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Three-dimensional (3D) model retrieval has gathered great importance in recent years, since the
number of available 3D models on the Internet has drastically increased. Many content-based

3D model retrieval approaches have been proposed. Among these methods, visual similarity-

based methods have shown higher retrieval accuracy. However, because these methods capture
enormous shape features from di®erent viewpoints or locations, a large amount of calculation

and comparison is necessary. Furthermore, there is a trade-o® between retrieval accuracy and

speed. In this paper, a 3D model retrieval method constituting Continuous Principal Com-

ponent Analysis (CPCA), Fourier descriptors, and Zernike moments is proposed. CPCA is
applied to extract signi¯cant shape features based on projecting the model along the principal

axes. Then, Fourier descriptors and Zernike moments are used to provide shape descriptors with

rotation invariants. In addition, a feature integration process combines them. A strategy of

similarity measure is proposed to solve the axes switching problem. To conclude, the exper-
imental results show that the approach outperforms SECTORS2 and D2,18 and has slightly

better retrieval results than Light Field Descriptor (LFD)6 and spin-image signatures.3 More-

over, the approach is more e±cient and the storage size is much less.

Keywords : 3D model retrieval; continuous principal component analysis; Fourier descriptor;

Zernike moment.

1. Introduction

In recent years, the high development of modeling tools and scanning devices has

made the acquisition of three-dimensional (3D) models much easier. A variety of

techniques have been developed to reconstruct 3D models, like photometric stereo13

or a physically based method.10 Moreover, users can search and download an

increasing number of 3D models on the Web directly. To ¯nd the appropriate models

that users want, a 3D model retrieval method is necessary to search a large variety of

3D models. The traditional approach called text-based search engine usually uses
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keywords in ¯lenames, captions, or context to search for 3D models since it is simple

and intuitive.15 Unfortunately, this method fails in many cases, such as bad anno-

tations, di®erent language de¯nitions, and related keywords too common to ¯nd

relevant matches. In addition, annotations added by humans are often subjective

and must deal with synonyms and semantic meaning similarity. This means the text-

based method is too limited and ambiguous to be suitable for applications with a

large number of 3D models.

In contrast, using the model shape data itself, called content-based search engine,

is a more promising approach for implementing a retrieval system. In recent years, a

growing body of research about content-based retrieval has been conducted in many

¯elds, and the vast literature devoted to this topic has been reviewed on several

occasions.5,14,24,28 Hence, the e±ciency and accuracy of content-based 3D model

retrieval methods are considered important.

The survey paper proposed by Tangelder and Veltkamp24 divided content-based

retrieval methods into three broad categories: (1) graph-based methods, (2) feature-

based methods, and (3) geometry-based methods. Graph-based methods attempt to

extract a geometric meaning from a 3D model using a graph to show the relationship

to shape primitives. For example, Reeb graph approaches4,8 use topological struc-

tures of 3D models to estimate the similarity between two models. Graph-based

methods are di±cult to apply to natural models like animals, but are suitable for

models created from computer-aided design (CAD) especially. The skeleton-based

approach proposed by Sundar et al.23 is a well-known technique for retrieving

3D models. It captures crucial information about the structure of objects but

needs several parameters to be set, such as threshold values for thinning and clus-

tering. Furthermore, the di±culties of skeleton-based methods are discrimination

between skeletal representations and automatic skeleton extraction from varying 3D

models.

Feature-based methods use global or local features to encode 3D models to feature

vectors. The retrieval is conducted by comparing the distance for each feature vector.

Generally,many researchers have focused on feature-basedmethods, because varying 3D

models can be represented by lower dimension features. Additionally, these features can

handle rotation and even scale invariants. Global feature methods use the distribution of

vertices or polygons to determine the similarity between 3Dmodels.7,9,12,17�19,27 A shape

descriptor using a sliced image histogram was proposed by Park.20 To measure shape

distributions of 3D models is a famous feature-based method, and its key idea is to

represent the signature of a 3D model as a shape distribution. For example, Funkhouser

et al.7 described the spherical harmonics shape descriptor based on voxels, and Vranić
and Saupe27 proposed a description for 3D shapes using a complex function. Osada

et al.18 proposed D2 shape distributions using the histogram of distances between a pair

of points on the surface for 3Dmodels. Hence, thismethod is simple, fast, and robust, and

can measure the global geometric properties of an object.

Besides the shape distribution approach, Ankerst et al.1,2 proposed a technique

using 3D shape histograms for similarity searching. The shape histograms were yielded
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from three di®erent models, including shell model, sector model, and combined model.

Their experimental results showed that the approach has high classi¯cation accuracy

and e±cient query process. Nevertheless, it still needs to determine the optimal number

of bins, which may take much to evaluate the experimental results. Shape-based

approaches still have many challenges such as partial matching problem and the

appropriate de¯nition of shape descriptors.

On the contrary, the local features represent a 3D model by using neighborhood

information on the surface, and the local features are usually provided by 2D

histogram images, such as spin-image11 and mutual angle-distance histogram.16

Assfalg3 proposed a content-based retrieval approach by using spin-image sig-

natures, which modi¯es the original spin image. The spin-image signatures provided

an e±cient and discriminative way to retrieve a 3D model and used a fuzzy c-means

to cluster these signatures. The advantages of this retrieval system are less storage

size and short matching time compared with principal component analysis (PCA)

spin-images. However, its precision at high recall rate is still less than the light ¯eld

descriptor (LFD) method proposed by Chen et al.6

LFD is a visual similarity-based 3D model retrieval approach that uses LFDs to

compare similarities among models. The concept is that if two 3D objects are similar,

their appearances are also similar from any view angle, thus the LFD represents a

model as a collection of feature images rendered from 20 di®erent views uniformly

located on a sphere. Among these feature images, only ten are needed to represent a

3D model since the feature images projected from two opposite vertices are identical.

Moreover, LFD has shown that it is robust against rigid transformation, noise, and

model degeneracy, and its performance was evaluated on base classi¯cation testing

set of Princeton shape benchmark (PSB).22 According to the experimental results of

PSB, LFD provided the best retrieval precision among 12 shape-matching algor-

ithms, even if it only used two-dimensional (2D) projection as a representation of 3D

objects, which is less discriminating than 3D matching. Nevertheless, the generation

and comparison time of LFD are higher than the other descriptors, since it needs

to ¯nd a massive amount of possible corresponding images from the models and

database.

The study presented in this paper attempts to overcome these shortcomings of

LFD. LFD uses 20 images to generate pose-independent features for comparing 3D

models. On the other hand, PCA is a common method to ¯nd the principal axes of a

3D model. Furthermore, the model can be transformed to the same reference frame,

so the pose should be consistent for each model. Thus, once the principal axes are

aligned, only three images are yielded by projecting a 3D model along its principal

axes. However, Funkhouser et al.7 suggested that two important problems could

drastically a®ect model retrieval results. The ¯rst is the orientation of principal axes,

which causes the projected images to have di®erent appearances and rotated images

between two models, and the second is the axes switching problem, which causes

di®erent image orders between two models. Consequently, these issues are addressed

in this paper.
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To that end, a PCA-based method for 3D model retrieval using principal axes

integrated descriptor (PAID), which employs Fourier descriptors and Zernike

moments, is proposed. The fundamental of the method assumes that two similar 3D

models have similar principal axes, and their three projected images are similar to

each other. Thus, a continuous PCA (CPCA) is adopted to ¯nd the precise principal

axes of 3D models. Two rotation invariant features, Fourier descriptors, and Zernike

moments, minimize the e®ect of the rotation of principal axes, and provide the

descriptions about both shapes and image contents. In addition, a mechanism is

advanced to determine the correct combination of image orders to solve the axes

switching problem. Furthermore, the feature integration has advantages of both

shape and content representations, and brings better retrieval performance. The

proposed method provides high accuracy and e±ciency in 3D model retrieval.

Moreover, the dimensions of features are reduced signi¯cantly less than LFD. The

experimental results show that the retrieval performance of the proposed method is

superior to other competitions.

The organization of the rest of this paper is as follows. The representation of 3D

models is discussed in Sec. 2. The proposed retrieval system including online and

o²ine stages is described in Sec. 3. In Sec. 4, the experimental results are presented.

Finally, Sec. 5 concludes this paper.

2. The Representation of 3D Models

This section mainly discusses the representation of a 3D model. Figure 1 shows the

diagram of the proposed feature extraction method. First, this paper uses CPCA to

¯nd the principal axes of a 3D model, and three projected images of the model are

generated by projecting the model along the principal axes. Next, the images as input

apply Fourier descriptors and Zernike moments to obtain shape features. Finally, a

feature integration process combines them into an integrated feature called PAID to

represent 3D models, which will be discussed in Sec. 3.

2.1. CPCA method

PCA involves a mathematical procedure that transforms a number of possibly cor-

related variables into a smaller number of uncorrelated variables called principal

components. The original PCA method used points of a 3D model, such as vertices

on the surface, to ¯nd principal axes. For similar models, however, it may obtain

di®erent results because varied sizes of triangles are not considered. To overcome this

shortcoming, Vranić et al.25 proposed a weighted PCA method that uses the

neighbor triangle area of each vertex to compute the weightings, and then utilized

these to ¯nd the proper principal axes. Although this method could reduce the e®ect

of non-uniformly distributed vertices, it did not take account of a variety of distri-

butions with varying triangle areas. Due to this problem, Vranić et al.26 presented

CPCA to address it.
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To take variations in geometry for 3D models into consideration, this paper

applies CPCA to compute the precise principal axes of models, illustrated as follows.

Regard a given triangle mesh as a set of triangles, T ¼ t1; . . . ; tmf g; ti 2 R3, and

create a table with a list of indices of three vertices for each triangle, and let E ¼
[m

i¼1ti be the point set of all triangles. Let Ai be the area of triangle ti; i ¼ 1; . . . ;m.

Assuming the triangles do not intersect each other so that the overall surface in the

model is:

A ¼ A1 þ � � � þ Am ¼
Z
E

dv: ð1Þ

To get the translation invariance, this method formed a point set E1 by translating

the center of gravity to the origin, c. The point set is described as:

E1 ¼ E � c ¼ fu ju ¼ v� c; v 2 Eg: ð2Þ

To ensure rotation invariance, it ¯rst computed the covariance 3� 3 matrix

C ¼ 1
A

R
E1
v � vTdv, and calculated the eigenvalues and corresponding eigenvectors of

C. Next, it sorted the eigenvalues in decreasing order and scaled corresponding

eigenvectors to Euclidean unit length. The rotation matrix H is formed by locating

the scaled eigenvectors as rows ofH. Then, a new set E2 can be obtained by using the

Fig. 1. The proposed feature extraction method.
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rotation matrix H to rotate E1. The operation is shown as:

E2 ¼ HE1 ¼ fv jv ¼ Hu;u 2 E1g: ð3Þ

To get the re°ection invariance, this method multiplied points in E2 by a diagonal

matrix D, which is represented as follows:

D ¼ diagðsignðfxÞ; signðfyÞ; signðfzÞÞ; ð4Þ
where fx ¼ 1

A

R
E2
signðvxÞv2xdv, fy and fz are similar, and v ¼ ðvx; vy; vzÞ 2 E2.

The scaling invariance is accomplished by scaling the set E2 by the inverse of

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

x þm2
y þm2

zÞ=3
q

, where mx;my, and mz are the average distances of

points v 2 E2 from the yz-, xz-, and xy- coordinate hyperplanes, respectively.

Finally, the a±ne map is de¯ned as:

�ðvÞ ¼ m�1DHðv� cÞ: ð5Þ
After applying Eq. (5), the 3D model can be aligned with its principal axes.

Subsequently, three feature images are obtained by projecting the triangle surfaces of

the 3D model along the principal axes. For instance, Fig. 2 shows two identical

airplanes with di®erent poses. After applying the CPCA method, they have the same

2D feature images, as shown in Fig. 3. To this end, the 3D model retrieval problem

can be simpli¯ed to match the three corresponding feature images.

However, the CPCA method cannot ensure that similar objects have the same

orientation of principal axes. This causes the rotation problem of corresponding

(a) (b) (c)

Fig. 3. Three principal projected images of both airplanes in Fig. 2. (a)�(c) are the projected image of
¯rst, second, and third principal axes, respectively.

Fig. 2. Two identical airplanes (no. 1119 in PSB) with di®erent poses.
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feature images. For example, Figs. 3(a)�3(c) and Figs. 4(b)�4(d) show three feature

images of two similar airplanes, respectively. The feature images corresponded to the

second axis (Figs. 3(b) and 4(c)), rotate 180� to each other, thus they cannot be

compared directly. Hence, this paper adopts Fourier descriptors and Zernike

moments descriptors to compensate for the rotation problem of the feature images.

Besides the image rotation problem, using the CPCA method could cause the axes

switching problem, that is, the order of corresponding principal axes is di®erent.

Figure 5 illustrates this problem by showing the order of principal projected images.

The order of Figs. 5(b)�5(d) and Figs. 5(f)�5(h) is according to the results from

applying the CPCA method to these two objects, respectively.

However, to compare images correctly, the corresponding relation should be that

Figs. 5(b)�5(d) correspond to Figs. 5(f)�5(h), respectively. If the corresponding

feature images are switched, the comparison error increases drastically. To solve this

problem, the correct corresponding relation can be found by searching for the

minimal distance between two feature vectors from three projected images. This

process will be used in a similarity measure procedure and will be discussed in detail

in Sec. 3.2.

2.2. Fourier descriptors

Fourier descriptors describe the shape in terms of representing the contour of the

shape as a periodic function. In other words, Fourier descriptors are used to extract

contour features based on contour signatures extracted from binary images. This

paper adopts a contour tracing algorithm proposed by Pavlidis21 to ¯nd the contours

of three principal projected images. Figure 6 shows an example of tracing the con-

tours from three principal projected images.

Fourier descriptors can be derived from di®erent shape signatures, such as cen-

troid distance, complex coordinates, cumulative angles, and curvature function.

Zhang and Lu29 suggested that the shape signature from centroid distance has the

higher retrieval performance than other methods to derive Fourier descriptors.

In addition, the centroid distance signature keeps invariant in translation. An

example of the contour signature represented by centroid distance is shown in Fig. 7.

(a) (b) (c) (d)

Fig. 4. The 3D model of a single-propeller plane and its three principal projected images. (a) The 3D

model. (b) The ¯rst projected image. (c) The second projected image. (d) The third projected image.
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Figure 7(a) shows one of three projected image contours in Fig. 6, and Fig. 7(b)

shows the centroid distance of Fig. 7(a).

The coe±cients of Fourier descriptors can be expressed as follows. Assuming the

distance function is normalized to N points in the sampling space, and the discrete

Fourier transform is de¯ned as follows:

F ðnÞ ¼ 1

N

XN�1

k¼0

fðkÞ exp �j2�nk

N

� �
; n ¼ 0; 1; . . . ;N � 1: ð6Þ

To achieve rotation invariance, phase information of the coe±cients F ðnÞ is ignored
and only the magnitude jF ðnÞj is used. Scaling invariance can be achieved by

dividing jF ð1Þj for complex-valued coe±cients as Eq. (7), or by dividing jF ð0Þj for

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Two 3D models of planes with di®erent orientations. (a) The 3D model of a four-propeller plane.

(b)�(d) are its ¯rst, second, and third projected images, respectively. (e) The 3D model of a jet plane.
(f)�(h) are its ¯rst, second, and third projected images, respectively.
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real-valued coe±cients as Eq. (8), and the descriptors can be de¯ned as follows:

Fcmplx ¼
jF ð2Þj
jF ð1Þj ;

jF ð3Þj
jF ð1Þj ; . . . ;

jF ðN � 1Þj
jF ð1Þj

� �
T

; ð7Þ

Freal ¼
jF ð1Þj
jF ð0Þj ;

jF ð2Þj
jF ð0Þj ; . . . ;

jF ðN=2Þj
jF ð0Þj

� �
T

: ð8Þ

In Eq. (8), only half the coe±cients F ðnÞ are needed to characterize the shape when

using real-valued coe±cients. To take advantage, real-valued coe±cients are used in

the proposed method.

(a)

(b)

Fig. 6. An example of the projected images and their contours from three principal axes. (a) The

projected images. (b) The contours of the projected images.

(a) (b)

Fig. 7. An example of centroid distance signature. (a) The contour image is one in Fig. 6(b), and the

crossed dotted lines mark the centroid of the contour. (b) The centroid distance of the contour in (a).
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2.3. Zernike moments

Zernike moments, which are constructed using a set of complex polynomials that

form a complete orthogonal basis set de¯ned on the unit disc, are used as a region-

based image retrieval tool. Zhang and Lu30 suggested that it has better performance

than Fourier descriptors in 2D image retrieval. Like Fourier descriptors, Zernike

moments also have translation, scale and rotation invariance.

Complex Zernike moments are derived from Zernike polynomials, and they are

expressed as a 2D Zernike moment:

Zmn ¼ mþ 1

�

Z
x

Z
y

fðx; yÞ � Vmnðx; yÞ�dydx; x2 þ y2 � 1; ð9Þ

where ð�Þ� denotes the complex conjugate. Equation (9) can be rewritten in polar

coordinate form as:

Zmn ¼ mþ 1

�

Z 2�

0

Z 1

0

fðr; �Þ � Vmnðr; �Þdrd�: ð10Þ

For easy computation, the set Zernike moments must follow polynomials:

Vmnðr; �Þ ¼ RmnðrÞ expðjn�Þ; ð11Þ

and RmnðrÞ is de¯ned as:

RmnðrÞ ¼
Xm�jnj

2

s¼0

ð�1Þs ðm� sÞ!
s!ðmþjnj

2 � sÞ!ðm�jnj
2 � sÞ!

rm�2s; ð12Þ

where n and m are subject to jmj � n is even and jnj � m. Zernike polynomials are a

complete set of complex-valued function orthogonal over the unit disc. For fðx; yÞ is
real and discrete, the complex Zernike moments of order n with repetition m can be

derived from modifying Eq. (9):

Zmn ¼ mþ 1

�

X
x

X
y

fðx; yÞ VRmnðx; yÞ þ jVInmðx; yÞ½ �; x2 þ y2 � 1; ð13Þ

where VRmnðx; yÞ is the real part of Vmnðr; �Þ, and VInmðx; yÞ is the imaginary part of

Vmnðr; �Þ.
This paper chooses the magnitude of the Zernike moments to keep the rotation

invariant. In addition, every component is divided by the magnitude of Z00, but not

including Z00 itself, to keep the scale invariant. Thus, the representation can be

shown as follows:

Z ¼ jZ11j
jZ00j

;
jZ20j
jZ00j

;
jZ22j
jZ00j

; . . . ;
jZ11j
jZ00j

� �
T

: ð14Þ
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3. The Proposed Retrieval System

This chapter describes the proposed 3D model retrieval system that contains an

o²ine procedure for feature database creation and an online procedure for query

retrieval. Figure 8 shows the two procedures of the proposed method. Three main

parts, CPCA projection, feature integration, and similarity measure, will be

explained in detail to show how this retrieval system works.

3.1. Offline procedure

The offline procedure is to create the retrieval database. Two main parts in the

procedure are principal axes projection and feature extraction, and they are descri-

bed in the following two sections.

3.1.1. CPCA projection

The purpose of CPCA projection is to align a 3D model with the referenced frame

and obtaining the principal images. Two steps of a CPCA projection procedure for a

3D model are described as follows:

(1) Using the CPCA to ¯nd principal axes of 3D models. It mainly utilizes Eq. (5)

to align every 3D model data with their principal axes. Use CPCA to ¯nd the

principal axes of the model, and then align the model with the referenced frame.

(2) Project the 3D model geometry data along its three principal axes separately to

get three feature images. The feature images are always binary images.

Ideally, if objects have similar shape, they would have similar feature images.

However, from the previous section, only using the CPCA projection method would

Fig. 8. The retrieval process of the proposed PAID method.
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cause the image rotation problem and the switching problem. Thus, these are dis-

cussed in the following sections.

3.1.2. Feature integration

The purpose of the feature integration procedure is to ¯nd the shape features of the

feature images of the 3D model. The shape features for the proposed method comprise

Fourier descriptors and Zernike moments. The details are summarized as follows.

First, the steps of extracting Fourier descriptors for a 3D model are as follows:

(1) Use a contour tracing approach proposed by Pavlidis21 to ¯nd the contours of

the feature images.

(2) For each contour, calculate the distance from boundary points to the centroid

of the contour to yield a distance function.

(3) The discrete Fourier transform is applied to ¯nd the coe±cients for Fourier

descriptors, as described in Sec. 2.2.

After calculating the Fourier descriptors, the retrieval problem can be reduced

from feature images to feature vectors. For Fourier descriptors of a 2D feature image,

it only ¯nds one feature vector F ðkÞ; k ¼ 0; . . . ; 10 because the feature vector in the

front and back sides are the same. Therefore, this paper only takes the front side of

feature vectors and omits the back side of feature vectors. Hence, 11 (F ð0Þ to F ð10Þ)
coe±cients represent a feature image.

The second is extracting Zernike moments. The precision of shape representation

depends on the number of moments truncated from the expansion, and the ¯rst 25

moments up to order 8 are used in this paper. The number of moments in each order

is displayed in Table 1. The Zernike moments descriptor has two feature vectors in a

feature image. One is the front side feature ZfðkÞ and the other is the back side

feature ZbðkÞ, where k ¼ 0; . . . ; 24 for both features. Thus, 50 Zernike moment

coe±cients represent a feature image.

Both methods are suitable for describing shapes in speci¯c cases. Shape boundaries

can be described by Fourier descriptors, and shape inner content can be represented

Table 1. The number of Zernike moments in

each order.

m Moments No. of Moments

0 Z00 1

1 Z11 1

2 Z20, Z22 2
3 Z31, Z33 2

4 Z40, Z42, Z44 3

5 Z51, Z53, Z55 3

6 Z60, Z62, Z64, Z66 4
7 Z71, Z73, Z75, Z77 4

8 Z80, Z82, Z84, Z86, Z88 5
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by Zernike moments. To take advantage of both methods, an integrated feature

consisting of Fourier descriptor and Zernike moments is proposed. The integrated

feature I is de¯ned as:

I ¼ fwFF ð0Þ; . . . ;wFF ð10Þ;wZZfð0Þ; . . . ;wZZfð24Þ;wZZbð0Þ; . . . ;wZZbð24Þg;
ð15Þ

wherewF andwZ are weightings adjusted according to di®erent databases. HigherwF

controls the retrieval method using more contour information, and higher wZ means

retrieval using content-based information. The default values of wF and wZ are 0.5.

In short, since each model has three feature images, the combined feature, called

PAID, of one 3D model contains 183 coe±cients, 33 coe±cients for Fourier descrip-

tors and 150 coe±cients for Zernike moments. In our implementation, each coe±cient

is quantized to an 8-bit value so that reduce the storage size and accelerate the

similarity calculation.

3.2. Online procedure

The online procedure is to provide a quick retrieval for a query model, which com-

pares the PAID of the queried one with all other 3D models in the database. First,

the PAID of a query model are brought by applying CPCA projection and feature

extraction mentioned in the o²ine procedure. Next, the similarity measurement is

achieved by comparing the PAID within two models. Finally, similar 3D models,

which have higher similarities to the query model, are outputs as the result of the

retrieval.

To deal with the axes switching problem mentioned in Sec. 2.1, a strategy is

employed in the proposed method. This strategy is based on a simple assumption: the

distance between the feature pair of the correct axis correspondence will be shortest.

For example, suppose (P1, P2, P3) and (Q1, Q2, Q3) are the PAID features of two

similar models. The subscript denotes the axis number. If there is no switching of

axes, the comparison of two models is to calculate the distance between every feature

pair, that is, (P1, Q1), (P2, Q2), and (P3, Q3). However, in the case of incorrect axis

correspondence, the feature pair is composed of two features as (P1, Q2) or (P3, Q2).

This will lead to the undesirable result of comparing two models. Thus, the proposed

similarity measurement ¯nds the minimum distance between two features to

determine the correct axis correspondence. The algorithm is illustrated as follows.

The distance between two models marked q and p, with PAID denoted as I ðpÞ and
I ðqÞ, is calculated as Eq. (16), and lð�; �Þ is L1 distance of two features. The subscript

of I means the axis number.

dPAIDðq; pÞ ¼ minðlðI ðqÞ
1 ; I

ðpÞ
a Þ þ lðI ðqÞ

2 ; I
ðpÞ
b Þ þ lðI ðqÞ

3 ; I
ðpÞ
c ÞÞ;

for

a ¼ 1; 2; 3;

b ¼ 1; 2; 3 and b 6¼ a;

c ¼ 1; 2; 3; c 6¼ a and c 6¼ b:

8<
:

ð16Þ
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According to this calculation, the result of the correspondences of the two models

is consistent with human perception. Finally, to obtain an intuitive similarity score,

let the distance be normalized by the longest distance of retrieval for a query model q

as shown in the following:

sðq;mÞ ¼ 1� dPAIDðq;mÞ
maxr dPAIDðq; rÞ

; ð17Þ

where m and r both denote a model in the database. The larger similarity score

represents more similarity between two objects. A score of 1 represents two identical

objects.

4. Experimental Results

The results presented in this section are divided into three parts. We will use PSB22

database and a few smaller datasets to demonstrate the performance and details of

the proposed algorithms. The PSB database and several standard measures are

introduced at ¯rst. Second, the performance of 3D model retrieval for the proposed

method and other approaches are compared in detail.

4.1. Test model database

To compare di®erent retrieval approaches, it is essential to use comprehensive

databases that contain models classi¯ed in di®erent categories. PSB is the well-

known benchmark for 3D model retrieval. It contains 1814 objects in general cat-

egories like animal, building, vehicle, and so on, and is divided into training and

testing two sets. The training set that has 907 objects classi¯ed in 90 categories is

used to create the ground-truth of the retrieval algorithm. The other that includes

907 di®erent objects in 92 classes is used for computing the retrieval performances.

The experiments are conducted on the PSB database. First, the ground-truth

database is built by using the training set. Next, each classi¯ed object in the testing

set is used as a query object in the experiments. The object belonging to the same

class in the ground-truth database is considered the relevant object.

4.2. Evaluation methods

The performance of model retrieval is evaluated by computing quantitative statistics

of match results. According to the characteristics of di®erent methods, measurement

results will show retrieval e®ectiveness under certain conditions. Five commonly used

evaluation methods discussed in Ref. 22 are used to measure the quality of model

retrieval, and listed as follows.

. Nearest neighbor (NN)

. First-tier

. Second-tier
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. E-measure

. Discounted cumulative gain (DCG)

All scores of these evaluation methods are in range [0, 1]. Higher scores represent

better results. It is important that DCG takes the position of relevant models into

account. Therefore, DCG appears to be an e®ective and stable measure for imple-

menting evaluations.

4.3. Retrieval performances and discussions

Four other competing methods are selected to verify the performance of our PAID

method, namely LFD,6 spin-image signatures (SIS),3 shape histogram (SECTORS),2

and D2 shape distribution.18 These methods are brie°y introduced here.

LFD is a descriptor of a model as a collection of images rendered from the sampled

positions on the vertices of a dodecahedron. To recognize a 3D model from 2D

images, LFD considers all rotations on all vertices of a dodecahedron. That is, 100

images should be computed to represent a model. The dimension of an image is

256� 256 pixels in the implementation. SIS transforms spin-images of a 3D model

into six signature clusters. Each center of the cluster is represented by an

18-dimensional signature. SECTORS is a spherical descriptor, which is computed on

a 64� 64 spherical grid and then represented by its harmonic coe±cients up to order

16. D2 is a histogram of distances between pairs of points on the surface, which is

represented with 64 bins. In the experiments, the parameters in our method are

summarized as follows:

. The type of the principal axis image is a binary image.

. The dimension of 2D images is 256� 256.

. The number of coe±cients of Fourier descriptors for each image is 11.

. The number of coe±cients of Zernike moments for each image is 50.

Table 2 illustrates the overall performances of all ¯ve methods including our PAID

method on the PSB testing dataset. The PAID and LFD methods achieve the best

results. Except for NN, our method shows the best results among all methods and

the same performance in DCG as LFD. The SIS method also carries out good

Table 2. The overall performances of model retrieval from the PSB database.

Method

NN

(%)

First-Tier

(%)

Second-Tier

(%)

E-Measure

(Factor)

DCG

(Factor)

Storage

Size

(Bytes)

Average Timing

Generation

(Sec.)

Comparison

(msec.)

PAID 64.8 38.7 49.4 0.287 0.643 183 1:13 0.004

LFD 65.7 38.0 48.7 0.280 0.643 4700 4:32 1.280

SIS 63.2 33.7 45.1 0.261 0.624 432 28:92 0.011
SECTORS 54.6 26.7 35.0 0.209 0.545 552 0:95 0.013

D2 31.1 15.8 23.5 0.139 0.434 136 1:20 0.002
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performance which is close to LFD. However, PAID method is more e±cient than

LFD in both feature generation and model comparison because only three images are

applied. The last three columns in Table 2 summarize storage size, generation time

and comparison time. The comparison time is between two models. Algorithms are

executed on a PC with Pentium 4 2.4 GHz CPU and 2 GB RAM. Compared with

LFD, the PAID method has several bene¯ts in terms of computation costs and sto-

rage size. Our method spends nearly the same time as that of SECTORS and D2 to

generate model features, and needs only 1=25 of storage size in LFD and 1=3 in

SECTORS. Overall, the proposed PAID method is a signi¯cantly better technique.

Figure 9 depicts the average generation time over all models in PSB spent by the

¯ve methods. Generally, except for the LFD method, other four methods need less

than 1.5 seconds from low-resolution and medium-resolution models (less than 4096

vertices). The LFD method takes around eight times longer in this case. For high-

resolution models (more than 16,384 vertices), it can be observed that the time costs

of the PAID, SECTOR and D2 are similar, and the LFD requires more than twice as

much time as these methods. In addition, Fig. 9(b) shows the generation time

comparison in log space. It is clear that the SIS method performs as good as the

SECTOR method at low resolutions. However, the generation time at high resol-

utions increases dramatically, because the computation of spin-images is very heavy.

This limitation causes the SIS method is only suitable for low-resolution and med-

ium-resolution models.

To show more detailed retrieval comparisons, four commonly used datasets,

which are animal, furniture, common tool, and vehicle in PSB, are chosen. Each

dataset includes several classes. The retrieval performances are measured by pre-

cision recall curve and DCG histogram. Moreover, the performance is compared with

four other competing methods.

Tables 3�6 show the retrieval statistics using several evaluation measures for

animal, furniture, common tool, and vehicle dataset, respectively. The LFD method

(a) (b)

Fig. 9. The comparison of average generation time in di®erent numbers of vertices. The time scale is

represented in (a) linear and (b) log space.
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provides better retrieval precision on NN evaluation. In this experiment, only the

LFD method provides better retrieval precision on NN evaluation. This outcome is

expected in that LFD uses ten images to represent 20 viewpoints. In contrast, the

proposed PAID method yields better retrieval precision on all other evaluations

against other methods. The primary factor for this performance is that the projected

images of principal axes can tolerate the small shape di®erence.

Table 3. Comparing four algorithms for the test with animal dataset.

NN First-Tier Second-Tier E-Measure DCG

Method (%) (%) (%) (Factor) (Factor)

PAID 66.7 51.0 67.6 0.287 0.736
LFD 68.3 45.7 62.3 0.272 0.720

SIS 69.6 46.1 64.3 0.274 0.726

SECTORS 57.1 40.5 51.6 0.249 0.649

D2 34.9 28.0 48.9 0.266 0.566

Table 4. Comparing four algorithms for the test with furniture dataset.

NN First-Tier Second-Tier E-Measure DCG

Method (%) (%) (%) (Factor) (Factor)

PAID 77.1 62.5 75.3 0.350 0.815
LFD 80.0 52.5 69.1 0.347 0.779

SIS 82.4 64.8 76.9 0.352 0.819

SECTORS 65.7 39.7 54.2 0.289 0.685

D2 48.6 33.1 49.4 0.293 0.611

Table 5. Comparing four algorithms for the test with tool dataset.

NN First-Tier Second-Tier E-Measure DCG

Method (%) (%) (%) (Factor) (Factor)

PAID 71.0 55.7 73.8 0.283 0.765
LFD 65.6 49.1 67.4 0.278 0.730

SIS 64.7 50.2 64.1 0.272 0.738

SECTORS 53.8 46.1 62.2 0.252 0.684

D2 43.0 33.1 48.7 0.23 0.577

Table 6. Comparing four algorithms for the test with vehicle dataset.

NN First-Tier Second-Tier E-Measure DCG

Method (%) (%) (%) (Factor) (Factor)

PAID 83.6 66.5 81.7 0.327 0.858
LFD 85.1 63.9 84.9 0.335 0.852

SIS 83.9 64.3 84.2 0.333 0.859

SECTORS 67.2 44.6 60.1 0.292 0.728

D2 47.8 38.8 60.8 0.285 0.662
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Figure 10 shows the averaged DCG scores of each classi¯cation for all datasets in

the experiment. The PAID method performs better retrieval precision than the LFD

and SIS methods in about 70% of classi¯cations. Nevertheless, a small part of the

results compares poorly with the results from other methods. Retrieval performance

(a)

(b)

(c)

Fig. 10. The histograms of DCG for retrieval performance on four test datasets. (a) Animal, (b) furni-
ture, (c) common tool, and (d) transportation dataset.
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will have di®erent degrees of accuracy in di®erent classi¯cations. The major causes of

this phenomenon are as follows.

First, the objects in the same class usually have a number of di®erent poses and

many variations in shape, which increases the di±culty in obtaining an accurate

(d)

Fig. 10. (Continued)

(a) (b)

(c) (d)

Fig. 11. Precision-recall curves on four test datasets. (a) Animal, (b) furniture, (c) common tool, and (d)

transportation dataset.
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retrieval result. For example, the snake has variable shape in the class, and therefore

does not have a uniform shape. As Fig. 10(a) shows, the performances for all com-

pared methods in snake model retrieval are not good.

Second, the principal axes of objects do not align well in some classi¯cations

because some objects have di®erent proportions of the distribution. For example, the

shape of a dining chair usually leads to oblique principal axes. However, this e®ect

can be reduced by using the descriptor with rotation invariance. The result shown in

Fig. 10(b) suggests that the proposed method can overcome the problem of oblique

principal axes.

Figure 11 shows the precision-recall plot showing the averaged retrieval results

achieved for each dataset. From the results, the proposed PAID method indicates

very good precision-recall followed closely by the LFD and SIS approaches. Fur-

thermore, the PAID method gets better precision than LFD as in higher recall rate.

It shows that the PAID method is suitable for multiple object retrieval. The per-

formances of SECTORS and D2 fall behind our method. In summary, the proposed

PAID method has good performance compared with other methods both in terms of

object retrieval in the entire testing dataset or in a speci¯c class.

5. Conclusion and Future Works

In this paper, an approach called PAID based on contours and image features is

proposed for 3D model retrieval. The approach uses Fourier descriptors and Zernike

moments extracted from feature images to match among 3D models. Furthermore,

the feature images are generated by projecting models along their principal axes

found by CPCA. These methods lead to the proposed approach, which is robust

against translation, rotation, and scaling for 3D model retrieval. Using only three

feature images for each 3D model decreases the dimension of features, and increases

the e±ciency of model retrieval. In summary, the experimental results show that our

approach outperforms SECTORS and D2, and has slightly better retrieval results

than LFD and SIS. Moreover, the approach is more e±cient than LFD and SIS, and

the storage size is much less.

Among many topics to be explored in future work, important ones are listed as

follows. First, to reduce the e®ect of di®erent poses, a better pose evaluation should

be considered. Second, some local features are needed to investigate the increasing

ability to distinguish details. In addition, colors and textures can be included to add

more visual features to improve overall accuracy. Finally, partial matching that can

be used in many applications, like object detection and environment recognition, is

an important and di±cult problem in future research.
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