting cost between correspondences. One
advantage of Gromov-Wasserstein distances is that they are invariant under rigid transforms.

21Choosing a nonzero mean shift yields a stronger outlier effect. Empirically, the MK method and the HD method with proper kernel

scales both work quite well for the case where  and .
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An interesting question (which is beyond the scope of this paper) arises: do similar
conditions to ensure perfect matches (under certain classes of deformations) exist?22
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Appendix A. Proofs of curl-cardinality relations
To prove these relations, we need the following lemma.

LEMMA A.1. Fix a skew symmetric d × d matrix B. Let  be the set of all skew symmetric d ×
d matrices A of the form vw⊺ − wv⊺ with v, w in Rd. We have

Also the maximum of Tr(2AA⊺)−1/2|Tr(BA)| is obtained if and only if the vectors v, w
corresponding to the maximizer A lie in the subspace spanned by singular vectors of B
corresponding to Λ(B; 1).

Proof. According to the matrix theory (page 107), a skew symmetric matrix B can be
expressed as

where {β1 ≥ β2 ≥ … ≥ βκ > 0} are singular values and  are orthonormal singular
vectors of B. Observe that for v,w ∈ Rd,

The second and third equalities hold only when the above determinant is positive and v,w
are a pair of vectors lying in the subspace spanned by u1, u2.23

22We thank the referees for informing us of the Gromov-Wasserstein metrics.
23The second inequality comes from the following fact. Let x = [v ·u1, v ·u2, …, v ·u2k−1, v ·u2k], y = [w · u1, w · u2, …, w · u2k−1, w
· u2k]/∥w∥ and z = [w · u2, −w · u1; …, w · u2k, −w · u2k−1]/∥w∥. Then x · y = v · w, y · z = 0 and ∥x∥ = ∥v∥, ∥y∥ = ∥z∥ = 1. Since x · y,
x · z are the scalar projections of x onto orthogonal vectors y, z, then ∥x∥2 ≥ (x·y)2+(x·z)2, i.e., (x·z∥w∥)2 ≤ ∥v∥2∥w∥2−(v·w)2, which
yields the second inequality.
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A.1. Proofs of Prop. 2.3
The case n = 2 is obvious. Here, we focus on the case for n ≥ 3. Let R be a rotation matrix
with a minimum of Λ(RA; 1), which leads to the occurrence of a mismatch. Then, there

exists some m ∈ N, m ≤ n and some relabeling on , such that

We focus on the case of m = n, corresponding to the smallest Λ(RA; 1) for mismatches.
Reformulating the inequality yields

(A.1)

Equivalently,

(A.2)

where the following notations are used,  with Si: = (xi − xi+1)(xi − xi+1)⊺ and

 with

Note that

(A.3)

Examine the LHS and RHS of Eq. (A.3): (i)For the LHS of Eq. (A.3), let a be the smallest

eigenvalue of RS and L be the length . Then

where the second inequality is derived from Cauchy-Schwartz inequalities and equality
holds if and only if ‖ xi − xi+1 ‖ is constant for each i. (ii)For the the RHS of Eq. (A.3),
observe that

(A.4)

where equality holds only if  lie in the subspace spanned by the singular vectors

of RA corresponding to Λ(RA, 1)(Lemma A.1), i.e., the set  is coplanar. Note that
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is the area of a polygon assembled from n triangles with vertices . Hence,
Eq. (A.4) implies that

is bounded above by the maximum area of the closed polygon with given side lengths. From
[25], the maximum area occurs when the polygon is inscribed in a circle. Let Area be the
area of the polygon.

In summary, Eq. (A.3) yields

where the isoperimetric inequality, L2/Area ≥ 4π (page 33, [10]) is used. In fact, the
isoperimetric inequality for polygons[25] (L2/Area ≥ 4n tan(π/n)) shows that

(A.5)

The above arguments also show that the lower bound of Λ(RA, 1)/Λ(RS, d) is reached only

when  are vertices of a regular polygon. On the other hand, according to Example

2.2, the lower bound can be obtained by choosing  as vertices of a regular polygon,
which completes the proof of the perfect match condition ωmax ≤ 2π/n.

A.2. Proof of Cor. 2.4
Define L and Area as in A.1.

Proof. [Cor. 2.4(i)] For simplicity we only consider d = 3 here and present the proof in the
following. The occurrence of mismatches implies the existence of n ∈ N and some subset

 with convention xn+1 := x1, such that

Then

(A.6)

The left hand side of Eq. (A.6) has a lower bound,

(A.

7)
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which is an approximation of n−1(minx Λ(TS(x), 3))L(∂Ω)2(the existence of ξi is ensured by
the mean value theorem). On the other hand, the right hand side of Eq. (A.6) can be regarded
as the Riemann sum of one line integral,

which is bounded above by 2(maxx∈Ω |▽ × T(x)|)Area, where da is the area element.

If the above two approximation errors can be neglected, then together with the inequality
L(∂Ω)2 ≥ 4πArea(Ω), we have

Hence,

which verifies the curl-cardinality relation ωmax ≤ C/n for perfect matches, where C might
be different from 2π due to the approximation difference of the Riemann sums.

Proof. [Cor. 2.4(ii)]

Obviously, the left-hand side of Eq. (A.6) has a lower bound:

and ξi is some point between xi, xi+1(the mean-value theorem). However, when TS is

constant, we can derive a tighter bound. Let  for i = 1,…,n. Then the mean value
theorem indicates that the existence of ξi such that the left-hand side becomes

The right-hand side of Eq. (A.6) can be reformulated as
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where ni is some point lying on the segment between xi and xi+1 (by the mean value

theorem), and , . Divide the skew polygon with vertices  into n

− 2 triangles, each of which has vertices . By Lemma A.1, the right-hand
side can be regarded as

where  and β1(ηi) is the largest singular value of the skew symmetric

matrix . Note that the equality holds only when  are
coplanar.

Following this procedure, the same arguments in the proof of Prop. 2.3 yield

where ωmax(T; Ω) is the largest singular value of  among all x in Ω.
Hence, we have the curl-cardinality relation for perfect matches: ωmax ≤ 2π/n according to
the isoperimetric inequality.

Appendix B. Large curls near the lung periphery
We will provide one explanation for the occurrence of large curls near the boundary of the
domain, namely the lung periphery. First, we briefly describe the mechanics of breathing.
The repeated inflation and deflation of the lungs are controlled by the respiratory muscles,
the diaphragm and the intercostal muscles. During inhalation, the diaphragm and the
intercostal muscles contract and create negative pressure (relative to atmospheric pressure)
surrounding the lungs. The expansion decreases the pressure in the chest cavity and allows
air flow in, which inflates millions of alveoli. The region around the lungs in which this
negative pressure acts is called the pleural space and is filled with a very thin layer of
lubricating fluid that separates the outer surface of the lungs from the inner surface of the rib
cage ([2], page 4).

The lungs, which are made of spongy and elastic tissue, are commonly modeled as a linear,
isotropic and homogeneous medium[53]. In this situation, the displacement field u(x) := T(x)
−x on the domain Ω (lungs) satisfies the Lamé equilibrium equations in the linear elasticity
theory:

where μ > 0 and λ > 0 are called the Lamé constants and the vector function f is the body
force.

We will study the spatial distribution of the curl ▽ × T = ▽ × u. According to the classic
uniqueness result of the Lamé equations, u is unique up to some rigid body displacement if
traction is prescribed over the entire surface. Based on the superposition principle, the
solution u can be constructed as the sum of a particular solution of the inhomogeneous
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equilibrium equations and a solution of the homogeneous equilibrium equations subject to
the desired boundary condition.

To proceed, we assume that the body forces are derived from a scalar potential, i.e., f = ▽ξ.
This assumption is valid in many cases, i.e., for the gravity forces. Consider a particular
solution of the gradient form u = ▽ϕ. Then

Hence, one particular solution can be obtained by solving Poisson's equation:

Note that u is curl-free, and thus the body force does not contribute any curl on the
displacement field u (However, the nonzero f does affect the boundary condition for u).

According to Helmholtz's theorem, a vector field u on a bounded domain Ω in R3 can be

decomposed into a sum,  with ▽ · ψ = 0. Substituting the decomposition into
the homogeneous Lamé equations leads to

(B.1)

The desired displacement field is the one satisfying the boundary condition.

Note that ▽ × u = −▽2ψ. By applying the divergence and curl operator on Eq. (B.1), we

have . Thus, for each unit vector ν ∈ R3, ν · ▽2ψ is harmonic, which
implies that the extreme values of ν · ▽2ψ occur at the boundary ∂Ω (Theorem 2.3, page 15,
[18]). Hence, regardless of the boundary condition, the maximum magnitude of the curl ▽ ×
u occurs at the boundary of the elastic object. This theoretical result is consistent with our
lung experiments: mismatches occur at the branch points of higher generations.24

Appendix C. Rotations
Here we study one asymptotic property in the kernel correlation method [48] and Eq. (3.10)
about the rigid motions, T(x) = Qx + t.

Denote two point-sets by X := {xi : i = 1 , … , n1} and Y := {yj : j = 1 , … , n2} in Rd. The
transformation T is estimated through

(C.1)

where σ is the kernel scale and

24Note that T (x) = x+u. Here, we ignore the variation of ωmax contributed from the denominator .
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A minimizer T depends on the size σ. To avoid local optimal solutions, the kernel scale σ
should not be too small. Experiments show that the number of local optimal solutions is
reduced, when σ is large[48].

Observe that a minimizer (Q, t) in Eq. (C.1) maximizes the second term in Eq. (C.1),

since the remaining terms are constant. Denote the first moment and the second (central)
moment of X by tX, MX,

(C.2)

Likewise, let tY, MY be the first moment and the second moment of Y.

The following proposition shows that in the asymptotic case σ → ∞, the rigid motion
“matches” both the first moments and the eigenvectors of the second moments of two point-
sets. This asymptotic result also holds for the rigid motion in the HDRBF model, the first
term of Eq. (3.10)25. This study shows the transforms T1 with nonzero curl can be estimated
via optimizing the cost function with kernel scales sufficiently large.

PROPOSITION C.1 (Rigid motions). Consider two point-sets yi : i = 1, …, n2} and {Qxi + t : i = 1,

…, n1} with . Let T(x; σ) = Q(σ)x + t(σ) be a maximizer of the function in Eq.
(C.1), with Q(σ) ∈ Rd×d being an orthogonal matrix and t(σ) ∈ Rd. Let (Q, t) be a limit of
(Q(σ), t(σ)) as σ → ∞.

• Then the first moments of these two point-sets are identical,

.

• Assume that the second (central) moments MX, MY both have distinct eigenvalues
with SVD

(C.3)

Then , and thus the eigenvectors of QMX Q⊺ and MY are paral-lelized. Note that
QMXQ⊺ is the second moment of the rotated first point-set,

.

Proof.

As σ2 approaches infinity, 1/σ2 → 0, the Taylor expansion shows

.

Since , the leading term is ,

25We use the initialization ,  to estimate T1 in the non-convex minimization problem.
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As σ → ∞, the optimal translation vector t tends to , which implies that

.

For the notation simplicity, we replace (yj − t) by yj, then . The asymptotic behavior
of Q depends on the next leading term

.
Hence, Q is a maximizer of the function

(C.4)

(C.5)

which can be expressed as  with . Note that . By
the matrix theory26,

(C.6)

(C.7)

with the singular values σi of DX, DY both arranged in a decreasing order. On the other hand,
clearly when Q1 is the identity matrix, the maximal value is attained. Therefore, from the
definition of Q1, the optimal matrix Q is given by , which implies that

. Compared with , in the asymptotical case the
eigenvectors of QMXQ⊺ and MY are parallelized.

Appendix D. Finite kernel scales
Generally, the correspondence in the HD model with finite kernel scales is not a permutation
matrix. Here is one example to illustrate the recovery of the binary correspondence by the
majority rule, provided that the kernel scales σ are large enough. Besides, as the number of
points increases, the requirement on σ becomes harsh.

26Given two m × n matrices B1, B2, consider the problem

where two “rotations” U, V are m × m and n × n unitary matrices, respectively. The maximum value is ,

where the singular values ,  of B1 and B2 are both arranged in a decreasing order(page 435, [22]).
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Consider one point-set consisting of 2n+1 points,  with spatial resolution

a ∈ Rd and its translated point-set  with translation b ∈ Rd and b · a >
0. Let Δ = na, then the spacial size of the point-set is |Δ|. The following computation

provides a lower bound σ, approximately , such that  for all j

≠ i, i + 1, (ii) Both  and  are greater than 1/2.

Let us adopt the notations in section 3.2 and assume the bijective matching structure

,

where  will be determined later (see Fig. D.1). Clearly,

(D.1)

Claim: for i = 0, 1, …, 2n,

For even indices i, the optimal condition in Eq. (3.8) of the partition ,  yields

i.e., , Similar arguments show , for odd indices
i. Hence, the claim is verified.

Hence, . Note that γ0 = 1. By eliminating γ1, …, γκ−1, the recursive relation
(Eq. D.1) leads to

(D.2)

By the symmetry,  and then αn = 1. Thus,

(D.3)

From Eq. (D.2), ακ = Gκ−n and the expression for Gn+1 in Eq. (D.3),

which implies that γκ > γκ+1 for κ < n, and γn is the minimum. Hence, the success of the
majority rule relies on γn > 1/2. By convexity, (1 − G)−1(1 − Gn+1) ≥ n+1−n(n+1)(1−G)/2.
Then γn ≥ 1−n(n+1)(1−G)/2. Along with Eq. (D.3), we obtain one sufficient condition, 1 >
n(n + 1)(1 − G). Let Δ ≔ na. By the linear expansion of G, the minimal kernel scale is
approximately a multiple of the spatial size of the point-set,
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(D.4)

This result explains our selection on σ.
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Fig. 1.1.
3D CT images of lungs(Left): (a) TLC (total lung capacity) and (b) FRC (functional residual
capacity). Branch points are marked by green dots. The lungs, the airway tree, and the vessel
tree are marked by cyan, red, and purple, respectively. Right: Two point-sets selected from
CT images. The unit of the coordinates is mm. The direction z is along the lung height, i.e.,
a small z corresponds to the apex and a large z corresponds to the base. TLC is shown by
markers × and FRC is shown by markers •.
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Fig. 2.1.
Robustness of the extra curl for randomly sampled point-sets. The graph is generated using
Table 2.2. The y-axis is ω+ − ω−, and the x-axis shows n−1/2(the green solid line) and
n−1/3(the red dashed line) for 2D and 3D, respectively.
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Fig. 3.1.
Illustration of closest point pairs. xi, yi are a pair of closest points.
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Fig. 3.2.
Top row: Point-set X, point-set Y and the matching between T1(X), Y, where an affine
transform T1 is estimated from the first two moments. Second row: the left subfigure shows
the matching performance between X, Y; the right subfigure shows the matching
performance between T1(X), Y.
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Fig. 3.3.
Left: 25 outliers (red •) are added to the TLC point-set of the first lobe (shown in blue +).
Right: 25 outliers (red •) are added to the TLC point-set with subject ID H6972 (shown in
blue +).
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Fig. 3.4.
Mismatches of the mass transport-based methods applied to lobe 1 under the existence of
outliers. Left: The x-axis is the cardinality of outliers. The results from the MK method and
the HD model are depicted as a blue dashed line and solid lines. Here, no positive definite
affine transform is used. Middle: Another viewpoint of the left subfigure. The x-axis is the
kernel scaleσ. σ = inf refers to the MK method. Right: The mismatches of the MK and HD
methods are presented. A positive definite a ne transform is used in the HD method to match
the moments of the two point-sets.
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Fig. 3.5.
Matching results for hierarchical approaches. The left-1 and left-2 subfigures show the finer
point-sets X2 and Y2, and the middle subfigure shows the point-sets T1(X2) and Y2, where
the transform T1 is estimated from the coarser point-sets X1 and Y1 in the left-4 and left-5
subfigures.
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Fig. 4.1.
A 3D view of five lung lobes marked with five different colors.
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Fig. 4.2.
Mismatch errors for matching point-sets consisting of 500 point pairs consecutively selected
from the 62,500 point-pairs. The left and middle subfigures show the mismatches without
(left) and with (middle) transforms that were estimated using a pair of coarse point-sets with
a cardinality of 50 points. The x-axis shows the last point ID for each point-set. For instance,
x = 10, 000 refers to the point-set with IDs from 99, 501 to 10, 000. Right: The y-axis shows
the corresponding generation information for each point pair. For example, the first 104

branch points have generation IDs less than 13.
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Fig. 4.3.
Matching ten points. The ground truth correspondence is the identity matrix. (a–d) show the
correspondence of each method. Each diagonal entry is expected to be the maximal entry of
each column, which is marked in yellow. The match errors are 3(a), 7(b), 0(c) and 0(d),
respectively. (a) The matrix Ki,j = exp(−||xi − yj||2/1002). (b) The doubly stochastic matrix

{μi,j : i, j = 1, …, 10} after performing Sinkhorn matrix balancing on Ki,j. (c) 

by the HD model. (d)  is the minimizer of the MK method. (e) Illustration of two
point-sets with 10 points each. The lines show the ground truth correspondence.
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Fig. 4.4.
Mismatches for the MK (σK = inf) and HD methods applied to data from 5 lobes to which
outliers have been added. The x-axis shows the kernel scale σK. The first row shows the
results from the 1st, 2nd and 3rd lobes (left to right). The second row shows the results from
the 4th and 5th lobes.
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Fig. 4.5.
Mismatches for the MK and HD methods applied to six subjects to which outliers have been
added. The first row (left to right) shows the results of the following subjects: ID H5972
(171 point-pairs), H5974 (188 point-pairs) and H5978 (181 point-pairs). The second row
shows the results of the following subjects: ID H5983 (128 point-pairs), H6012 (254 point-
pairs) and H6019 (243 point-pairs).
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Fig. D.1.

Illustration of the bijective structure. Unit masses are divided into ,  and

, γi+1 respectively.
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Table 2.1

A summary of mathematical symbols

T, S general deformations (vector-valued functions)

TA, TS symmetric and skew symmetric parts of the ▽T matrices

ϕ, ψ(except in sec. 3) functions in the Helmholtz decomposition of T

ϕ, ψ(in sec. 3) dual variables in the HD model

Q, R rotations (orthogonal matrices)

A affine transforms (nonsingular matrices)

t translations (vectors)

σ kernel scales

K, Ki, j the Gassian kernel function and its entries in matrix form

X, Y, xi, yj point-sets and points in the point-set

μ, μi, j correspondence matrices in mass transport and their entries

correspondence matrices in the HD model and their entries

τ permutation maps

Λ(B; k) the kth largest singular value of the matrix B

ω max the magnitude of the “curl” of T defined in Eqs. (2.3) and (2.4)
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Table 3.1

Matching results for hierarchical approaches, as shown in the third column. The transform T1 is estimated by
matching the coarser point-set with cardinality 52. The second column shows the mismatches between X2 and
Y2 that occur when using the HD model directly. The 4th and 5th columns show a comparison of the results
obtained using the HD-RBF model with different λ values. The poor performance of the HD-RBF model is
partially caused by the identical eigenvalues for the second moment of X2.

n X2, Y2 Hierarchy T1(X2), Y2 HD-RBF λ = 1 HDRBF λ = 100

102 0 0 0 0

152 0 0 0 0

202 140 0 144 0

252 390 0 395 370

302 688 0 693 657
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