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Abstract There are indications that some high temperature unconventional super-
conductors have a “complex” d-wave order parameter (with an admixture of s-wave)
leading to nonzero energy gap. Since the coherence length is short and the Fermi
energy is relatively small the quasiclassical approach is inapplicable and the more
complicated Bogoliubov-deGennes equations should be used to investigate the ex-
citation spectrum of such a material in a magneric field. It turns out that equations
for the chiral d-wave superconductor simplify considerably and is the basis for any
superconductor of that type with a sufficiently large gap. The spectrum of core exci-
tations of the Abrikosov vortex in an anisotropic 3D sample exhibits several features.
Unlike in conventional and gapless superconductors the core has a single excitation
mode of order energetic gap for each value of momentum along the field. This has a
large impact on thermal transport and vortex dynamics.

Keywords Chiral d-wave superconductor · Vortex core excitations · Heat transport

1 Introduction

Search for new materials exhibiting unconventional superconductivity, initiated by
the discovery of the high Tc cuprates, has become one of the major directions in
condensed matter physics. The symmetry of the order parameter is tightly related to
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the symmetry of the atomic crystal and the pairing mechanism. The bulk condensate
is described by a generally tensorial complex order parameter �(k) exhibiting a great
variety of the broken symmetry ground states. A time reversal invariant non s-wave
pairing results in nodes in k space, namely the superconductivity is gapless and the
complex nature of the order parameter does not come into play. However when the
time reversal is broken, the excitation spectrum becomes gapped. In this case two
real nodal pairings �1(k) and �2(k) form an essentially complex nonvanishing order
parameter [1–5], � = �1 + i�2 since the nodes of �1 and �2 appear typically along
non intersecting lines in momentum space.

The first system exhibiting the gap originating this way was liquid He3. In its
ABM phase even the extreme case of that phenomenon, the so-called chiral super-
conductivity [6, 7], characterized by presence of electron-hole symmetry and absence
of both the time-reversal and spin-rotation symmetry, appears. In this case �1 = px

and �2 = py are combined into � = px + ipy with “equal strength”. Charged spin-
triplet superfluids, like [8, 9] Sr2RuO4 and heavy fermion UPt3 were shown to have
similar structure, although it is not yet clear whether they are chiral. A recently dis-
covered Cu-doped topological superconductor Bi2Se3 produces an equivalent chiral
pseudospin system on its surface [10, 11]. The surface states in these materials attract
much attention these days because they are recognized as Majorana fermion bound
states [12–17].

Despite a widely held opinion that most high Tc cuprates have nodes and thus are
gapless (originating from seminal experiments Tsuei and Kirtley [18]), there have al-
ways existed a descent opinion [19]. Very recently the fully gapped state was clearly
demonstrated in nano-sized YBa2Cu3O7 islands [20, 21]. Charging of the YBCO
grains allows an extremely precise determination of the energy required to add single
electron to the grain. This is consistent with earlier STM evidence [22] of signifi-
cant admixture of idxy in Ca doped YBCO. The minority pairing was theoretically
supported [23] by a microscopic model of hybridization between dx2−y2 and dxy .
In particular topologically nontrivial superconducting state of two-dimensional elec-
tron system with large center-of-mass pair momentum under predominant repulsive
screened Coulomb interaction was considered. Direct numerical solution of the self-
consistency equation exhibits two nearly degenerate order parameters dx2−y2 and dxy .
Spontaneous breaking of the time-reversal symmetry can mix these states and even
form chiral d + id superconducting states.

On general ground it was argued [6, 7] that the atomic lattice can act as a custodial
symmetry to ensure degeneracy of different superconducting instabilities. In such a
case the degeneracy is linked to higher dimensional irreducible representations of the
lattice symmetry group, and a chiral superposition of superconducting states can be
energetically favorable below Tc. Cuprates (with an exception of YBCO) are four-
fold symmetric. It was pointed out recently [24] that for the square lattice and its C4v

group, there is no representation for singlet Cooper pairs that could result in chiral
superconductivity. This, however, changes for hexagonal systems, where the E2 rep-
resentation of the C6v lattice symmetry group implies the degeneracy of the dx2−y2

and dxy wave state at the instability level which can yield a chiral d + id singlet su-
perconductor. Degeneration of the dx2−y2 and dxy ordered states inherent in doped
graphene monolayer has been recently considered by Nandkishore et al. [25] as a
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possible origin of a rise of a singlet chiral superconducting (SC) state with d + id

orbital symmetry. In addition there exists a theoretical expectation of superconduc-
tivity in doped graphene creating a chiral d-wave superconductivity, see [5, 26–29].
In addition chiral d-wave superconductivity (Chern number ±2) has been proposed
for NaxCoO2·yH2O12–15, a novel heavy fermionic compound [30, 31]. Note that all
these systems have small Fermi momentum kF of the order of magnitude of the in-
verse coherence length ξ−1.

Magnetic fields in type II superconducting film easily create stable line-like topo-
logical defects, Abrikosov vortices [32, 33]. In the simplest vortex the phase of the
order parameter rotates by 2π around the vortex and each vortex carries a unit of
magnetic flux Φ0. Quasiparticles near the vortex core “feel” the phase wind by cre-
ating a set of discrete low-energy Andreev bound states. For the s-wave supercon-
ductors when the vortices are unpinned (freely moving) these states were compre-
hensively studied theoretically including the excitations spectrum [34, 35], density
of states [36–39], their role in vortex viscosity [32, 33], and the microwave absorp-
tion [40]. The low lying spectra of quasiparticles and hole excitations are equidis-
tant, El = l�2/EF , where the angular momentum l takes on half integer values. The
“minigap” in the low Tc s-wave superfluids is of order of �2/EF . Since the Fermi
energy EF � � it is equivalent in the clean limit to large values of dimensionless
parameter kF ξ � 1. Roughly there are Andreev bound states below the supercon-
ducting threshold.

Free vortices in the chiral p-wave superconductors exhibit a remarkable topologi-
cal feature of appearance of the zero energy mode in the vortex core [41]. The spec-
trum of the low energy excitations remains equidistant, El = (l − 1)�2/EF , but now
l is integer [1–4]. The zero mode represents a condensed matter analog of the Majo-
rana fermion first noticed in elementary particle physics [42]. While the minigap in
the s and d-wave superconductors was detected by STM, in p-wave has not yet been
observed. The major reason for that is the small value of the minigap in the core spec-
trum (just mK for Sr2RuO4). It was shown theoretically [43, 44] that in the s-wave
superconductors pinning by an inclusion of radius of just R = 0.2ξ − 0.5ξ changes
dramatically the subgap excitation spectrum: the minigap �2/EF becomes of the or-
der of �. On the other hand in the chiral p-wave superconductors the spectrum of
the core excitations of the charged states for R = 0.1ξ − 0.4ξ is less sensitive to the
inclusion, but nevertheless pushes the spectrum up towards �, so that they therefore
interfere less with the Majorana state that is topologically protected and cannot be
affected by the inclusion [45].

In a magnetic field the nodal dx2−y2 superconductor the spectrum of Andreev
states of single vortex was calculated by Kopnin [46] under assumption of γ −1 =
2kF ξ � 1. The condition allows the use of semiclassical approximation. He found
the spectrum to be similar to that of the s-wave superconductor despite the nodes.
Maki [47] extended the work beyond the semiclassical approximation and found that
there is a series of additional extended states along the node directions. The low-
energy states have no counterpart in a vortex of s-wave superconductors. While in
conventional superconductors, kF ξ � 1 in “bad metals”, where the coherence length
only slightly exceeds the inter-electron distance k−1

F , resulting in kF ξ ≥ 1. Analyz-
ing the STM experiments, Maki and coworkers [48, 49] found that in high Tc cuprate
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YBCO the parameter γ is of order 1. This modifies significantly the spectrum. It
contains just a few Andreev states in addition to the node extended states. The sit-
uation is expected to be different in d-wave gapped superconductors with γ −1 ∼ 1
discussed above and therefore the nodal states should disappear. The number of An-
dreev states should be small and could not be treated semiclassically. He pointed out
that the system of Bogoliubov-deGennes equations for d-wave superconductors does
not separate into a set of equations for each angular momentum l unlike that of the
s-wave and chiral p-wave. Therefore beyond the semiclassical approximation all the
angular momenta mix and one is forced [48, 49] to truncate the series.

We found that the situation is different for chiral d-wave case: the system does
separates into groups of two harmonics making its solution possible. For a gapped
non-chiral superconductor one can develop the perturbation theory around the chiral
limit. We perform this calculation for γ ∼ 1 and extend the work to 3D anisotropic
superconductors not considered in [48, 49]. We compute the density of states and
thermal conductivity along the field direction (the vortex axis) that can be effectively
used along with STM [50–52] and microwave radiation to detect the features of the
pairing.

2 The BdG Equations for General d-wave Superconductor

2.1 Microscopic Definition of the Gap Operator

We begin with the nonlocal BdG equations for the Bogoliubov eigenfunction corre-
sponding to the eigen energy En,

(
Ĥ0 �̂

�̂+ −Ĥ ∗
0

)(
un

vn

)
= En

(
un

vn

)
. (1)

As a single particle Hamiltonian one can take the parabolic dispersion and the ap-
proximation

H0 = 1

2m

(
p − e

c
A

)2

− EF , (2)

where EF is the Fermi energy. The gap function in an unconventional superconduc-
tor [53] is characterized by the nonlocal “order parameter” operator,

�̂g =
∫

�
(
r, r′)g(

r′)dr′. (3)

Within the BCS theory the kernel �(r, r ′) is subject to the self-consistency condition:

�
(
r, r′) = V (r − r′)

2

∑
n

[
un(r)v∗

n

(
r′) + un

(
r′)v∗

n(r)
]

tanh

(
−En

2T

)
, (4)

where V (r − r ′) is the pairing interaction and kB will be set to 1.
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The vector potential A for a single vortex has, in polar coordinates, r, ϕ, only an
azimuthal component Aϕ(r) and in the London gauge consists of the singular part
As

ϕ = hc/2er (field of the infinitely thin solenoid) and typically a rather insignificant
regular part that does not carry flux. Neglecting the regular part [1–4], the singular
one can be “compensated” by the transformation [54]:

(
un

vn

)
→

(
une

−iϕ/2

vne
iϕ/2

)
, �

(
r, r′) → �

(
r, r′)e−iϕ. (5)

After this transformation the Hamiltonian H0 has the form

H0 = − �
2

2m⊥
∇2⊥ − �

2

2mz

∂2
z − EF . (6)

Introducing the center-of-mass coordinate, R = (r + r′)/2, s = r − r′ one makes a
partial Fourier representation

�(R, s) = 1

(2π)2

∫
dk�(R,k)eik·s. (7)

Expanding �(R,k) to second order in k,

�(R,k) = �x2−y2(R)
(
k2
x − k2

y

) + i�xy(R)kxky, (8)

and substituting it into Eq. (7), one obtains, after integration by parts, a local form
[55, 56] of the order parameter operator:

�̂ = − �0

4k2
F

(L̂xx − L̂yy + 2iαL̂xy). (9)

Here the same operators are written via derivatives on the mesoscopic scale:

L̂ij ≡ {
∂i,

{
∂j ,Θ(R)e−iϕ

}}
, (10)

for i = x, y, while anti-commutator was defined as {̂a, b̂} ≡ âb̂ + b̂â.
Thus the spatial part of the order parameter �x2−y2(R) = �0Θ(R) is normalized

by the “isotropic” gap parameter �0. We assume for simplicity that the spatial de-
pendence of the two components is the same �xy(R) = α�0Θ(R). We also assume
that both components of the order parameters vanish at the same point, otherwise
the problem becomes much more complicated and more general Ansatz should be
used [57, 58]. (It is not obvious that the vortex centers in different order parameter
components should coincide. In principal the interaction of the components might be
responsible for the formation of non-singular vortices. This case should be considered
separately.)

2.2 The Chiral Representation of the Order Parameter

Let us introduce the following “chiral” operators,

L++ = {∂+,X+} = Lxx − Lyy + 2iLxy, (11)
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L−− = {∂−, Y−} = Lxx − Lyy − 2iLxy, (12)

L+− = Lxx + Lyy + iLxy, (13)

where ∂± = ∂x ± i∂y , and

X± = {
∂±,Θe∓iϕ

}; Y± = {
∂±,Θe±iϕ

}
. (14)

In terms of these operators one can write

Lxx = 1

4
(L++ + L−− + 2L+−), (15)

Lyy = 1

4
(−L++ − L−− + 2L+−), (16)

Lxx − Lyy = 1

2
(L++ + L−−); Lxy = − i

4
(L++ − L−−). (17)

Substituting Eqs. (15, 16) and Eq. (17) into Eqs. (6, 9), one obtains in this represen-
tation:

H0 = − �
2

2m⊥
L+L− − �

2

2mz

∂2
z − EF ; (18)

�̂ = − �0

8k2
F

(
L++(1 + α) + L−−(1 − α)

)
. (19)

2.3 Polar Coordinates

In polar coordinates,

∂x = −1

r
sinϕ∂ϕ + cosϕ∂r ; (20)

∂y = 1

r
cosϕ∂ϕ + sinϕ∂r , (21)

the chiral combinations are

∂± = e±iϕ

(
∂r ± i

r
∂ϕ

)
. (22)

The diagonal part of the BdG Hamiltonian takes the form

H0 = − �
2

2m⊥

(
1

r
∂r + ∂2

r + 1

r2
∂2
ϕ

)
− �

2

2mz

∂2
z − EF . (23)

The off diagonal terms in Eqs. (5) include:

L++eiϕ/2vn = e3iϕ/2Mvn;L+++e−iϕ/2un = e−3iϕ/2M+un;
L−−eiϕ/2vn = e−iϕ/2Nvn;L+−−e−iϕ/2 = eiϕ/2N+vn,

(24)



J Low Temp Phys (2013) 173:289–302 295

where

M = Θ ′′ − Θ ′

r
+ 2Θ

r2
+ 4Θ ′∂r − 4Θ

r
∂r + 4i

r
Θ ′∂ϕ − 8iΘ

r2
∂ϕ + 4Θ∂2

r + 8iΘ

r
∂r∂ϕ

− 4Θ

r2
∂2
ϕ; (25)

N = Θ ′′ + 3Θ ′

r
− 2Θ

r2
+ 4Θ ′∂r + 4Θ

r
∂r − 4i

Θ ′

r
∂ϕ − 2iΘ

r2
∂ϕ + 4Θ∂2

r − 8i
Θ

r
∂r∂ϕ

− 4Θ

r2
∂2
ϕ. (26)

3 Solution of the BDG Equations

3.1 Decoupling of Different Angular Momenta in Chiral Superconductor

Let us consider the chiral case of α = 1 in Eq. (9). The set of BdG equation in this
case is ⎛

⎝ Ĥ0 −�0
k2
F

e2iϕM̂

−�0
k2
F

e−2iϕM̂+ −Ĥ ∗
0

⎞
⎠

(
un

vn

)
= En

(
un

vn

)
. (27)

Using the translation symmetry in the field direction, the operator H0 for component
with momentum kz takes the form

Ĥ0 = − �
2

2m⊥

(
1

r
∂r + ∂2

r + 1

r2
∂2
ϕ

)
− E⊥, (28)

where E⊥ = EF − k2
z /2mz. Despite the fact that there is no explicit rotational sym-

metry, it is convenient to use the 2D angular momentum basis
(

u

v

)
=

∑
l

eilϕ

(
ul(r)

vl(r)

)
; (29)

which leads to

Eul = e−ilϕĤ0e
ilϕul − �0

4k2
F

ei(2−l)ϕM̂ei(l−2)ϕvl−2 (30)

Evl = −e−ilϕĤ0e
ilϕvl − �0

4k2
F

e−i(l+2)ϕM̂+ei(l+2)ϕul+2.

With the transition to energies in units of �0, in particular εn = En/�0 and
distances in units of coherence length (ξ = �vF /�0 in the clean limit), r → r/ξ ,
kz → ξkz, k⊥ → ξk⊥, the equations become:

εul = −γ

(
∂2
r + 1

r
∂r + k2⊥ − l2

r2

)
ul − γ 2Π1vl−2; (31)
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Π1 =
(

Θ ′′ + 4l − 9

r
Θ ′ + 2

2l2 − 12l + 17

r2
Θ + 4Θ ′∂r

+ 4
2l − 5

r
Θ∂r + 4Θ∂2

r

)
, (32)

εvl = −γ 2Π2ul+2 + γ

(
∂2
r + 1

r
∂r + k2⊥ − l2

r2

)
vl,

Π2 =
(

Θ ′′ − 4l + 9

r
Θ ′ + 2

2l2 + 12l + 17

r2
Θ + 4Θ ′∂r − 4

2l + 5

r
Θ∂r

+ 4Θ∂2
r

)
, (33)

where only two dimensionless parameters enter. One is k⊥ξ and the second is

γ = �0

4EF

= 1

2kF ξ
. (34)

One observes that the equations decuple if one chooses in the second equation angular
momentum l − 2:

εul = −γ

(
∂2
r + 1

r
∂r + k2⊥ − l2

r2

)
ul − γ 2Π3vl−2; (35)

Π3 =
(

Θ ′′ + 4l − 9

r
Θ ′ + 2

2l2 − 12l + 17

r2
Θ + 4Θ ′∂r

+ 4
2l − 5

r
Θ∂r + 4Θ∂2

r

)
, (36)

εvl−2 = −γ 2Π4ul + γ

(
∂2
r + 1

r
∂r + k2⊥ − (l − 2)2

r2

)
vl−2,

Π4 =
(

Θ ′′ − 4l + 1

r
Θ ′ + 2

2l2 + 4l + 1

r2
Θ + 4Θ ′∂r − 4

2l + 1

r
Θ∂r

+ 4Θ∂2
r

)
. (37)

The profile of the order parameter Θ(r) should be calculated self consistently,
however we used a simple dependence Θ(r) = tanh(r). This is justified a posteriori
by the local density of states (LDOS) that shows that it is completely dominated by
the continuum states rather than the few Andreev states.

3.2 Results for the Spectrum and Charge Density for a Single Vortex

This was solved numerically with boundary conditions ul(r = 0) = vl(r = 0) = 0
and ul(r = L) = vl(r = L) = 0, where L is the radius of the cylindrical sample (disc
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Fig. 1 A single Andreev state
energy as function of k⊥ . The
value of the only parameter
characterizing the system is
γ = 0.38. The dispersion
relation is nearly linear up to a
threshold at �

when the width of the sample is finite −Lz/2 < z < Lz/2). Pinned vortices are dis-
cussed in the next section. The Andreev bound state is found for γ = 0.38 only for
l = 1. The energy as function of k⊥ for γ = 0.38 is presented in Fig. 1. All the
other angular momentum channels have just the continuum above the superconduct-
ing threshold. Moreover it appears only for

kz < kmax
z = 2/γ (38)

since E⊥ should be positive. This is a direct consequence of γ ∼ 1. For small γ

the spectrum of Andreev states is semiclassical as discussed in the Introduction. The
“minigap” therefore is very large and it is difficult to excite the core states. The An-
dreev states (one for each available value of kz) are localized near the core, see the
radial density

ρ(r) = 2πr
(∣∣u1(r)

∣∣2 + ∣∣v1(r)
∣∣2) (39)

in Fig. 2. The core states come mostly from the particle rather than the hole sector
for the given direction of the magnetic field, so there is a sizable charge density in
the hole. The contributions from the continuum above the threshold are expected to
compensate each other since they originate both from electron and hole excitations.
The density of states reads:

N(r, ε) =
∑
n

{∣∣un(r)
∣∣2

δ(ε − εn) + ∣∣vn(r)
∣∣2

δ(ε + εn)
}

(40)

= |u1(r)|2√
ε − ε1(0)

+
∑
cont

{ |un(r)|2√
ε − εn(0)

+ |vn(r)|2√
ε + εn(0)

}
.

3.3 Generalization to the Non-chiral Case and to Pinned Vortices

Generally the d-wave order parameter, Eq. (19), deviates from “perfect chirality”,
α = ±1, Small deviations from the positive chirality can be parametrized by ζ ,
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Fig. 2 The radial density ρ(r), Eq. (39), of the core state as function of the distance from the vortex center
for γ = 0.38. It extends several coherence lengths inside the superconductor. Two values of the momentum
along the magnetic field direction kz are given a kz = 0.88/ξ . b kz = 1.15/ξ

α = 1 + 2ζ :

�̂ = − �0

4k2
F

L++ − ζ
�0

4k2
F

(L++ − L−−). (41)

The correction therefore can be written using Eq. (17) as

V = −iζ
�0

k2
F

Lxy. (42)

The shift of the Andreev eigenstates energy occurs only in second order in ζ since

�ε1 = −iζ
�0

k2
F

∫ L

r=0
r

∫
ϕ

〈
l = 1|L++|l = 1

〉 + cc = 0. (43)
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The Andreev state goes lower therefore only when the energy gap � = �0(1 − 2ζ )

is significantly (first order in ζ ) smaller than �0. We expect that for yet lower α the
spectrum at γ ∼ 1 will still consist of just one Andreev state in the l = 1 channel.

Till now the boundary condition at the center of the vortex was free. One can de-
scribe a pinned vortex by a different boundary condition, ul(r = R) = vl(r = R) = 0,
where R is the radius of the pinning area of order ξ (assumed for simplicity dielec-
tric). The results do not change appreciably until the radius exceeds ξ .

4 Thermal Transport

4.1 Kopnin-Landauer Formula

Thermal conductivity is an effective tool to demonstrate the minigap due to activated
behavior of the electron contribution. To calculate the quasiparticle contribution to
thermal conductivity along the vortex cores when the upper side of the vortex line
is held at temperature T1 and the lower side at temperature T2, we use a general
ballistic (width of the film Lz smaller than the mean free path) Kopnin-Landauer
formula [59, 60]. The heat current at temperature lower than the threshold to the
continuum of states is carried mainly by the bound core states. For a single vortex in
a sufficiently thick sample the variable kz can be considered as a continuous one and
the thermal current can be written as

I (T ) =
∫ kmax

z

0

dkz

2π�

∣∣∣∣dE1(γ, ξkz)

dkz

∣∣∣∣ E1(γ, ξkz)

1 + exp(E1(γ, ξkz)/T )
(44)

= �2
0

2π�

∫ kmax
z ξ

0
dk̃z

dε1(γ, k̃z)

dk̃z

ε1(γ, k̃z)

1 + exp(ε1(γ, k̃z)/t)
, (45)

where t = T/�0 and k̃z = ξkz. Changing variables one obtains

I (T ) = �2
0

2π�

∫ 2/γ

1

εdε

1 + exp(ε/t)
= T 2

2π�

[
Π

(
�0

T

)
− Π

(
8EF

T

)]
. (46)

Here the lower limit of integration is the energy for kz = 0 and the indefinite integral
is

Π(ε) =
∫

εdε

1 + exp(ε)
= −ε2/2 + ε log

(
1 + eε

) + Li2
(−eε

)
, (47)

where Li is the polylog function. For small temperature differences the linear re-
sponse can be used,

dI

dT
= T

π�

[
Π

(
�0

T

)
+ �2

0/2T 2

1 + exp(�0/T )
− Π

(
8EF

T

)
− 32E2

F /T 2

1 + exp(8EF /T )

]
. (48)

In Fig. 3 the heat conductance of a single vortex line is given as function of the
inverse temperature (in units of �−1) demonstrating the activated behavior of the
electron contribution.
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Fig. 3 Heat flow through a
superconductor in a magnetic
field along the vortex cores. The
temperature difference between
the bottom and the top contacts
leads to energy flow carried at
low temperatures by the core
states. Dimensionless heat
conductance �

�
dI
dT

of a single
vortex given in Eq. (48) as
function of temperature in units
of �

5 Conclusion and Discussion

To summarize, in the gapped dx2−y2 + iαdxy unconventional (in the sense of EF

being of the same order of magnitude as �) superconductor in a magnetic field the
spectrum consists of a single excitation mode for any value of momentum kz along
the field per Abrikosov vortex. Therefore each vortex core can be viewed as a nano-
size normal “quantum wire” inside the superconducting material. The dispersion in
this one-dimensional metallic system is roughly linear as a function of k⊥, see Fig. 1.
Unlike the extended Andreev states found in a better studied theoretically case of the
nodal dx2−y2 case [47], the core states are well localized, see Fig. 2.

Due to the exceptionally large “minigap” it is difficult to excite the 1D quantum
wire mechanically, thermally or electromagnetically. This has a large impact on the
thermal transport along the field direction and vortex dynamics in the direction per-
pendicular to the field. At temperatures lower that �/2 the viscosity should be very
large, while the thermal transport has an activated nature see Fig. 3. In particular
case the critical current in such superconductors would be greatly enhanced at these
temperatures. A magnetic field B � Hc1 creates SB/Φ0 vortices over area S, so
that heat conductivity is κ = LzB

Φ0

dI
dT

, where Lz is the sample width. For B = 5 T
(between Hc1 and Hc2 for cuprates), with Lz = 70 nm at T/� = 0.2 one obtains a
thermal conductivity of order κ ∼ 102 W/K m.

Technically, since the coherence length is short and the Fermi energy is relatively
small, the quasiclassical approach is inapplicable and more complicated Bogoliubov-
deGennes equations were used. The approach simplifies for the chiral d-wave super-
conductor, α = ±1, due to the decupling of sectors in the BdG equation with different
angular momentum l. Despite the fact that the angular momentum is not a conserved
quantum number, it can be used to label Andreev bound states. It turns out that such
states exist only in the l = 1 channel. The approach can be generalized for any super-
conductor of that type with a sufficiently large gap. A natural and rather direct method
to look for evidence for chiral d-wave superconductors is microwave absorption by
the vortex core states in a magnetic field. In this case the absorption depends strongly
on the polarization of the incident wave [61, 62].
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Vortices are typically organized in the hexagonal vortex lattice that leads to the
creation of a narrow band due to small overlaps of the Andreev states belonging to
the neighboring vortex cores. Periodicity however is not expected to play a role in
thermal conductivity along the “nano-wires” that are well separated.
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